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Abstract. Symmetric Searchable Encryption (SSE) allows the outsourcing of en-
crypted data to possible untrusted third party services while simultaneously giving
the opportunity to users to search over the encrypted data in a secure and privacy-
preserving way. Currently, the majority of SSE schemes have been designed to fit
a typical cloud service scenario where users (clients) encrypt their data locally and
upload them securely to a remote location. While this scenario fits squarely the
cloud paradigm, it cannot apply to the emerging field of Internet of Things (IoT).
This is due to the fact that the performance of most of the existing SSE schemes
has been tested using powerful machines and not the constrained devices used in
IoT services. The focus of this paper is to prove that SSE schemes can, under
certain circumstances, work on constrained devices and eventually be adopted by
IoT services. To this end, we designed and implemented a forward private dynamic
SSE scheme that can run smoothly on resource-constrained devices. To do so, we
adopted a fog node scenario where edge (constrained) devices sense data, encrypt
them locally and use the capabilities of fog nodes to store sensed data in a remote
location (the cloud). Consequently, end users can search for specific keywords over
the stored ciphertexts without revealing anything about their content. Our scheme
achieves efficient computational operations and supports the multi-client model. The
performance of the scheme is evaluated by conducting extensive experiments. Finally,
the security of the scheme is proven through a theoretical analysis that considers the
existence of a malicious adversary.

Keywords: Fog Computing - Symmetric Searchable Encryption - Wireless Sensor
Networks - Internet of Things - Privacy

1 Introduction

With the rapid advancement and development of innovative and pervasive computing,
traditional security mechanisms such as public key cryptography have become inadequate
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to properly protect users’ artefacts on their own due to the increasingly complex nature of
these networks. Computing paradigms such as Internet of Things (IoT), Cloud, and Fog
computing have become mainstays in corporate organizations as well as in the everyday
lives of individuals. The cloud and fog computing technologies allow users to outsource
resources to external service providers. Fog computing, in particular, has garnered a lot of
academic and industrial interest beginning from 2014 when it was first coined as a term
by Cisco [cis19].

Fog computing can be described as a virtualized platform that seeks to provide various
technological services such as computing, storage, control and networking services between
end users and the Cloud [IEE18]. This has gained lot of attention due to the increased
adoption of IoT applications with the cloud computing ecosystem. This adoption has
led to an exponential increase in the amount of data being generated and transmitted
between the IoT devices and the cloud. One of the primary advantages of introducing
Fog computing is to provide reduced latency, reliable operation and eliminate the need for
devices to continually connect to the cloud.

The introduction of fog nodes between an IoT edge network and the cloud leads to
increasingly advanced and complex network designs such as Vehicular ad-hoc networks
(VANETS). A typical VANET consists of moving vehicles with sensors that constantly
communicate with well placed fog nodes for instant or near real-time responses [KKZB17].
The fog nodes after processing the data, forward specific components to the cloud for
further analysis. Such advanced networks face various security and privacy threats related
to trust, authentication, secure communication and end device privacy [MMS™17], which
are not easily mitigated with traditional security mechanisms.

To this end, researchers and industry stakeholders have touted the use of promising
encryption techniques such as Symmetric Searchable Encryption (SSE). SSE allows users
to search directly over encrypted data stored in remote locations maintained by possible
untrusted third parties (e.g. a cloud service) without revealing anything about the contents
of the data [EKPE18]. Additionally, SSE allows users to encrypt data with a secret key
which is not known to the cloud provider. Hence, providing protection against both
external and internal (e.g. a malicious administrator) attacks. An ideal SSE scheme should
not leak any information during any of the core processes of the (i.e. add, delete, update
files and search for specific keywords). Information leakage is a very important problem in
SSE due to its direct impact on both the efficiency and security.

