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Abstract. In 2012, Lyubashevsky [9] introduced a framework for ob-
taining efficient digital signatures relying on lattice assumptions. Several
works [11, 15] attempted to make this approach compliant with the cod-
ing theory setting, unsuccessfully. Recently, Song et al. proposed another
adaptation of this framework [16], using denser and permuted secret keys,
claiming immunity against existing attacks [5, 13].
This paper describes an efficient attack against Song et al. signature
scheme. We show that it is possible to fully recover the secret key from a
very limited number of signatures. As an example, it requires 32 signa-
tures and 2 hours to recover the secret key of the parameter set targeting
80 bits of security. The attack affects both proposed parameter sets, and
discourages patching such an approach.
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1 Introduction

Digital signature schemes are a class of cryptographic primitives designed to
provide a digital equivalent to their classical/paper counterpart, namely to au-
thenticate the original issuer of a document. Efficient constructions of signa-
ture schemes have been proposed alongside the advent of public key cryptog-
raphy [12]. Ever since then, a long line of research has aimed at making these
constructions more efficient, by reducing the public key size, and/or shorten-
ing the signature length. While many well-established and widespread signature
schemes rely on integer factorization, the most efficient constructions rely on
the intractability of extracting discrete logarithms over the additive group of
points on an elliptic curve. In 1994, assuming the existence of a sufficiently large
quantum computer, Shor [14] presented an algorithm to solve both problems
in polynomial time (against sub-exponential time for the best known classical
algorithms). Finding quantum-safe alternatives to cryptosystems relying on the
hardness of number theory problems is therefore of prime importance.
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Among the quantum-safe alternatives, euclidean lattices and error correcting
codes stand as the most promising candidates. Code-based cryptography was
initiated by McEliece [10], and essentially relies on the intractability of decoding
random linear codes, a problem that has been proved NP-complete [3]. While
Public Key Encryption seems to be a primitive easy to build using coding theory,
obtaining efficient and secure Digital Signatures is a long standing open problem.

A first approach consists in turning an identification scheme into a digital
signature using Fiat-Shamir transform. Because identification schemes have non-
zero cheating probability, the protocol has to be repeated many times to achieve
the target security level, yielding long signatures [17]. Shorter signatures can
be obtained using the other approach: the hash-and-sign paradigm. The first
construction of that kind is the CFS signature scheme [4]. It works by repeatedly
hashing a message with a counter until the hash hits a decodable word. The
signature size is optimal, but the signing procedure is rather inefficient since
the hashing process has to be repeated an large number of times. Additionally,
the CFS construction requires to resort to high density Goppa codes, that have
been shown to be distinguishable from random codes [6], although this does
not affect the practical security of their scheme. More recently, Debris-Alazard,
Sendrier and Tillich managed to design a rejection sampling procedure that
prevent information leakage, yielding an hash-and-sign signature scheme with
acceptable (unstructured) public key size ≈ 3 MB and signature size ≈ 2 KB.

In 2012, Lyubashevsky introduced a framework for constructing lattice-based
signature schemes without trapdoor (such as GPV [7] or NTRU [8]). In this
scheme, the secret key is a set of short lattice vectors, the public key is con-
structed as an instance of the Short Integer Solution problem (SIS for short),
and signatures are a small subset sum of the secret key, hidden by a (large)
Gaussian mask. The signature is rather efficient both in terms of public key size
(≈ 1 MB unstructured) and signature size (≈ 10 KB). Several attempts have
been made to adapt Lyubashevsky’s framework to code-based cryptography, ei-
ther in Hamming metric [11] or in Rank metric [15], both of them have proved to
be insecure [5, 13, 1]. Recently, Song et al. [16] proposed another adaptation of
Lyubashevsky’s framework in Hamming metric, that we will abbreviated as the
SHMWW signature scheme later. Actually their proposal is very similar to the
“matrix version” presented and claimed insecure in [5, p. 5], with two noticeable
differences: The secret key is both row- and column-permuted; The rows of the
secret key have bigger weight. While Song et al. claim that their scheme resists
existing attacks such as [5, 13], their analysis of the information leaked by a sig-
nature is more disputable (see paragraph “Indirect Key Recovery Attacks” [16, p.
13]), and no assumption is made on the number of signatures that an adversary
can collect.

