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Abstract Location based services (LBS) extensively utilize proximity
testing to help people discover nearby friends, devices, and services. Cur-
rent practices rely on full trust to the service providers: users share their
locations with the providers who perform proximity testing on behalf
of the users. Unfortunately, location data has been often breached by
LBS providers, raising privacy concerns over the current practices. To
address these concerns previous research has suggested cryptographic
protocols for privacy-preserving location proximity testing. Yet general
and precise location proximity testing has been out of reach for the cur-
rent research. A major roadblock has been the requirement by much of
the previous work that for proximity testing between Alice and Bob both
must be present online. This requirement is not problematic for one-to-
one proximity testing but it does not generalize to one-to-many testing.
Indeed, in settings like ridesharing, it is desirable to match against ride
preferences of all users, not necessarily ones that are currently online.
This paper proposes a novel privacy-preserving proximity testing proto-
col where, after providing some data about its location, one party can
go offline (nap) during the proximity testing execution, without under-
mining user privacy. We thus break away from the limitation of much
of the previous work where the parties must be online and interact di-
rectly to each other to retain user privacy. Our basic protocol achieves
privacy against semi-honest parties and can be upgraded to full secu-
rity (against malicious parties) in a straight forward way using advanced
cryptographic tools. Finally, we reduce the responding client overhead
from quadratic (in the proximity radius parameter) to constant, com-
pared to the previous research. Analysis and performance experiments
with an implementation confirm our findings.

Keywords: Secure proximity testing · privacy-preserving location based
services · MPC.

1 Introduction

We use more and more sophisticated smart phones, wear smart watches, watch
programs on smart TVs, equip our homes with smart tools to regulate the tem-
perature, light switches and so on.
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Location Based Services. As we digitalize our lives and increasingly rely on smart
devices and services, location based services (LBS) are among the most widely
employed ones. These range from simple automations like “switch my phone
to silent mode if my location is office”, to more advanced services that involve
interaction with other parties, as in “find nearby coffee shops”, “find nearby
friends”, or “find a ride”.

Preserving Privacy for Location Based Services. Current practices rely on full
trust to the LBS providers: users share their locations with the providers who
manipulate location data on behalf of the users. For example, social apps Face-
book and Tinder require access to user location in order to check if other users
are nearby. Unfortunately, location and user data has been often breached by
the LBS providers [28]. The ridesharing app Uber has been reported to violate
location privacy of users by stalking journalists, VIPs, and ex-partners [23], as
well as ex-filtrating user location information from its competitors [41]. This
raises privacy concerns over the current practices.

Privacy-Preserving Proximity Testing. To address these concerns previous re-
search has suggested cryptographic protocols for privacy-preserving location ser-
vices. The focus of this paper is on the problem of proximity testing, the problem
of determining if two parties are nearby without revealing any other information
about their location. Proximity testing is a useful ingredient for many LBS. For
example, ridesharing services are often based on determining the proximity of
ride endpoints [19]. There is extensive literature (discussed in Section 6) on the
problem of proximity testing [45,43,42,11,30,31,37,39,21,22,36,25].

Generality and Precision of Proximity Testing. Yet general and precise loca-
tion proximity testing has been out of reach for the current research. A major
roadblock has been the requirement that proximity testing between Alice and
Bob is only possible in a pairwise fashion and both must be present online. As
a consequence, Alice cannot have a single query answered with respect to mul-
tiple Bobs, and nor can she is able to check proximity with respect to Bob’s
preferences unless Bob is online.

The popular ridesharing service BlaBlaCar [4] (currently implemented as a
full-trust service) is an excellent fit to illustrate our goals. This service tar-
gets intercity rides which users plan in advance. It is an important requirement
that users might go off-line after submitting their preferences. The goal is to
find rides that start and end at about the same location. Bob (there can be
many Bobs) submits the endpoints of a desired ride to the service and goes of-
fline (napping). At a later point Alice queries the service for proximity testing
of her endpoints with Bob’s. A key requirement is that Alice should be able
to perform a one-to-many proximity query, against all Bobs, and compute an-
swer even if Bob is offline. Unfortunately, the vast majority of the previous
work [45,43,42,11,31,37,39,21,22,36,25] fall short of addressing this requirement.

Another key requirement for our work is precision. A large body of prior
approaches [45,43,42,11,30,31,32,27] resort to grid-based approximations where
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the proximity problem is reduced to the problem of checking whether the parties
are located in the same cell on the grid. Unfortunately, grid-based proximity
suffers from both false positives and negatives and can be exploited when crossing
cell boundaries [9]. In contrast, our work targets precise proximity testing.

This paper addresses privacy-preserving proximity testing with respect to
napping parties. Beyond the described offline functionality and precision we
summarize the requirements for our solution as follows: (1) security, in the
sense that Alice may not learn anything else about Bob’s location other than
the proximity; Bob should not learn anything about Alice’s location; and the
service provider should not learn anything about Alice’s or Bob’s locations; (2)
generality, in the sense that the protocol should allow for one-to-many matching
without demanding all users to be online; (3) precision, in the sense of a reliable
matching method, not an approximate one; (2) lightweight client computation,
in the sense of offloading the bulk of work to intermediate servers. We further
articulate on these goals in Section 2.

Contributions. This paper proposes OLIC (OffLine Inner-Circle), a novel proto-
col for proximity testing (Section 4). We break away from the limitation of much
of the previous work where the parties must be online. Drawing on Hallgren et
al.’s two-party protocol InnerCircle [21] we propose a novel protocol for proxim-
ity testing that utilizes two non-colluding servers. One server is used to blind
Bob’s location in such a way that the other server can unblind it for any Alice.
Once they have uploaded their locations users in our protocol can go offline and
retrieve the match outcome the next time they are online.

In line with our goals, we guarantee security with respect to semi-honest
parties, proving that the only location information leaked by the protocol is the
result of the proximity test revealed to Alice (Section 4.2). We then show how
to generically mitigate malicious (yet non-colluding) servers by means of zero
knowledge proofs and multi-key homomorphic signatures (Section 4.3). Gener-
ality in the number of users follows from the fact that users do not need to be
online in a pairwise fashion, as a single user can query proximity against the
encrypted preferences of the other users. We leverage InnerCircle to preserve
the precision, avoiding to approximate proximity information by grids or intro-
ducing noise. Finally, OLIC offloads the bulk of work from Bob to the servers,
thus reducing Bob’s computation and communication costs from quadratic (in
the proximity radius parameter) to constant. We note, that while InnerCircle can
also be trivially augmented with an extra server to offload Bob’s computations
to, this will add extra security assumptions and make InnerCircle less applicable
in practice. OLIC, on the other hand, already requires the servers for Bob to
submit his data to, and we get offloading for free. On Alice’s side, the compu-
tation and communication costs stay unchanged. We develop a proof of concept
implementation of OLIC and compare it with InnerCircle. Our performance
experiments confirm the aforementioned gains (Section 5).