Contribution: The core contribution of this paper can be summarized in one single
sentence: “Running Symmetric Searchable Encryption on constrained devices is possible!”.
This is considered as an important step towards the wide adoption of SSE schemes since
majority of SSE have been designed to fit a typical cloud service scenario that cannot
apply to the emerging field of IoT. Additionally, the performance of most of the existing
SSE schemes has been tested using powerful machines and not the constrained devices
used in IoT services. In this paper, we show that SSE can run on constrained devices.
The main idea of our approach came from the following observation: SSE schemes are
computationally heavy for clients only during the setup phase where the entire database
(known as the dictionary) is created. This process, requires the client to parse all of the
contents of the files that are to be stored in the cloud, extract all individual keywords and
store encrypted versions of all data in the cloud. The rest of the expensive operations
(e.g. search, delete, add) are mainly taking place on the cloud where there are unlimited
resources. If it was possible to bypass or limit the setup phase, then SSE could ran in any
device. Having this in mind, our approach was based on the fact that in an IoT scenario,
edge devices will have to sense data from their actual environment and store them on the
fly in a remote database. In other words, in such a scenario there is no setup phase since
there are no existing files that needs to be parsed and stored to the cloud. Each sensor
node is sensing periodically data (e.g. every 5sec). Then, the operations that must be done
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on the sensed data are simple calculations (such as hashing and symmetric encryption)
that do not put any real burden on the device. Based on this assumption, we built a
forward private dynamic SSE scheme that shifts majority of the computational burden
from the IoT devices to the fog computing nodes and we showed that our scheme can run
smoothly on devices with up to 32MHz and 32KB of RAM. We hope that this work will
be seen as a starting point where researchers will start building more secure and robust
IoT protocols based on the promising concept of SSE.

Organization: The rest of the paper is organized as follows. In section 2, we discuss
related works regarding current implementations of SSE schemes and the fog computing
technology as well as the various security issues relating to it. A brief description of the
cryptographic primitives used throughout our work and the considered threat model are
presented in section 3. We formally define our system model in section 4 while in section 5,
we present the our scheme. We then delve into a detailed security analysis in section 6.
Section 7 provides an extended evaluation and finally in section 8 we conclude the paper.

2 Related Work

Currently, there is an apparent lack of existing literature on implementing and extending
purely symmetric searchable encryption schemes to the Fog computing environment.
However, there are a number of substantial research works in relation to designing SSE
schemes for cloud computing environments as well as securing data in a fog computing
environment. For example, authors in [EKPE18] present an efficient dynamic searchable
encryption with forward privacy in a cloud computing environment. This scheme offers
efficient searching over outsourced encrypted data in an untrusted server. However,
primary deficiencies with this scheme are its lack of support for multiple clients and the
computational and storage overhead imposed on end entities (i.e. IoT devices in the
context of this paper). Our work focuses on extending an SSE scheme to an environment
with multiple data owners and end users who will use the search functionality of our
scheme while reducing the computational overhead imposed on the resource constrained
IoT devices.

An example of an innovative security scheme for the Fog and IoT ecosystem is the use of
Blockchains and Trusted execution environments (TEE) in [FZST19]. In this work, authors
design a security scheme that guarantees data source trustworthiness in the fog domain by
combining blockchains and TEE technologies. The scheme ensures that the information
collected by the fog nodes from the IoT devices cannot be tampered with by any malicious
adversary, while ensuring the safety of data interaction between interconnected fog devices.
Although a very interesting approach, it does not provide an external user the ability to
search over this secure data. Additionally, the proposed use of smart contracts essentially
means that the IoT devices can not carry out the security scheme without incurring a
substantial computational overhead cost.

To reduce the computational overhead on resource constrained devices, researchers
in [CWQL19], proposed a lightweight fine-grained search over encrypted data in a similar
fog computing environment by adopting the Ciphertext-Policy Attribute based Keyword
Search (CP-ABKS) [ZXA14] and shifting majority of the computational burden to the
Fog Nodes. Albeit a very powerful cryptographic algorithm that provides fine-grained
access control and keyword search, CP-ABKS incurs very high computational and storage
costs that our implementation avoids by utilizing SSE. Additionally, authors make the
assumption that the CSP is an honest but curious entity. Hence, the CSP computes
ciphertext retrieval operations based on received tokens. On the contrary, we propose to
limit the functionalities of the CSP by restricting it to storing the ciphertexts of files while
performing search queries in the Fog computing layer. As well as eliminating the need to



trust the CSP, this reduces the communication latency involved in search queries and the
return of search results.