Contributions. The contributions of this work are threefold: first we describe a
polynomial time algorithm to recover the permuted secret key from a bunch of N
signatures. Then we provide a proof of concept implementation of the SHMWW
signature scheme to generate concrete target instances for our cryptanalysis and
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finally, we provide an implementation of our cryptanalysis, that successfully
returns the secret key given access to very few signatures.

Techniques. The cryptanalysis is split in two phases: first we show that the
structure of the secret key leads to an information leakage in the signatures and
we exploit it to partially recover this structure. Then using this information we
apply an Information Set Decoding algorithm to recover the whole secret key.

Related work. The SHMWW signature scheme is very similar to the matrix
adaptation of Lyubashevsky’s framework described and claimed insecure in [5],
except that it features a denser secret key matrix, permuted left (row-permuted)
and right (column-permuted). Our cryptanalysis proves that these additions are
not sufficient to prevent information leakage. In an independent work, Baldi et
al. [2]1 proposed a similar approach for cryptanalysing the SHMWW signature
scheme. They provide a thorough statistical analysis of their method supported
with empirical simulations, and derive theoretical upper bounds in terms of com-
plexity for their cryptanalysis. Our work differs from [2] in the following aspects:
instead of statistical simulations, we provide a proof-of-concept implementation
of the SHMWW signature scheme [16] as well as an implementation of our
cryptanalysis, that succeeds with a number of collected signatures two orders of
magnitude below [2] (namely 32 against 5000 to 8000). Both implementations are
publicly available at: https://github.com/deneuville/cryptanalysisSHMWW.

Organization of the paper. We introduce some notation and background on
coding theory and Lyubashevsky’s framework in section 2. Section 3 is devoted
to the description of Song et al. signature scheme. The main contribution of
this work, the cryptanalysis of the SHMWW signature scheme, is described in
section 4 before concluding in section 5.

2 Preliminaries

2.1 Notations

Throughout the paper, Fq denotes the finite field of q elements. Vectors (resp.
matrices) will be represented in lower-case (resp. upper-case) bold letters. A
vector u = (u0, . . . , un−1) ∈ Fn

q will be interchangeably seen as a vector or
polynomial in Fq[x]/〈xn − 1〉. Hence for u,v ∈ Fn

q , w = uv denotes the vector
such that:

wk =
∑

i+j=k

uivjx
k, for k ∈ {0, . . . , n− 1}.

Given the context, the weight of a vector u ∈ Fn
q will either denote its Hamming

weight or its Euclidean norm, and will be indifferently denoted ‖u‖. Finally, we
denote by Snw(Fq) the set of vectors in Fn

q of weight w.

1 [2] was submitted on ePrint on July the 17th, 2020. Our implementations were made
public on July the 4th, 2020. The present document has been submitted to ePrint
on July the 24th.
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2.2 Coding theory

We now recall some basic definitions and facts about coding theory that will
be helpful for the comprehension of the SHMWW signature scheme and its
cryptanalysis.

Definition 1 (Parity-check matrix). Let n, k be integers. The parity-check
matrix of an [n, k] linear code C is a matrix H ∈ F(n−k)×n

q that generates the
dual code C⊥. Formally, if G ∈ Fn×k

q is a generator matrix of C, then H satisfies
GH> = 0.

Definition 2 (Syndrome Decoding problem). Let H ∈ F(n−k)×n
q be a

parity-check matrix of some [n, k] linear code over Fq, s ∈ Fn−k
q a syndrome,

and w an integer. The Syndrome Decoding problem asks to find a vector e ∈ Fn
q

of weight less than or equal to w such that s> = He>.