On the 2 Non-Colluding Servers Assumption. We consider this assumption to
be realistic, in the sense that it significantly improves on the current practices
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of a single full-trust server as in BlaBlaCar, while at the same time being com-
patible with common assumptions in practical cryptographic privacy-preserving
systems. For example, Sharemind [40] requires three non-colluding servers for
its multi-party computation system based on 3-party additive secret sharing. To
the best of our knowledge, OLIC represents the first 2-server solution to perform
proximity testing against napping users in ridesharing scenarios, where privacy,
precision and efficiency are all mandatory goals. Notably, achieving privacy
using a single server is known to be impossible [18]. Indeed, if Bob was to sub-
mit his data to only one server (instead of sharing it between two, as done in
OLIC), then the server could query itself on this data and learn Bob’s location
via trilateration attack.

2 Modeling Private Proximity Testing Using Two Servers

The goal of private proximity testing is to enable one entity, that we will call
Alice, to find out whether another entity, Bob, is within a certain distance of
her. Note that the functionality is asymmetric: only Alice learns whether Bob
lies in her proximity. The proximity test should be performed without revealing
any additional information regarding the precise locations to one another, or to
any third party.

We are interested in designing a protocol to perform privacy preserving prox-
imity testing exploiting the existence of two servers. For convenience, we name
the four parties involved in the protocol: Alice, Bob, Server1, and Server2.

Our Setting. We consider a multi party computation protocol for four parties
(Alice, Bob, Server1, and Server2) that computes the proximity of Alice’s and
Bob’s inputs in a private way and satisfies the following three constraints:

(C-1) Alice does not need to know Bob’s identity before starting the test, nor
the parties need to share any common secret;

(C-2) Bob needs to be online only to update his location data. In particular,
Bob can ‘nap’ during the actual protocol execution.

(C-3) The protocol is executed with the help of two servers.

In detail, constraint (C-1) ensures that Alice can look for a match in the
database without necessarily targeting a specific user. This may be relevant
in situations where one wants to check the availability of a ride ‘near by’, in-
stead of searching if a specific cab is at reach and aligns with our generality
goal towards one-to-many matching. Constraint (C-2) is rarely considered in
the literature. The two most common settings in the literature are either to
have Alice and Bob communicate directly to one another (which implies that
either the two parties need to be online at the same time) [21], or to rely on
a single server, which may lead either to ‘hiccup’ executions (lagging until the
other party rejoins online) [31] or to the need for a trusted server. In order to
ensure a smooth executions even with a napping Bob and to reduce the trust in
one single server, we make use of two servers to store Bob’s contribution to the
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proximity test, that is constraint (C-3). This aligns with our goal of lightweight
client computation. We remark that, for a napping Bob, privacy is lost if we use
a single server [18].

Finally, unlike [31] we do not require the existence of a social network among
system users, to determine who trusts whom, nor do we rely on shared secret
keys among users.

Formalizing ‘Napping’. We formalize the requirement that ‘Bob may be napping’
during the protocol execution in the following way. It is possible to split the
protocol in two sequential phases. In the first phase, Bob is required to be
online and to upload data to the two servers. In the second phase Alice comes
online and perform her proximity test query to one server, that we call Server1.
The servers communicate with one another to run the protocol execution, and
finally Server2 returns the result to Alice.

Alice

Bob
1

Bob
2

r

Bob
3

Figure 1: Figurative rep-
resentation of the func-
tionality implemented by
privacy-preserving location
proximity.

Ideal Functionality. We adopt an ideal function-
ality that is very close to the one in [21]: if Alice
and Bob are within a distance r2 of each other, the
protocol outputs 1 (to Alice), otherwise it outputs
0 (to Alice). Figure 1 depicts this behavior. Alice
and Bob are the only parties giving inputs to the
protocol. Server1 and Server2 do not give any input
nor receive any output. This approach aligns with
our goal towards precision and a reliable matching
method, and brakes away from approximate ap-
proaches. For simplicity, we assume the threshold
value r2 to be set a priori, but our protocol accom-
modates for Alice (or Bob) to choose this value.

Practical efficiency. Finally, we are interested in
solutions that are efficient and run in reasonable
time on commodity devices (e.g., laptop computers, smartphones). Concretely,
we aim at reducing the computational burden of the clients—Alice and Bob—so
that their algorithms can run in just a few seconds, and can in the worst case
match the performance of InnerCircle.

Attacker Model. We make the following assumptions on the four parties involved
in the protocol:

(A-1) Server1, Server2 are not colluding;
(A-2) All parties (Alice, Bob, Server1, and Server2) are honest but curious, i.e.,

they meticulously follow the protocol but may log all messages and attempt
to infer some further knowledge on the data they see.

In our model any party could be an attacker that tries to extract un-authorized
information from the protocol execution. However, we mainly consider attackers
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that do so without deviating from their expected execution. In Section 4.3, we
show that it is possible to relax assumption (A-2) for the servers and deal with
malicious Server1, Server2 (still not colluding). In this case, the servers may
misbehave and output a different result than what expected from the protocol
execution. However, we do not let the two server collude and intentionally
share information. While we can handle malicious servers, we cannot tolerate
a malicious Alice or Bob. Detecting attacks such as Alice or Bob providing
fake coordinates, or Alice trilaterating Bob to learn his location,is outside our
scope and should be addressed by different means. We regard such attacks
as orthogonal to our contribution and suggest to mitigate them by employing
tamper-resistant location devices or location tags techniques [31].

Privacy. Our definition of privacy goes along the lines of [31]. Briefly, a protocol
is private if it reveals no information other than the output of the computation,
i.e., it has the same behavior as the ideal functionality. To show the privacy
of a protocol we adopt the standard definition of simulation based security for
deterministic functionalities [29]. Concretely, we will argue the indistinguishably
between a real world and an ideal world execution of our protocol, assuming that
the building blocks are secure, there is no collusion among any set of parties and
all parties are honest but curious. This means that none of the parties involved
in the OLIC protocol can deduce anything they are not supposed to know by
observing the messages they receive during protocol execution.

General limitations. Proximity testing can be done in a private way only for a
limited amount of requests [31,21] in order to avoid trilateration attacks [44].
Practical techniques to limit the number of requests to proximity services are
available [35]. Asymmetric proximity testing is suitable for checking for nearby
people, devices and services. It is known [45] that the asymmetric setting not
directly generalize to mutual location proximity testing unless an honest party
runs the protocol twice, with swapped roles but using the same location as
input).

3 Recap of the InnerCircle Protocol

We begin by giving a high-level overview of the InnerCircle protocol by Hallgren
et al. [21] and then describe its relation to our work.

The InnerCircle protocol in [21] allows two parties, Alice and Bob, to check
whether the Euclidean distance between them is no greater than a chosen value
r. The protocol is privacy preserving, i.e., Alice only learns a bit stating whether
the Bob lies closer that r or not, while it does not reveal anything to Bob or
to any external party. More specifically, Alice and Bob execute an interactive
protocol, exchange messages and at the end only Alice receives the answer bit.
To let Bob learn the answer as well, one can simply rerun the protocol swapping
the roles of Alice and Bob.