3 BACKGROUND

Notation: Given a set X, we use x < & to show that z is sampled uniformly from X’

and = & X if 2 is sampled uniformly at random. |X| denotes the cardinality of X'. Given
two strings x and y, we use z||y to denote the concatenation of z and y. A function
negl(-) is called negligible if ¥n > 0,3N,, such that Vx > N,: |negl(x)|< 1/poly(z).
Each IoT device is considered as a data owner. The set of all IoT devices is denoted by
D ={di,...,d,}. Similarly, the set of all fog nodes is denoted by F = {f1,..., fm}. In
our constructions, the keywords are measurements sent by the IoT devices to a fog node.
The universe of the measurements is denoted by W = {wy, ..., w,}. Each measurement
w; has a unique id, denoted by id(w;) with corresponding ciphertext Cid(w;)- Moreover,
we denote by R the result of a search query. We assume that each IoT device and
each Fog Node holds a public/private key pair (pk,sk) used for signing and verifying
messages. The encrypted data base is denoted by EDB and finally, we assume the
existence of a hash function A(-) : {0,1}* — {0,1}™ and that of a keyed hash function
H(-,-):{0,1}* x {0,1}* — {0,1}".

Symmetric Searchable Encryption: We now proceed with the definition of a dynamic
symmetric searchable encryption scheme.

Definition 1. A Dynamic Symmetric Searchable Encryption (DSSE) scheme consists of
the following PPT algorithms:

 Setup(11): A key-generation algorithm that takes as input the security parameter
A and outputs the secret key K = (Kskg, Kn) where Kske is a key for a IND-CPA
secure symmetric key cryptosystem and K, is a key for the keyed hash function
H(-,-). This algorithm is executed by an IoT device.

e Addld: This algorithm is executed by an IoT device d; to add a new measurement
w; to the encrypted data base (EDB). All the indexes are updated accordingly.

e LocalSearch: This algorithm is executed by a user in order to search for a measurement
w; of a specific type, on the local Fog Node. The indexes are updated and the Fog
Node returns to the user the encrypted ids that captured the measurement w;.

o GlobalSearch: This algorithm is executed by a user in order to search for a measure-
ment w; of a specific type on the cloud. The indexes are updated and the CSP also
returns to the user the encrypted ids that captured the measurement w;.

Security Definitions: The security of an SSE scheme depends on predefined leakage
formalized by a leakage function £ = (Lsearch,Ladd), whose components correspond
respectively to to the Search and Add operations. Whenever the user triggers one of these
operations, the adversary ADY should not be able to learn anything that the output of
the corresponding leakage function. The idea is the following: ADY has full control of
the client in the sense that she can trigger search and add operations at will. ADYV issues
a polynomial number of queries and for each query she records the output. In the real
experiment, everything runs honestly. In the ideal experiment however, a simulator &
simulates all the functionalities of the real scheme. The scheme is said to be L-adaptively
secure if ADV cannot distinguish between the real and ideal experiments
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Definition 2 (Adaptive Security). Let DSSE = (Setup, Search, Add) be a dynamic sym-
metric searchable encryption scheme. Moreover, let £ = (Lsearch, Ladd) be the leakage
function of the scheme. We consider the following experiments between the adversary
ADY and a simulator S:

Real Experiment ‘

1. Record = {}
2. for k =1 to ¢ do
3. if op = Search
4. R,, < Search(param,,, EDB)
5. else (op = Add)
6. R, + Add(param,, EDB)
7. end if
8.  Record = Record U {R,}
9. end for
10. b + ADV(Record)
11. Output b