The SD problem has been proved to be NP-hard [3]. Assuming a solution
to the SD problem exists, the target weight w determines whether the solution
is unique or not. This property is captured through the well-known Gilbert-
Varshamov (GV) bound.

Definition 3 (Gilbert-Varshamov bound). Let C be an [n, k] linear code
over Fq. The Gilbert-Varshamov bound dGV is the maximum value d such that

d−1∑
i=0

(
n

i

)
(q − 1)

i ≤ qn−k.

2.3 Lattice signatures without trapdoors

In 2012, Lyubashevsky proposed a new approach for building lattice-based sig-
natures without trapdoors [9]. Contrarily to NTRUSign [8] which embeds very
short vectors in the secret key, and GPV [7] which uses Gaussian sampling to
avoid information leakage when generating the public key from the secret key,
Lyubashevsky’s keys are an SIS instance, an analogue to the syndrome decoding
problem in the lattice setting.

We now recall Lyubashevsky’s signature scheme (Fig. 1). Many notations
(η, σ, ...) are purposely not introduced because of their irrelevance to this work.
We keep the description in its general form but as mentioned by the author, key
sizes can be shrunk by a factor k using more structured matrices and relying
on the ring version of the SIS problem. Private and public keys are respec-
tively uniformly random matrices S ∈ {−d, . . . , 0, . . . , d}m×k and A ∈ Fn×m

q

(T = AS also belongs to pk) and the signature process invokes a hash function
H : {0, 1}∗ →

{
v : v ∈ {0, 1}k , ‖v‖1 ≤ κ

}
. A signature (z, c) of a message m

corresponds to a combination of the secret key and the hash of this message,
shifted by a committed value also used in the hash function. The entire scheme
is depicted in Fig. 1. The main idea behind Lyubashevsky’s scheme is that the
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Algorithm 1 KeyGen(n,m, k, q, d)
Input: n,m, k, q, d ∈ Z
Output: (pk, sk) with pk = (A,T ) ∈ Fn×mq × Fn×kq and sk = S ∈ Fm×kq

1: S
$← {−d, . . . , 0, . . . , d}m×k

2: A
$← Fn×mq

3: T ← AS
4: return (pk = (A,T ) , sk = S)

Algorithm 2 Sign(pk, sk,m)

Input: Public and private keys, message m ∈ {0, 1}∗ to be signed
Output: Signature (z, c) ∈ Fmq × Fkq of message m

1: y
$← Dm

σ

2: c← H(Ay,m)
3: z ← Sc+ y

4: return (z, c) with probability min
(

Dmσ (z)

M .Dm
Sc,σ

(z)
, 1
)

Algorithm 3 Verify(pk, (z, c) ,m)

Input: Public key, message m, and the signature (z, c) to verify
Output: Accept if (z, c) is a valid signature of m, Reject otherwise
1:
2: if H(Az − Tc,m) = c and ‖z‖ ≤ ησ

√
m then

3: return Accept
4: else
5: return Reject

Fig. 1. Lyubashevsky’s lattice-based signature scheme.

signing procedure in Alg. 2 includes a rejection step that ensures that the dis-
tribution of the output signature is independent from the secret key and hence,
do not leak. Regarding the verification in Alg. 3, ησ

√
m is an upper bound on

the length of the signature.

3 SHMWW’s code-based variation on Schnorr-
Lyubashevsky

Recently, Song et al. proposed a code-based variation on Schnorr-Lyubashevsky’s
framework. Their approach essentially differs from previous adaptations in the
construction of the secret key. In the rest of the paper, we use the notations
of [16]: k′ and n′ denote the dimension and length of the inner generator ma-
trices Ei = [Ik′ | Ri] under systematic form (Ik′ denotes the identity matrix of
dimension k′), l denotes the number of such matrices, and k and n = ln′ are the
dimension and length of a random code over F2 defined by its parity-check ma-
trix H. P1 (resp. P2) is a random permutation matrix of k′ (resp. n) elements.
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The secret key is the matrix E = P1[E1 | · · · | El]P2 ∈ Fk′×n
2 , and the public

key consists of H ∈ F(n−k)×n
2 and S = HE> ∈ F(n−k)×k′

2 .
By constructing the secret key this way, row elements of the secret key E

have an average weight of l × (1 + n′−k′

2 ), which is close to 1/3 or 1/4 of the
Gilbert-Varshamov bound for random linear codes of rate k′/n (depending on
the parameters). Notice that this is different from previous proposals such as [11]
or the matrix version of [5] where the row weight is closer to