More formally, let (xA, yA) and (xB , yB) respectively denote Alice’s and Bob’s
locations. Throughout the paper, we will use the shorthand D = (xA − xB)

2 +
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Alice

(xA, yA)
Bob

(xB , yB)

(pk, sk)← Gen(1λ)
AStartpk(xA, yA)

b1 ← a1 ⊞ Encpk(x2
B + y2

B)
b2 ← a2 � xB

b3 ← a3 � yB
δ ← b1 ⊞ b2 ⊞ b3

LessThanpk(δ, r
2)

CheckLessThansk(L)

pk, a1, a2, a3

L
(List of ciphertexts)

Figure 2: Diagram of the InnerCircle protocol.

(yA−yB)2 to denote the squared Euclidean distance between Alice and Bob and δ
is an encryption of D. For for any fixed non-negative integer r, the functionality
implemented by the InnerCircle protocol is defined by:

FInnerCircle((xA, yA), (xB , yB)) = (z, ε), where

z =

{
1, if D ≤ r2 (D = (xA − xB)

2 + (yA − yB)
2)

0, otherwise.

InnerCircle is a single round protocol where the first message is from Alice to
Bob and the second one is from Bob to Alice (see Figure 2).

InnerCircle has three major steps (detailed in Figure 3):

Step-1: Alice runs the key generation algorithm to obtain her public key pk and
the corresponding sk. She encodes her location (xA, yA) into three values
and encrypts each of the latter using her pk. The encoding is necessary to
enable meaningful multiplication between Alice’s coordinates and Bob’s as
we will see in a moment. Finally, Alice sends her pk and the three ciphertexts
to Bob. This step is depicted in Figure 3a (the AStart algorithm).

Step-2: Bob uses his location and Alice’s pk to homomorphically compute a
ciphertext δ that encrypts the value D = (xA − xB)

2 + (yA − yB)
2 = (x2

A +
y2A) + (x2

B + y2B) − 2xAxB − 2yAyB . Note that at this point Bob can not
learn the value of D, since he never obtains the sk corresponding to Alice’s
pk. Similarly, if Alice would receive the ciphertext δ, she could decrypt
is with sk and learn the exact value of her distance to Bob, which clearly
is more information than just a single bit stating whether Bob is within
distance r from her. To reduce the disclosed information to what is specified
in the functionality Bob runs the hiding procedure depicted in Figure 3b
(the LessThan algorithm). Using this procedure, Bob produces a list L of
ciphertexts to return to Alice.
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The list L depends on δ in such a way that it contains an encryption of 0 if
and only if D ≤ r2.

Step-3: After receiving L, Alice decrypts each ciphertext in L using her sk. If
among the obtained plaintexts there is a 0 she deduces that D ≤ r2. This
step is formalized in Figure 3c (the CheckLessThan algorithm).

AStartpk(xA, yA)

1 : a1 ← Encpk(x2
A + y2

A)

2 : a2 ← Encpk(2xA)

3 : a3 ← Encpk(2yA)
4 : return (a1, a2, a3)

(a) The AStart algorithm.

LessThanpk(δ, r
2)

1 : for i ∈ {0 . . . r2 − 1}
2 : xi ← δ ⊞ Encpk(−i)
3 : ti ←M\ {0}
4 : li ← xi � ti

5 : L← [l0, . . . lr2−1]

6 : return Shuffle(L)

(b) The LessThan algorithm.

CheckLessThansk(L)

1 : [l0, l2 . . . lr2−1]← L

2 : for i ∈ {0 . . . r2 − 1}
3 : v ← Decsk(li)
4 : if v = 0

5 : return 1

6 : return 0

(c) The CheckLessThan algorithm.

Figure 3: The core algorithms in
the InnerCircle protocol.

Figure 3 contains the definitions of the
three procedures used in InnerCircle that will
carry on to our OLIC protocol. Below
we describe the major ones (LessThan and
CheckLessThan) in more detail.

The procedure LessThan (Figure 3b) pro-
duces a set of ciphertexts from which Alice
can deduce whether D ≤ r2 without disclos-
ing the actual value D. The main idea be-
hind this algorithm is that given δ = Encpk(D)
Bob can “encode” whether D = i in the value
x ← δ ⊕ Encpk(−i), and then “mask” it by
multiplying it by a random element l← x�r.
Observe that if D − i = 0 then Decsk(l) = 0;
otherwise if D−i is some invertible element of
M then Decsk(l) is uniformly distributed on
M\{0}. (When we instantiate our OLIC pro-
tocol for specific cryptosystem, we will ensure
that D− i is either 0 or an invertible element,
hence we do not consider here the third case
when neither of these holds.) The LessThan
procedure terminates with a shuffling of the
list, i.e., the elements in L are reorganized in
a random order so that the entry index no
longer correspond to the value i.

The procedure CheckLessThan (called in-
Prox in [21] depicted in Figure 3c. This pro-
cedure takes as input the list L output by
LessThan and decrypts one by one all of its
components. The algorithm returns 1 if and
only if there is a list element that decrypts to
0. This tells Alice whether D = i for some
i < r2. We remark that Alice cannot infer
any additional information, in particular she
cannot extract the exact value i for which the
equality holds. In the LessThan procedure Bob computes such “encodings” l for
all i ∈ {0 . . . r2} and accumulates them in a list. So if D ∈ {0 . . . r2 − 1} is the
case, then one of the list elements will decrypt to zero and others will decrypt
to uniformly random M \ {0} elements, otherwise all of the list elements will
decrypt to random nonzero elements. If the cryptosystem allowed multiplying
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encrypted values, Bob could compute the product of the “encodings” instead of
collecting them into a list and send only a single plaintext, but the cryptosystem
used here is only additively homomorphic and does not allow multiplications.

4 Private Location Proximity Testing with Napping Bob

Notation. We denote an empty string by ε, and a list of values by [·] and the set
of plaintexts (of an encryption scheme) by M. We order parties alphabetically,
protocols’ inputs and outputs follow the order of the parties. Finally, we denote
the computationally indistinguishablity of two distributions D1, D2 by D1

c≡ D2.

4.1 OLIC: Description of the Protocol

In what follows, we describe our protocol for privacy-preserving location prox-
imity testing with a napping Bob. We name this protocol OLIC (for OffLine
InnerCircle) to stress its connection with the InnerCircle protocol and the fact
that it can run while Bob is offline. More specifically, instead of exchanging
messages directly with one another (as in InnerCircle), in OLIC Alice and Bob
communicate with (and through) two servers.

The Ideal Functionality of OLIC. At a high level, OLIC takes as input two loca-
tions (xA, yA) and (xB , yB), and a radius value r; and returns 1 if the Euclidean
distance between the locations is less than or equal to r, and 0 otherwise. We
perform this test with inputs provided by two parties, Alice and Bob, and the
help of two servers, Server1 and Server2. Formally, our ideal functionality has
the same input and output behavior as InnerCircle for Alice and Bob, but it
additionally has two servers whose inputs and outputs are empty strings ε.