Ideal Experiment ‘

1. Record = {}
2. for k =1 to q do
3 if op = Search
4 Ry +— S(Lsearch(param,))
5. else (op = Add)
6 Ry < S(Laga(paramy,))
7 end If
8.  Record = Record U {R,}
9. end for
10. b+ ADV(Record)
11. Output b

The DSSE scheme is £- adaptively secure, with respect to the leakage function L, iff for
any PPT adversary ADYV issuing a polynomial number of queries ¢(A), 3 PPT simulator
S such that:

|Pr{Real apy (A, q) = 1] —

Pr(Ideal apy,s.c(N, q) = 1|= negl(X)

Informally, each search query leaks the outcome of the search — The Access pattern—
and whether two queries were for the same keyword — The Search pattern. We proceed
with the formal definitions.



Definition 3 (Access Pattern). The Access Pattern for a keyword w; is defined to be the
set of nodes having measured w; at a given time ¢. The set is denoted by D, ;.

Definition 4 (Search Pattern). The Search Pattern is a vector sp that maintains a
mapping between executed queries and keywords. For example, sp[t] = w; denotes the
query issued at time ¢, corresponding to w;.

Hence, we conclude that:

Definition 5. The leakage function corresponding to the Search operation, can be written
as:

Esearch = Ll(Dwi,tv Sp)

Where £’ is a stateless function.

A DSSE scheme is said to be forward private if for all insertions that take place after
the successful execution of the Setup algorithm, the leakage is limited to the size of the
file, and the number of unique keywords contained in it. In our case, since we do not deal
with files, the addition operation should not leak any information at all. More formally:

Definition 6 (Forward Privacy). An L-adaptively SSE scheme is forward private if the
leakage function L,44 can be written as:

Laaq(id(d;)) = L' (Ciaw,))

Where £’ is a stateless function.

4 SYSTEM MODEL

In this section, we provide a description of our system model by defining the main entities
along with their respective capabilities. Our system model consists of the sensor nodes
referred to as Data Owners (DO), a set of registered users U, a set of fog nodes F, and a
Cloud Service Provider CSP.

Data Owners: Let D = {d,...,d,} be the set of all sensor nodes in our environment
deployed to register the occurrence of specific environmental events. The data owners
in our system model are able to add and update encrypted data using our proposed
scheme. For the purposes of our implementation, we utilize the Zolertia Re-Mote board
devices that are based on the Texas Instruments CC2538 ARM Cortex-M3 system on chip
(SoC). These boards feature a 2.4GHz IEEE 802.15.4 RF Interface, running up to 32MHz
with 512KB of programmable flash and 32KB of RAM while possessing a built-in battery
charger (500 mA) with energy harvesting capabilities as well as a CC1200 868/915MHz
RF transceiver which allows for dual band operation. The functions performed by a data
owner are:

o Register the occurrence of a sensed event (e.g. Temperature, Humidity, etc). Data
about a sensed data is referred to as keyword throughout the rest of this paper and
is denoted by w;.

o Generate a hash of data about every sensed event h(w;).

o Generate a unique identifier id; for each sensed event based on the sensing device’s
id, timestamp and the nature of the event (i.e. temperature, humidity, etc).

e Encrypt the unique identifier with a symmetric key K to generate a keyword value,
Cid(w;)> that corresponds directly to each keyword.
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Figure 1: System Architecture

The sensor device then sends both h(w;) and Cid(w,) to the nearest fog node.

Fog Nodes: Let F = {fi,..., fm} be a set of all fog nodes in our environment. In this
work, we consider a fog node that provides support for a TEE. The specifications of the
TEE are considered to be beyond the scope of our implementation. Each fog node f;
defines a sub-network that consists of multiple sensor devices dy, ,...,dy, . During the
first run of our protocol, the fog node generates three indexes.

o The NoApp[w;], which contains the hash of the keyword along with the number of
times it has received that keyword.

o The NoSearch|w;], which contains the number of times a user has searched for the
keyword.

e The Dict, which contains a mapping between each keyword and a unique identifier
of the sensor node that sent it.

The fog node then stores a local copy of all three indexes and sends a copy of Dict to CSP
along with the identity of the fog node f;.