√
n. Also notice

that while the permutation P2 permutes the columns of E′ = [E1 | · · · | El], the
permutation P1 only permutes the rows of E′, therefore E′ and P1E

′ generate
the same code. In other words, P1 has no positive impact on the security of the
SHMWW scheme.

Finally, Song et al. also use a Weight Restricted Hash (WRH) function H
in their construction, that on input an arbitrary bit string returns a word of
length ` = k′ and Hamming weight w = w1. The authors describe a method for
constructing such a hash function. Since our cryptanalysis is independent from
that function, we simply denote it Hk′

w1
or H if the context is clear.

To sign a message m, a mask e of small weight w2 is sampled uniformly at
random, then committed by its syndrome, together with the message, to get the
challenge c = H

(
m,He>

)
. The response to this challenge is the product of

the secret key and the challenge, hidden by the committed mask: z = cE + e.
The signature consists of the challenge and the response: σ = (z, c). The algo-
rithms for SHMWW signature scheme are depicted in details in Fig. 2. Proposed
parameters are recalled in Table 1.

Criteria for parameters selection. In [16], the authors study the impact of
applying Prange Information Set Decoding (ISD) algorithm for both “direct and
indirect” key recovery attacks. This essentially provides parameters n, k, dGV

and w2, the other parameters follow by the Gilbert-Varshamov bound and by
choosing a value for l:

l (w1 + n′ − k′) + w2 ≤ dGV . (1)

One of the most technical aspects in the design of a signature scheme is to
make the signature distribution statistically independent from the secret key.
This allows (by programming the random in the security reduction) the forger
to produce valid signatures without knowing the secret key, which can then be
used to solve the underlying hard problem. This technicality provides guidance
for the choice of the parameters, especially for the Hamming weight (or `1 norm
for Lyubashevsky) of the challenge. Indeed, in order for the SD problem to
admit a unique solution, the weight of the signature must be below the Gilbert-
Varshamov bound. In the meantime, the weight of the secret key should be big
enough in order not to be exhibited easily. In the case of SHMWW, this results in

a secret key E that is sparse: Only
l(k′+k′(n′−k′)/2)

k′n ' 7% of non-zero coordinates
for both parameter sets. This sparsity will be useful for the cryptanalysis.
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Algorithm 4 KeyGen(params = (n, k, n′, k′, l, w1, w2, dGV ))

Input: Public parameters params = (n, k, w1, w2, δ) chosen from Tab 1.
Output: (pk, sk) with pk = (H,S) ∈ F(n−k)×n

2 × F(n−k)×k′
2 and sk = E ∈ Fk

′×n
2

1: H
$← F(n−k)×n

2

2: Ri
$← Fk

′×(n′−k′)
2 for i ∈ [[1, l]]

3: Let P1 (resp. P2) be a random k′ × k′ (resp. n× n) permutation matrix
4: E ← P1 [Ik′ |R1| · · · |Ik′ |Rl]P2

5: return
(
pk =

(
H,S = HE>

)
, sk = E

)
Algorithm 5 Sign(pk, sk,m)

Input: Public and private keys, message m ∈ {0, 1}∗ to be signed
Output: Signature (z, c) ∈ Fn2 × Fk

′
2 of message m

1: e
$← Snw2

2: c← H
(
m,He>

)
(c has length k′ and weight w1)

3: z ← cE + e
4: return (z, c) . no rejection sampling

Algorithm 6 Verify(pk, (z, c) ,m)

Input: Public key, message m, and the signature (z, c) to verify
Output: Accept if (z, c) is a valid signature of m, Reject otherwise
1: if H(m,Hz> − Sc>) = c and ‖z‖ ≤ l (w1 + n′ − k′) + w2 then
2: return Accept
3: else
4: return Reject

Fig. 2. Song et al. code based proposal [16].