FOLIC((xA, yA), (xB , yB), ε, ε) = (res, ε, ε, ε),

where res =

{
1, if (xA − xB)

2 + (yA − yB)
2 ≤ r2

0, otherwise.
(1)

In our protocol we restrict the input/output spaces of the ideal functionality of
Equation 4.1 to values that are meaningful to our primitives. In other words, we
require that the values xA, yA, xB , yB are admissible plaintext (for the encryption
scheme employed in OLIC), and that the following values are invertible (in the
ring of plaintext) xB , yB , D − i for i ∈ {0, . . . , r2 − 1} and D = (xA − xB)

2 +
(yA − yB)

2. We will denote the set of all suitable inputs as Sλ ⊆M.
Figure 4 depicts the flow of the OLIC protocol. Figure 5 contains the detailed

description of the procedures called in Figure 4.

Step-0: Alice, Server1, and Server2 independently generate their keys. Alice
sends her pk to Server1 and Server2; Server1 and Server2 send their respective
public keys pk1, pk2 to Bob.
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Alice
(xA, yA)

Server-1 Server-2 Bob
(xB , yB)

(pk, sk)← Gen(1λ) (pk1, sk1)← Gen(1λ) (pk2, sk2)← Gen(1λ)

AStartpk(xA, yA) BStart(xB , yB)

CompTermssk1
(pk, ai, bi)

Go offline

UnBlindsk2(pk, ci, b
′
i)

CheckLessThansk(L) LessThanpk(δ, r
2)

pk pk1

pk pk2

a1, a2, a3

(encr. loc.)

b1, b2, b3

(encr., blinded location)

b′1, b
′
2, b

′
3

(encr. randomness)

c1, c2, c3

(encr. split dist.)

L
(encr. list)

Figure 4: Overview of the message flow of our OLIC protocol. The message exchanges
are grouped to reduce vertical space; in a real execution of the protocol Bob may
submit at any time before CompTerms is run.

Step-1: At any point in time, Bob encodes his location using the BStart al-
gorithm (Figure 5a), and sends its blinded coordinates to Server1, and the
corresponding blinding factors to Server2.

Step-2: At any point in time Alice runs AStart (Figure 3a) and sends her ci-
phertexts to Server1.

Step-3: once Server1 collects Alice’s and Bob’s data it can proceed with com-
puting 3 addends useful to obtain the (squared) Euclidean distance between
their locations. To do so, Server1 runs CompTerms (Figure 5b), and obtains:

c1 = Encpk(x2
A + y2A + (x2

B + y2B + r1))

c2 = Encpk(2xA + (xB + r2))

c3 = Encpk(2yA + (yB + r3))

Server1 sends the above three ciphertexts to Server2.
Step-4: Server2 runs UnBlind (Figure 5c) to remove Bob’s blinding factors from

c1, c2, c3 and obtains the encrypted (squared) Euclidean distance between
Alice and Bob:

δ = c1 ⊞ Encpk(−r1)⊞ c2 � Encpk(r−1
2 )⊞ c3 � Encpk(r−1

3 )

= Encpk((xA − xB)
2 + (yA − yB)

2)

Then Server2 uses δ and the radius value r to run LessThan (as in InnerCircle,
Figure 3b), obtains the list of ciphertexts L and returns L to Alice.
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BStart(pk1, pk2, xB , yB)

1 : r1,←$ M

2 : r2, r3 ←$ M∗

3 : b1 ← Encpk1(x
2
B + y2

B + r1)

4 : b2 ← Encpk1(xBr2)

5 : b3 ← Encpk1(yBr3)

6 : b′1 ← Encpk2(−r1)

7 : b′2 ← Encpk2(r
−1
2 )

8 : b′3 ← Encpk2(r
−1
3 )

9 : return (b1, b2, b3, b
′
1, b

′
2, b

′
3)

(a) The BStart algorithm.

CompTermssk1
(pk, a1, a2, a3, b1, b2, b3)

1 : tmp1 ← Decsk1(b1)

2 : tmp2 ← Decsk1(b2)

3 : tmp3 ← Decsk1(b3)

4 : c1 ← a1 ⊞ Encpk(tmp1)

5 : c2 ← a2 � tmp2

6 : c3 ← a3 � tmp3

7 : return (c1, c2, c3)

(b) The CompTerms algorithm.

UnBlindsk2(pk, c1, c2, c3, b
′
1, b

′
2, b

′
3)

1 : tmp1 ← Decsk2(b
′
1)

2 : tmp2 ← Decsk2(b
′
2)

3 : tmp3 ← Decsk2(b
′
3)

4 : d1 ← c1 ⊞ Encpk(tmp)1

5 : d2 ← c2 � tmp2

6 : d3 ← c3 � tmp3

7 : return δ ← d1 ⊞ d2 ⊞ d3

(c) The UnBlind algorithm.

Figure 5: The new subroutines in OLIC.

Step-5: Alice runs CheckLessThan (Figure 3c) to learn whether D ≤ r2 in the
same way as done in InnerCircle.

The correctness of OLIC follows from the correctness of InnerCircle and a straight-
forward computation of the input-output of BStart, CompTerms, and UnBlind.

4.2 OLIC: Privacy of the Protocol

We prove that our OLIC provides privacy against semi-honest adversaries. We do
so by showing an efficient simulator for each party involved in the protocol and
then arguing that each simulator’s output is indistinguishable from the view of
respective party. More details on the cryptographic primitives and their security
model can be found in Appendix A, or in [14,29].

Theorem 1. If the homomorphic encryption scheme HE = (Gen,Enc,Dec,Eval)
used in OLIC is IND-CPA secure and function private then OLIC securely realizes
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the privacy-preserving location proximity testing functionality (in Equation 4.1)
against semi-honest adversaries.

We prove Theorem 1 by showing four simulators whose outputs are com-
putationally indistinguishable by nonuniform algorithms from the views of the
parties. Concretely, we will prove four lemmas, each dealing with a different
party. Our simulators have the following structure:

simParty(Party’s input,Party’s output) = (Party’s view).

Moreover, will append a ′ symbol to denote the algorithms which return their
random bits in addition to their usual result, e.g., if the key-generation algorithm
(pk, sk) ← Gen(1λ) returns a pair of keys, then its counterpart (pk, sk, r) ←
Gen′(1λ) returns the same output together with the string of random bits r
used to generate keys. Without loss of generality we will assume that all four
parties use exactly p(λ) random bits in one run of the OLIC protocol, for some
polynomial p(·).

Lemma 1. For all suitable inputs (xA, yA, xB , yB) ∈ Sλ for the OLIC protocol,
there exists a simulator simAlice such that:

simAlice((xA, yA), res) c≡ viewOLIC
Alice((xA, yA), (xB , yB), ε, ε),

where res =

{
1, if (xA − xB)

2 + (yA − yB)
2 ≤ r2

0, otherwise.