Users: We denote with & = {uq,...,u,} the set of all users registered in the network to
search, perform computations and receive updates on sensed events. These users submit a
hash of a keyword h(w;) to a nearest fog node for the computation of a search token. The
user has the option to search locally on a single fog node f; or to perform a global search
involving multiple fog nodes (in this case, the CSP performs the search).

Cloud Service Provide (CSP): In this work, we consider a top level cloud computing
service much like the one described in [PGM17]. However, unlike the fog nodes, we do
not require the CSP to have support for a TEE. The CSP creates a merged dictionary
comprising of all Dict and the identity of the fog node f; that sent it.



5 SEARCHING IN THE FOG

In this section, we present a detailed description of the Searching in the Fog scheme (a multi
client DSSE scheme for TIoT devices with forward privacy) along with the construction
of the core algorithms the scheme utilizes. The proposed scheme takes advantage of
the Fog computing paradigm to provide efficient computational operations and decrease
communication latency. Our protocol is made up of two main algorithms; (i) Add Data
and (ii) Search Data. The proposed scheme is influenced by the one proposed in [BM19b].

Add Data The Add Data algorithm is undertaken by both a sensor device, d Fis and the
nearest fog node f;. The d f;, is deployed to register the occurrence of an environmental
event such as temperature, humidity, motion, etc. Data about a sensed event is referred
to as a keyword w;. Once an event has been registered, w; is hashed to produce h(w;).
d Fie then generates a unique identifier that will be used to identify the particular keyword.
This unique identifier ID is made up on the sensor device’s id, timestamp and the type of
event being registered (i.e. temperature, humidity, etc). The ID is then encrypted with a
secret shared key Kske to produce c;q(y,) (line 4 of algorithm 1). The sensor device sends
h(w;) and ¢;4(w,) to the nearest fog node.

Upon receipt by the fog node, f; retrieves the corresponding NoApp[h(w;)] and
NoSearch[h(w;)] from the local database based on h(w;). Using NoApp[h(w;)], the fog node
computes the Dict address addry, for the c;q(.,) received from dsz (line 6 - 9 of algorithm
1). Once this stage is done, f; sends a copy of the dictionary and its identity [FoglD, Dict]
with the CSP.

Algorithm 1 Add Data
Sensor

1: Register data about a sensed event w;

2: Compute hash of the data h(w;)

3: Generate a unique identifier for the sensed data ID. (ID = SensorIDI||t||T), where
SensorID is the unique id of the sensor, t is the timestamp, T is the type of the
measurement.

4: Compute cig(w,) = Encrg (D)

5: Send [h(w;), Cid(w;)] to the nearest Fog Node

Fog Node
NoApp|[h(w;)] + +
Kw, = H (Kp, h(w;)||[NoSearch[h(w;)])
addry, = h (Kw,, NoApp[h(w;)]||0)
Map = Map U {addry,, ¢ig(w,) }
10: Send [Map, FoglID] to CSP
Csp
11: Add Map into central Dict and store along with the FoglD

Search Data For a successful run of the Search Data algorithm, we assume that the user
has access to the secret shared key Kske (used by the sensor device in line 4 of algorithm
1 to encrypt the ID). Users can search for a sensed input value, w; with the aid of the
nearest fog node f;. To perform the search data algorithm, a user uj; computes the hash
value, h(w;), of the sort after value w; and sends to the nearest fog node f;. Our scheme
provides support for two variations of the search algorithm; (i) Local search, which involves
just one fog node, and (ii) Global search, which involves multiple fog nodes and the CSP.
We describe both instances of the Search Data algorithm below;
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Local Search: This search algorithm involves just the neighbouring fog node. Upon
reception, f; retrieves the corresponding NoApplh(w;)] and NoSearch[hA(w;)] from the local
database. After f; receives these values, it computes Ky, = h(Kp, h(w;)||NoSearch[w;]) in
order to calculate the addresses addry, of all instances of h(w;) in the dictionary Dict.
The fog node then increases NoSearch[h(w;)], which is then used to compute a new key
Kwi’. The new key is used to calculate new addresses addrwi’, which is packed in a list L.
Based on the initial addresses generated, f; retrieves the corresponding ciphertext values,
Cid(w;)> in the locally stored dictionary Dict. The ciphertext values are returned to the
user for decryption and the addresses replaced with the new addresses in L.