4 Cryptanalysis of the SHMWW scheme

In this section we describe how we can exploit the structure of the matrix E and
N valid signatures to recover the secret key of the SHMWW scheme.

4.1 ISD complexity with the knowledge of random columns

First we are going to show that knowing which columns of E are random and
which come from an identity matrix (i.e only have one non-zero coordinate) can
be used to efficiently recover E.

Let IR be the set of random columns of E. Then we can recover E line by
line by applying any Information Set Decoding (ISD) algorithm, such as Prange
algorithm, and choose an information set I such that IR ⊂ I. This way we
maximize the probability that every non-zero coordinates of the line we are
trying to recover are included in the information set.

More precisely, in the SHMWW scheme, we have:
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Instance n k n− k l n′ k′ n′ − k′ w1 w2 d = dGV λ

Para-1 4096 539 3557 4 1024 890 134 31 531 1191 80
Para-2 8192 1065 7127 8 1024 880 144 53 807 2383 128

Table 1. Original SHMWW parameters [16] for λ bits of security.

– |IR| = (n′ − k′)× l
– |I| = n− k

Proposition 1. The probability p that the l non-zero coordinates of E (the ones
from the non-random columns) are included in I is:

p =

(
n−k−(n′−k′)×l

l

)(
n−(n′−k′)×l

l

) . (2)

Proof. By choosing an information set I such that IR ⊂ I, we have to choose
|I|−|IR| = n−k−(n′−k′)×l columns at random and hope that the l remaining
non-null coordinates (from the identity matrices) are included in this set.

From this we deduce that the probability of success is the probability that
the l non-null coordinates that are distributed in n− (n′ − k′)× l positions are
included in an information set of size n− k − (n′ − k′)× l, hence the result.

ut
From Proposition 1 we deduce that the probability of success is approxi-

mately of 50% for the parameter set Para-1 and 30% for Para-2.
We are now going to estimate the complexity of recovering the secret key E

given the knowledge of the set IR.

Proposition 2. Given the knowledge of IR, recovering the secret key E costs:

– 248 operations for Para-1
– 252 operations for Para-2

Proof. The complexity of solving a linear system to recover a line of E is (n−k)3.
Since the SHMWW scheme only uses binary matrices, the probability that

the matrix defining said linear system is invertible can be approximated by
0.288, and the probability p that the system gives the correct solution is given
by proposition 1.

This has to be repeated for each of the k′ lines of E, which gives the following
complexity:

k′((n− k)3)
0.288p

Hence the result.
ut
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Remark: Even in we only have an approximate knowledge of IR (i.e if the
set is missing some random columns, or non-random columns are included), the
ISD will still recover the secret line of E but the probability of success will be
lower, hence leading to a higher complexity. Experimental results about how this
affects the complexity are given section 4.3.

Next we are going to show how we can recover IR using leakage from the
signatures.

4.2 Leakage from the signatures

We are going to exploit the following bias in the weight of the signatures in order
to recover IR:

Proposition 3. Let IR be the set of random columns of E and let z =
(z1, . . . , zn) = cE + e. Then we have:

– P (zi = 1) = 1
2 if i ∈ IR

– P (zi = 1) = w1

k′ + w2

n (1− 2w1

k′ ) otherwise

Proof. We know that:

z = cE + e

Where c is a vector of length k′ and weight w1 and e is a vector of length n
and weight w2.

Since w1 � k′

2 , c has a much lower weight than a random vector of the same
length. We are now going to study the weight of each coordinate of the vector
z′ = cE.