Proof. Alice receives only one message: the list L. The distribution of L is
defined by the bit res: when res = 0 the L is a list of encryptions of random
nonzero elements of M, otherwise one of its elements (the position of which is
chosen uniformly at random) contains an encryption of zero.

This is exactly how simAlice (defined in Figure 6a) creates the list L accord-
ing to res. It is immediate to see that the distributions in Lemma 1 are not
only computationally indistinguishable, but actually equal (perfectly indistin-
guishable).

Lemma 2. For all suitable inputs (xA, yA, xB , yB) ∈ Sλ there exists a simulator
simBob such that: simBob((xA, yA), ε)

c≡ viewOLIC
Bob ((xA, yA), (xB , yB), ε, ε).

Proof. Apart from a sequence of random bits, Bob’s view consists of two pub-
lic keys which the servers freshly generate before sending them to him. This
is exactly how simBob (in Figure 6b) obtains the keys it returns, so the two
distributions are not only computationally indistinguishable, but also are equal.

Lemma 3. For all suitable inputs (xA, yA, xB , yB) ∈ Sλ here exists a simulator
simS1 is such that: simS1(ε, ε) c≡ viewOLIC

Server1((xA, yA), (xB , yB), ε, ε).
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simAlice((xA, yA), res)

1 : (pk, sk)← Gen(1λ)
2 : for i ∈ {0 . . . r2 − 1}

3 : x←$ M\ {0}
4 : li ← Encpk(x)
5 : if res = 1

6 : i←$ {0, . . . r2 − 1}
7 : li = Encpk(0)
8 : L← [l0, l1 . . . lr2−1]

9 : r∗ ←$ {0, 1}p(λ)

10 : return (r∗, L)

(a) The simulator for Alice.

simBob((xB , yB), ε)

1 : (pk1, sk1)← Gen(1λ)
2 : (pk2, sk2)← Gen(1λ)
3 : r∗ ←$ {0, 1}p(λ)

4 : return (r, pk1, pk2)

(b) The simulator for Bob.

Figure 6: Simulators for Alice and Bob.

Proof. We show that the outputs produced by the two algorithms from Figure
7a and 7b are computationally indistinguishable by non uniform algorithms (as-
suming HE is IND-CPA and circuit private). First, we observe that the outputs
of both algorithms consist of three parts which are generated independently:
(pk, a1, a2, a3), (r, b1, b2, b3), r∗. It is easy to see that the last two parts are
generated in the same way by both algorithms, so the distributions are actu-
ally equal on these parts. The first part (pk, a1, a2, a3) of both distributions are
indistinguishable because of the IND-CPA property of used encryption scheme.

Lemma 4. For all suitable inputs (xA, yA, xB , yB) ∈ Sλ there exists a simulator
simS2 such that: simS2(ε, ε) c≡ viewOLIC

Server2((xA, yA), (xB , yB), ε, ε).

Proof. Like in the previous proof, we need to prove here that the outputs of
the functions from Figures 8a and 8b are indistinguishable. Observe that the
(rr∗, b′1, b

′
2, b

′
3) is generated independently from the rest of the output in both

algorithms, and this part is generated in the same way in both places, so the
both distributions are equal on this part. The rest of the outputs of the two al-
gorithms, namely (pk, c1, c2, c3), are indistinguishable from one another because
of the IND-CPA property of the used cryptosystem.

Privacy Remark on Bob. In case the two servers collude, Bob looses privacy,
in the sense that Server1 and Server2 together can recover Bob’s location (by
unblinding the tmpi in CompTerms, Figure 5b). However Alice retains her pri-
vacy even in case of colluding servers (thanks to the security of the encryption
scheme).
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simS1(ε, ε)

1 : (pk, sk)← Gen(1λ)
2 : a1 ← Encpk(0)
3 : a2 ← Encpk(0)
4 : a3 ← Encpk(0)
5 : (pk1, sk1, r)← Gen′(1λ)

6 : β1 ←$ M

7 : β2 ←$ M∗

8 : β3 ←$ M∗

9 : b1 ← Encpk1(β1)

10 : b2 ← Encpk1(β2)

11 : b3 ← Encpk1(β3)

12 : r∗ ←$ {0, 1}p(λ)−|r|

13 : return (rr∗, pk, a1, a2, a3,

b1, b2, b3)

(a) The simulator for Server1.

viewOLIC
Server1((xA, yA), (xB , yB), ε, ε)

1 : (pk, sk)← Gen(1λ)
2 : (pk1, sk1, r)← Gen′(1λ)

3 : (a1, a2, a3)← AStartpk(xA, yA)

4 : r1,←$ M

5 : r2, r3 ←$ M∗

6 : b1 ← Encpk1(x
2
B + y2

B + r1)

7 : b2 ← Encpk1(xBr2)

8 : b3 ← Encpk1(yBr3)

9 : r∗ ←$ {0, 1}p(λ)−|r|

10 : return (rr∗, pk, a1, a2, a3,

b1, b2, b3)

(b) The view of Server1.

Figure 7: The simulator and view of Server1 in OLIC.

4.3 Security Against Malicious Servers

In Section 4.2 we proved that OLIC is secure against semi-honest adversaries.
In what follows, we show how to achieve security against malicious servers as
well. We do it in a generic way, assuming two not-colluding servers, a suit-
able non-interactive zero knowledge proof system (NIZK) and employing a fairly
novel cryptographic primitive called multi-key homomorphic signatures (MKHS)
[10,1]. The proposed maliciously secure version of OLIC is currently more of a
feasibility result rather than a concrete instantiation: to the best of our knowl-
edge there is no combination of MKHS and NIZK that would fit our needs.

Homomorphic signatures [5,15] enable a signer to authenticate their data
in such a way that any third party can homomorphically compute on it and
obtain (1) the result of the computation, and (2) a signature vouching for the
correctness of the latter result. In addition to what we just described, MKHS
make it possible to authenticate computation on data signed by multiple sources.
Notably, homomorphic signatures and MKHS can be used to efficiently verify
that a computation has been carried out in the correct way on the desired data
without need to access the original data [10]. This property is what we leverage
to make OLIC secure against malicious servers.

At a high level, our proposed solution to mitigate malicious servers works as
follows. Alice and Bob hold distinct secret signing keys, skA and skB respectively,
and sign their ciphertexts before uploading them to the servers. In detail, using
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simS2(ε, ε)

1 : (pk1, sk1, r)← Gen′(1λ)

2 : β1 ←$ M

3 : β2 ←$ M∗

4 : β3 ←$ M∗

5 : b′1 ← Encpks(β1)

6 : b′2 ← Encpks(β2)

7 : b′3 ← Encpks(β3)

8 : (pk, sk)← Gen(1λ)
9 : c1 ← Encpk(0)

10 : c2 ← Encpk(0)
11 : c3 ← Encpk(0)
12 : r∗ ←$ {0, 1}p(λ)−|r|

13 : return (rr∗, pk, b′1, b
′
2, b

′
3,

c1, c2, c3)

(a) The simulator for Server2.

viewOLIC
Server2((xA, yA), (xB , yB), ε, ε)

1 : (pk, sk)← Gen(1λ)
2 : (pk2, sk2, r)← Gen′(1λ)

3 : r1,←$ M

4 : r2, r3 ←$ M∗

5 : b′1 ← Encpk2(−r1)

6 : b′2 ← Encpk2(r
−1
2 )

7 : b′3 ← Encpk2(r
−1
3 )

8 : c1 ← Encpk(x2
A + y2

A+

x2
B + y2

B + r1)

9 : c2 ← Encpk(2xAxBr2)

10 : c3 ← Encpk(2yAyBr3)
11 : r∗ ←$ {0, 1}p(λ)−|r|

12 : return (rr∗, pk, b′1, b
′
2, b

′
3,

c1, c2, c3)

(b) The view of Server2.