Global Search: This search algorithm involves both the neighbouring fog node and
the CSP. Upon reception of h(w;) from the sensor device, f; generates a search token that
is forwarded to the CSP. The search token is generated by retrieving the NoApp[h(w;)]
and NoSearch[h(w;)] values of h(w;) from the local database. The fog node proceeds to
compute K, = h(Kn, h(w;)||NoSearch[w;]) in order to calculate the addresses addry, of all
possible instances of h(w;) in the merged Dict at the CSP. A list L, is created containing
all the addresses. The fog node then increases NoSearch[h(w;)], which is then used to
compute a new key K,,'. The new key is used to calculate new addresses addr,,’, which
is also packed into another list L,’. Both lists, (L, L), along with the user’s identity is
sent to the CSP.

Upon reception of the lists, the CSP uses the addresses in L, to search the central Dict
for the corresponding ciphertext values cjq(y,)- The CSP returns the ciphertext values to
the user and replaces corresponding addresses with a new address in L.

Algorithm 2 Search Data - Local Search
User
1: Compute and send h(w;) to the Fog Node > Fog node is TEE enabled
Fog Node
Retrieve the values NoApp[h(w;)] and NoSearch[h(w;)] from the local database
Kw = H(Kp, h(w;)||[NoSearch|w;])
NoSearch[w;] + +
Kw,” = H(Kp, h(w;)||NoSearch[h(w;)])
L= {}
for i =1 to i = NoApp[h(w;)] do
addry, = h(Ky,’,1|0)
Ls = L, U {addry, }
10: for i =1 to i = NoApp[h(w;)] do
11: Cid(w;) = Dict[h(Ky, 1]|0)]
12: R=RU {Cid(wl)}
13: Delete the row on Dict and update it according to the address in Lg
14: Send R to the user

5.1 A PROTOCOL-BASED APPROACH

In this section, we present a protocol-based approach of our construction based on the
algorithms we described. We assume that each entity has a public and private key pair and
that all the public keys are pre-shared and that each sensor node of the same sub-network
shares the same symmetric key Kskg generated by the Fog Node!.

To add a new measurement w; to the local Fog Node f;, a sensor node dy, first calculates
h(w;) and then generates the unique ID of the measurement. As a next step, it computes

1Key sharing is out of the scope of this paper. However, interesting approaches that fit squarely the
cloud paradigm and leverage the power of secure hardware can be found in [Mic19, BM19a, MBDZ19].
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Algorithm 3 Search Data - Global Search
User
1: Compute and send h(w;) to the Fog Node > Fog node is TEE enabled
Fog Node
Retrieve the values NoApp[h(w;)] and NoSearch[h(w;)] from the local database
Kw, = H(Kp, h(w;)||[NoSearch|w;])
NoSearch[w;] + +
Kw. = H(Kn, h(w;)||NoSearch[h(w;)])
Ly ={}
for i = 1 to i = NoApp|[h(w;)] do
addry, = h(Kw,,]]0)
Ly =L, U{addry,}
Ls/ - {}
: for i =1 to i = NoApp[h(w;)] do
addry,” = h(K,',i]|0)
Ly =Ly U{addry,’}
: Send (L, Ly") to the CSP
Ccsp
15: R={}
16: for i = 1 to i = Sizeof(Ls) do
17: Cid(w;) = Dict[ L[]
18: R=RU {Cid(wi)}
19: Delete the row on Dict and update it according to the address in L,’
20: Send R to the user

—= e e e
L e

—
W~

the value c;4(,,) and finally, sends my = (71, h(w), Cig(w,), os(R(r1, M(w;), Ciaew,)))), where
r1 is a random number. Upon reception, f; verifies both the freshness of the message and
the signature and proceeds by calculating the address of the measurement addry,. Finally,
fj stores addry, and c;q(,,) to its local dictionary and also sends them to CSP along
with its unique identifier FoglD via mo = (r2, Map, pkogp(FoglD), oy, (h(r2||Map||FogID))).
The CSP verifies the freshness and the signature and stores wqqqr and Cid(w,) to the global
dictionary Dict along with the identity of the fog node.