Let z′i be the i-th coordinate of z′. Then there are two possibilities:

– If the i-th column of E is random, then the weight of z′i is 1 with probability
1
2

– If the i-th column of E is a column of weight 1, then the weight of z′i is 1
with probability w1

k′

Now we want to compute the probability P (zi = 1) that the i-th coordinate
of z is of weight 1. Since z′ and e are independent we have:

P (zi = 1) = P (z′i = 1) + P (ei = 1)− 2P (zi = 1 ∧ ei = 1)

= P (z′i = 1) + P (ei = 1)(1− 2P (z′i = 1))

Which gives the result by replacing P (z′i = 1) by either 1
2 or w1

k′ depending
on i and P (ei = 1) by w2

n .
ut

Table 2 shows the values of P (zi = 1) for the two SHMWW parameter sets.
Using proposition 3 we can distinguish between random columns and columns

from an identity matrix: when acquiring multiple signatures, the coordinates zi
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Para-1 Para-2
P (zi = 1|i ∈ IR) 0.5 0.5
P (zi = 1|i /∈ IR) 0.155 0.147

Table 2. Values of P (zi = 1) for the SHMWW parameter sets

for which, on average, their weight is lower than 1
2 are most likely to be the

coordinates corresponding to columns of weight 1.
From this we can now build an algorithm to recover the secret key of the

SHMWW scheme. This algorithm is presented figure 3 and uses a threshold
value, computed as the mean of P (zi = 1|i ∈ IR) and P (zi = 1|i /∈ IR).

Input: H,S, a threshold value t, a set of signatures (σ1, . . . , σN ) =
((z1, c1), . . . , (zN , cN ))
Output: the secret matrix E

1. IR = ∅
2. For each i from 1 to n:

– Compute wi =
N∑
j=1

(zj)i

– If wi > N × t then IR = IR ∪ {i}
3. For each i from 1 to k′:

– Recover the i-th line of E by using an ISD algorithm and the knowledge
of IR

4. Return E

Fig. 3. Secret key recovery of the SHMWW scheme

4.3 Experimental results

Recovery of IR. We performed experiments to measure the effectiveness of
the recovery of the set of random columns IR. For each parameter set, we ran
our script with an increasing number of signatures and checked the percentage of
correct guesses (i.e the number of coordinates in the set IR that was computed
by the cryptanalysis algorithm that corresponds to actual random columns of the
secret key). Results are presented in figure 4. This result shows that the recovery
of IR quickly becomes very precise when the number of available signatures
increases.

Execution time. To demonstrate the effectiveness of our cryptanalysis for
each parameter set, we generated 103 key pairs. For each of them, we generated
N signatures, and ran our cryptanalysis algorithm. The average timings are
reported in Table 3. The experiments were led on an Intel R© CoreTM i9-9980HK
CPU @ 2.40GHz with Sagemath version 7.5.1.
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for the cryptanalysis.

Instance Claimed Number N of collected signatures
Security N = 32 N = 64

Para-1 80 2h07m17s 44m37s
Para-2 128 16h21m04s 5h21m40s

Table 3. Experimental results for the cryptanalysis of the SHMWW signature scheme.
N denotes the number of signatures the adversary has access to.

5 Conclusion

In this paper, we presented an efficient cryptanalysis of the signature scheme
recently proposed by Song et al. [16], adapting Lyubashevsky’s framework to
coding theory. Our attack affects both parameter sets, and discourages further
parameter tweaks to patch the signature scheme. Our results are supported by a
proof-of-concept of both the SHMWW signature scheme and our cryptanalysis.
For both parameter sets, our attack requires as little as 32 signatures to fully
recover the secret key. A recent independent work [2] achieves similar results
assuming the adversary has access to two orders of magnitude more signatures
(namely 8000 for 80 bits, and 5000 for 128 bits). To the best of our knowledge, the
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authors of [2] did not publish an implementation, making a practical comparison
of the attacks impossible.
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