Figure 8: The simulator and view of Server2 in OLIC.

the notation in Figure 4, Alice sends to Server1 the three messages (ciphertexts)
a1, a2, a3 along with their respective signatures σA

i ← MKHS.Sign(skA, ai, ℓi),
where ℓi is an opportune label.3 Bob acts similarly. Server1 computes fi (the cir-
cuit corresponding to the computation in CompTerms on the i-th input) on each
ciphertext and each signature, i.e., ci ← f(ai, bi) and σ′

i ← MKHS.Eval(f, {pkA,
pkB}, σA

i , σ
B
i ). The unforgeability of MKHS ensures that each multi-key sig-

nature σ′
i acts as a proof that the respective ciphertext c′i has been computed

correctly (i.e., using f on the desired inputs4). Server2 can be convinced of this
fact by checking whether MKHS.Verif(f, {ℓj}, {pkA, pkB}, c′i, σ′

i) returns 1. If so,
Server2 proceeds and computes the value δ (and its multi-key signature σ) by
evaluating the circuit g corresponding to the function UnBlind. As remarked in
Section 4.2, privacy demands that the random coefficients, xi:s, involved in the
LessThan procedure are not leaked to Alice. However, without the xi:s Alice
cannot run the MKHS verification (as this randomness should be hardwired in
the circuit h corresponding to the function LessThan). To overcome this obsta-
cle we propose to employ a zero knowledge proof system. In this way Server2
can state that it knows undisclosed values xi:s such that the output data (the
list L ← [l1, . . . , lr2−1]) passes the MKHS verification on the computations de-

3 More details on labels at the end of the section.
4 The ‘desired’ inputs are indicated by the labels, as we discuss momentarily.
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pendent on xi:s. This can be achieved by interpreting the MKHS verification
algorithm as a circuit v with inputs xi (and li).

Security Considerations. To guarantee security we need the MKHS to be context
hiding (e.g., [38], to prevent leakage of information between Server1 and Server2);
unforgeable (in the homomorphic sense [10]); and the final proof to be zero
knowledge. Implementing this solution would equip OLIC with a quite advanced
and heavy machinery that enables Alice to detect malicious behaviors from the
servers.

A Caveat on Labels. There is final caveat on data labels [10] needed for the
MKHS schemes. We propose to set labels as a string containing the public
information: day, time, identity of the user producing the location data, and
data type identifier (e.g., (1, 3) to identify the ciphertext b3, sent by Bob to
Server1, (2, 1) to identify the ciphertext b′1, sent by Bob to Server2, and (0, 2)
to identify Alice’s ciphertext a2—Alice only sends data to Server1). We remark
that such label information would be retrievable by InnerCircle as well, as in that
case Alice knows the identity of her interlocutor (Bob), and the moment (day
and time) in which the protocol is run.

5 Evaluation

In this section we evaluate the performance of our proposal in three different
ways: first we provide asymptotic bounds on time complexity of the algorithms
in OLIC; second, we provide bounds on the total communication cost of the
protocol; finally we develop a proof-of-concept implementation of OLIC to test
its performance (running time and communication cost) and compare it against
the InnerCircle protocol. Recall that InnerCircle and OLIC implement the same
functionality (privacy-preserving proximity testing), however the former requires
Bob to be online during the whole protocol execution while the latter does not.

Parameters. As described in Section 4.1, OLIC requires Alice to use an additive
homomorphic encryption scheme. However, no special property is needed by the
ciphertexts from Bob to the servers and between servers. Our implementation
employs the ElGamal cryptosystem over a safe-prime order group for ciphertexts
to and from Alice, while for the other messages it uses the Paillier cryptosys-
tem. We refer to this implementation as (non-EC), as it does not rely on any
elliptic curive cryptograpy (ECC). In order to provide a fair comparison with
its predecessor (InnerCircle), we additionally instantiate OLIC using only ECC
cryptosystems (EC), namely Elliptic Curve ElGamal.

We note that additive homomorphic ElGamal relies on the face that a plain-
text value m is encoded into a group element as gm (where g denotes the group
generator). In this way, the multiplication of gm1 · gm2 returns an encoding of
the addition of the corresponding plaintext values m1 +m2. In order to ‘fully’
decrypt a ciphertext, one would have to solve the discrete logarithm problem
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and recover m from gm, which should be unfeasible, as this corresponds to the
security assumption of the ecryption scheme. Fortunately, this limitation is not
crucial for our protocol. In OLIC, indeed, Alice only needs to check whether a
ciphertext is an encryption of zero or not (in the CheckLessThan procedure), and
this can be done efficiently without fully decrypting the ciphertext. However,
we need to keep it into account when implementing OLIC with ECC. Indeed,
in OLIC the servers need to actually fully decrypt Bob’s ciphertexts in order
to work with the corresponding (blinded) plaintexts. We do so by employing a
non-homomorphic version of ElGamal based on the curve M383 in (EC) and
Paillier cryptosystem in (non-EC).

In our evaluation, we ignore the computational cost of initial key-generation
as, in real-life scenarios, this process is a one-time set up and is not needed at
every run of the protocol.

5.1 Asymptotic complexity

Table 1 shows both the concrete numbers of cryptographic operations and our
asymptotic bounds on the time complexity of the algorithms executed by each
party involved in OLIC. We assume that ElGamal and Paillier encryption, de-
cryption and arithmetic operations, are performed in time O(λm) (assuming
binary exponentiation), where λ here is the security parameter and m is the
cost of λ-bit interger multiplication — depends on the specific multiplication
algorithm used, e.g., m = O(n logn log logn) for Schönhage–Strassen algorithm.
This applies to both (EC) and (non-EC), although (EC) in practice is used
with a lot smaller values of λ.

Table 1: Concrete number of operations and asymptotic time complexity for each
party in OLIC (m is the cost of modular multiplication, λ the security parameter and
r the radius). In our implementation Alice decryption is actually an (efficient) zero
testing.

Party Cryptosystem operations Time bound

Alice 3 encryptions
r2 decryptions O(r2λm)

Bob 6 encryptions O(λm)

Server1
3 decryptions,

3 homomorphic operations, O(λm)

Server2
3 decryptions,

2r2 + 5 arithmetic operations,
r2 encryptions

O(r2λm)

Communication cost. The data transmitted among parties during a whole pro-
tocol execution amounts to r2 + 6 ciphertexts between Alice and the servers
and 6 ciphertexts between Bob and servers. Each ciphertext consists of 4λ
bits in case of (EC), and 2λ bits in case of (non-EC) (for both ElGamal and
Paillier). Asymptotically, both cases require O(λr2) bit of communication—
although (EC) is used with a lot smaller λ value in implementation.
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5.2 Implementation

We developed a prototype implementation of OLIC in Python (available at [33]).
The implementation contains all of the procedures shown in pseudocode in Fig-
ures 3 and 5. To ensure a fair compare between OLIC and InnerCircle, we imple-
mented latter in the same environment (following the nomenclature in Figure
2).

Our benchmarks for the total communication cost of the OLIC protocol are
reported in Figure 9. We measured the total execution time of each procedure
of both InnerCircle and OLIC. Figure 10 shows the outcome of our measurements
for values of the proximity radius parameter r ranging from 0 to 100. Detailed
values can be found in Appendix B (Table 2).
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Figure 9: Total communication cost of
OLIC.

Setup. We used cryptosystems from the
cryptographic library bettertimes [20],
which was used for benchmarking of the
original InnerCircle protocol. The bench-
marks were run on Intel Core i7-8700 CPU
running at a frequency of 4.4 GHz. For
(non-EC) we used 2048-bit keys for El-
Gamal (the same as in InnerCircle [21]),
and 2148-bit keys for Paillier to accomo-
date a modulus larger than the ElGa-
mal modulus (so that any possible mes-
sage of Bob fits into the Paillier mes-
sage space). For (EC) we used curves
Curve25519 for additive homomorphic en-
cryption and M383 for the ciphertexts exchanged among Bob and the servers
from the ecc-pycrypto library [7]. We picked these curves because they were
available in the library and also because M383 uses a larger modulus and allows
us to encrypt the big values from the plaintexts field of Curve25519.

The plaintext ring for (non-EC) ElGamal-2048 has at least |M| ≥ 22047

elements, which allows Alice and Bob’s points to lie on the grid {1, 2 . . . 21023}2
ensuring that the seqared distance between them never exceeds 22047. The
corresponding plaintext ring size for (EC) is |M| ≥ 2251 (the group size of
Curve25519), and the grid is {1, 2 . . . 2125}2. Since Earth equator is ≈ 226 me-
ters long, either of the two grids is more than enough to cover any location on
Earth with 1 meter precision.

Optimizations. In InnerCircle [21], the authors perform three types of optimiza-
tions on the LessThan procedure:

(O-1) Iterating only through those values of i ∈ {0, . . . , r2 − 1} which can be
represented as a sum of two squares, i.e., such i that ∃ a, b : i = a2 + b2.

(O-2) Precomputing the ElGamal ciphertexts Encpk(−i), and only for those i
described in (O-1).

(O-3) Running the procedure in parallel, using 8 threads.
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We adopt the optimizations (O-1) and (O-2) in our implementation as well.
Note that (O-1) reduces the length of list L (Figure 4), as well as the total
communication cost. We disregard optimization (O-3) since we are interested
in the total amount of computations a party needs to do (thus this optimization
is not present in our implementations of OLIC and InnerCircle).
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Figure 10: Running times of each party in InnerCircle and OLIC for both (non-
EC) and (EC) instantiations. (Reported times are obtained as average of 40
executions.)

5.3 Performance Evaluation

Figure 10 shows a comparison of the total running time of each party in OLIC
versus InnerCircle. One significant advantage of OLIC is that it offloads the
execution of the LessThan procedure from Bob to the servers. This is reflected in
Figure 10, where the running time of Bob is flat in OLIC, in contrast to quadratic
as in InnerCircle. Indeed, the combined running time of the two servers in OLIC
almost matches the running time of Bob in InnerCircle. Note that the servers
have to spend total 10-12 seconds on computations when r = 100, which is quite
a reasonable amount of time, given that servers are usually not as resource-
constrained as clients, and that the most time-consuming procedure LessThan
consists of a single loop which can easily be executed in parallel to achieve even
better speed. Finally, we remark that the amount of data being sent (Figure 9)
between the parties in OLIC is quite moderate.

In case Alice wants to be matched with multiple Bobs, say, with k of them,
the amount of computations that she and the servers perform will grow linearly
with k. The same applies to the communication cost. Therefore, one can obtain
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the counterparts of Figures 10 and 9 for multiple Bobs by simply multiplying all
the plots (except Bob’s computations) by k.

6 Related Work

Zhong et al. [45] present the Louis, Lester and Pierre protocols for location prox-
imity. The Louis protocol uses additively homomorphic encryption to compute
the distance between Alice and Bob while it relies on a third party to perform
the proximity test. Bob needs to be present online to perform the protocol. The
Lester protocol does not use a third party but rather than performing proxim-
ity testing computes the actual distance between Alice and Bob. The Pierre
protocol resorts to grids and leaks Bob’s grid cell distance to Alice.

Hide&Crypt by Freni et al. [11] splits proximity in two steps. Filtering is
done between a third party and the initiating principal. The two principals
then execute computation to achieve finer granularity. In both steps, the gran-
ule which a principal is located is sent to the other party. C-Hide&Hash by
Mascetti et al. [30] is a centralized protocol, where the principals do not need
to communicate pairwise but otherwise share many aspects with Hide&Crypt.
FriendLocator by Šikšnys et al. [43] presents a centralized protocol where clients
map their position to different granularities, similarly to Hide&Crypt, but in-
stead of refining via the second principal each iteration is done via the third
party. VicinityLocator also by Šikšnys et al. [42] is an extension of FriendLo-
cator, which allows the proximity of a principal to be represented not only in
terms of any shape.

Narayanan et al. [31] present protocols for proximity testing. They cast the
proximity testing problem as equality testing on a grid system of hexagons. One
of the protocol utilizes an oblivious server. Parties in this protocol use symmetric
encryption, which leads to better performance. However, this requires to have
preshared keys among parties, which is less amenable to one-to-many proximity
testing. Saldamli et al. [37] build on the protocol with the oblivious server and
suggest optimizations based on properties from geometry and linear algebra.
Nielsen et al. [32] and Kotzanikolaou et al. [27] also propose grid-based solutions.

Šeděnka and Gasti [39] homomorphically compute distances using the UTM
projection, ECEF (Earth-Centered Earth-Fixed) coordinates, and the Haversine
formula that make it possible to consider the curvature of the Earth. Hallgren
et al. [21] introduce InnerCircle for parallizable decentralized proximity testing,
using additively homomorphic encryption between two parties that must be
online. The MaxPace [22] protocol builds on speed constraints of an InnerCircle-
style protocol as to limit the effects of trilateration attacks. Polakis [35] study
different distance and proximity disclosure strategies employed in the wild and
experiment with practical effects of trilateration.

Sakib and Huang [36] explore proximity testing using elliptic curves. They
require Alice and Bob to be online to be able to run the protocol. Järvinen et
al. [25] design efficient schemes for Euclidean distance-based privacy-preserving
location proximity. They demonstrate performance improvements over InnerCir-
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cle. Yet the requirement of the two parties being online applies to their setting
as well. Hallgren et al. [19] how to leverage proximity testing for endpoint-based
ridesharing, building on the InnerCircle protocol, and compare this method with
a method of matching trajectories.

The computational bottle neck of privacy-preserving proximity testing is the
input comparison process. Similarly to [21,34], we rely on homomorphic encryp-
tion to compare a private input (the distance between the submitted locations)
with a public value (the threshold). Other possible approaches require the use
of the arithmetic black box model [6], garbled circuits [26], generic two party
computations [12], or oblivious transfer extensions [8].

To summarize, the vast majority [45,43,42,11,31,37,39,21,22,36,25] of the
existing approaches to proximity testings require both parties to be online,
thus not being suitable for one-to-many matching. A notable exception to
the work above is the C-Hide&Hash protocol by Mascetti et al. [30], which
allows one-to-many testing, yet at the price of not computing the precise prox-
imity result but its grid-based approximation. Generally, a large number of
approaches [45,43,42,11,30,31,32,27] resort to grid-based approximations, thus
loosing precision of proximity tests.

There is a number of existing works, which consider the problem of computing
generic functions in the setting, where clients are not online during the whole
execution. Hallevi et al. [18] consider a one-server scenario and show that
the notion of security agains semi-honest adversary (which we prove for our
protocol) is impossible to achive with one server. Additionally, the model from
[18] lets all the parties know each other’s public keys, i.e., the clients know all
the other clients who supply inputs for the protocol—this does not allow one-to-
many matching, which we achive in our work. Further works [24,16,17,2,3] also
consider one-server scenarios.

7 Conclusions
We have presented OLIC, a protocol for privacy-preserving proximity testing
with a napping party. In line with our goals, (1) we achieve privacy with respect
to semi-honest parties; (2) we enable matching against offline users which is
needed in scenarios like ridesharing; (3) we retain precision, not resorting to
grid-based approximations, and (4) we reduce the responding client overhead
from quadratic (in the proximity radius parameter) to constant.

Future work avenues include developing a fully-fledged ridesharing system
based on our approach, experimenting with scalability, and examining the secu-
rity and performance in the light of practical security risks for LBS services.
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A Tools Used in OLIC

Homomorphic Encryption [13]. A Homomorphic Encryption scheme is a tuple
of four PPT algorithms HE = (KeyGen,Enc,Eval,Dec) that satisfy the properties
of correctness, compactness, (semantic) security and circuit privacy. Intuitively
these properties states that: given an n-input function f and n ciphertexts
cti = Enc(pk,mi), the Eval algorithm outputs a new ciphertext ct′ that decrypts
to f(m1, . . . ,mn). The ciphertext ct′ is short, and given a ciphertext ct no PPT
algorithm can guess what message is encrypted in ct unless given access to the
secret key sk for decryption.

Formally, the algorithms are as follows:

KeyGen(1λ): the key generation algorithm takes as input the security parameter
λ and outputs a key pair (sk, pk). Implicitly this algorithm also defines the
set of plaintext M and of ciphertexts C.

Enc(pk,m): the encryption algorithm takes as input pk and a message m, and
it outputs a ciphertext ct.

Eval(pk, f, ct1, . . . , ctn): the evaluation algorithm takes as input pk, a function
f : Mn → M in a set of admissible functions func and n ciphertexts. It
returns a ciphertext ct.

Dec(sk, ct): the decryption algorithm takes sk and a ciphertext ct, and outputs
a message m.

An additive homomorphic encryption scheme is a HE where the set of func-
tions fthat Eval can handle is made of linear functions. Concretely this means
that given Enc(m1) and Enc(m2), and two coefficients a1, a2 ∈ M , one can effi-
ciently compute Enc(a1m1 + a2m2).

Function privacy. We adopt the definition of function for honest-but-curious
parties given in [14]. In a nutshell, this definition states that the scheme is
function-private if there exists an efficient simulator Sim such that for every
compatible sequence of admissible functions f = f1 ◦ · · · ◦ ft the following two
distributions are indistinguishable Evalpk(fj , cj−1)

c≡ Sim(pk, cj−1, 1
|fj |, (f1◦· · ·◦

fj)(x)). For further details we refer the readers to [14], Def. 2.

B Detailed Measurements

Table 2 reports the concrete running times we obtained in our experiments.
These values are used as source to plot the overall running time of each party,
in Figure 10.
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Table 2: Running time of parties in InnerCircle and OLIC.
Radius r

Time [s]
InnerCircle Alice InnerCircle Bob OLIC Alice OLIC Bob OLIC servers

(EC) (non-EC) (EC) (non-EC) (EC) (non-EC) (EC) (non-EC) (EC) (non-EC)
0 0.01 0.00 0.00 0.00 0.01 0.00 0.10 0.18 0.08 0.04
5 0.03 0.02 0.06 0.04 0.03 0.02 0.10 0.18 0.13 0.08
10 0.10 0.04 0.18 0.14 0.09 0.04 0.10 0.18 0.26 0.18
15 0.17 0.08 0.37 0.28 0.19 0.08 0.10 0.17 0.45 0.32
20 0.36 0.13 0.62 0.48 0.32 0.12 0.10 0.17 0.70 0.51
25 0.47 0.16 0.92 0.71 0.57 0.18 0.10 0.17 1.00 0.75
30 0.61 0.30 1.28 0.99 0.67 0.23 0.10 0.17 1.36 1.03
35 0.77 0.30 1.71 1.31 0.67 0.29 0.10 0.17 1.79 1.35
40 1.16 0.44 2.17 1.67 1.19 0.42 0.10 0.17 2.25 1.71
45 1.47 0.52 2.70 2.08 1.22 0.61 0.10 0.17 2.78 2.12
50 1.63 0.63 3.30 2.55 1.69 0.72 0.10 0.17 3.38 2.59
55 2.23 0.69 3.92 3.04 1.85 0.74 0.10 0.17 4.00 3.08
60 2.29 0.95 4.63 3.59 2.22 0.95 0.10 0.17 4.71 3.63
65 2.53 1.12 5.38 4.19 2.41 1.05 0.10 0.17 5.46 4.22
70 3.19 1.20 6.20 4.84 3.17 1.24 0.10 0.17 6.28 4.88
75 3.33 1.34 7.07 5.52 3.28 1.33 0.10 0.17 7.15 5.56
80 3.82 1.64 7.99 6.26 4.10 1.43 0.10 0.17 8.07 6.30
85 4.87 1.84 8.99 7.07 4.36 1.83 0.10 0.17 9.07 7.10
90 5.07 1.67 10.03 7.91 4.92 1.98 0.10 0.17 10.11 7.95
95 5.79 1.74 11.15 8.79 5.39 1.82 0.10 0.17 11.22 8.83
100 5.93 2.37 12.33 9.75 5.64 2.43 0.10 0.17 12.41 9.79
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