When a user u; wishes to search on the encrypted database, she first hashes the
keyword w; she is looking for and then sends the result h(w;) to the Fog Node f;, via
ms = (r3, h(w;), Encpr,, (flag), ou, (h(r3]|h(w;)||flag))), where flag € {local, global}. If
flag = local, then f; proceeds with the search as described in Algorithm 2 and sends
the result R back to the u; via my = (r4, R, 0y, (h(r4]|R)). R is a list on encrypted id’s
so there is no need to re-encrypt it. On the other hand, if flag = global, f; computes
the lists Ly and L/ as described in Algorithm 3 and forwards them to the CSP via
ms = (15, Ls, LY, 04, (h(rs||Ls||L,))). Upon reception, the CSP will verify the freshness and
the signature of the message. If the verification is successful, the CSP proceeds with locating
the entries on Dict that correspond to the search keyword and updates Dict as specified by
the L.. Finally, the result R is outsourced to w; via mg = (r¢, R, ccsp(h(r7]|R))).

6 SECURITY ANALYSIS

We prove the security of our construction according to definition 2 in Section 3. Our goal
is to construct a simulator S that will simulate the addition and search tokens in such
a way that no PPT adversary ADY will be able to distinguish whether the tokens were
generated by the real algorithms or by S.
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Theorem 1. Let SKE be an IND-CPA secure symmetric key cryptosystem. Moreover, let
h be a secure cryptographic hash function. Then, our construction is secure according to
definition 2.

In a pre-processing phase S generates a key for the IND-CPA secure cryptosystem.
Moreover, S generates a dictionary KeyStore to store the last key assigned to each keyword
and a dictionary Oracle to reply to the random oracle queries. Both of these dictionaries
can be resized over time. To prove our theorem, we make use of a hybrid argument.

Proof. | Hybrid 0: | Everything runs as specified by the protocol.
Hybrid 1:| Like Hybrid 0 but now S gets as input L£,44 and proceeds as follows:

_ Add Token Simulation

Generate a random string s

val + Enc(Kskg, 0*)

v = val & id(d;)

Output (s, val)

Based on s simulate a random address a
Store (Cid(w,), 1@, v}) into Dict

The random string s has exactly the same length as the output of the hash function h.
Moreover, due to the IND-CPA security of the encryption scheme, ADY cannot distinguish
between the real encryption of the node id and that of zeros. Thus we have:

| Pr[Hybrid 0 = 1] — Pr[Hybrid 1 = 1]|= negl()) (1)

Hybrid 2:| Like Hybrid 1 but now S gets as input Lseqren- S proceeds as follows:

_ Search Token Simulation

£: Number of ¢;q(,,) to be retuned
R={}
if KeyStore[w,;] = Null
KeyStore[w;] < {0,1}*
fori=1toi=1¢
if Oracle[K,][0][¢] is Null
Pick a (Cia(w,), {ai, vi}) pair
else
a; = Oracle[K,,][0][¢]
v; = Oracle[Ky][1][7]] ® val

end if
Remove a; from the dictionary but keep v;
R=RU {Cid(wi)}
end for
UpdatedVal = {}
K/, + {0,1}*
KeyStore[w;] = K/,
fori=1toi=1/¢
Generate new a; and match it with v; that was kept from before
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_ Continuation of Search Token Simulation

Add (¢;q(q, ) {@i,vi}) to the dictionary
UpdatedV al = UpdatedV al U {c;qw,), a:}
Oracle[K, ][0][i] = a;
Oracle[Ky, ][1][i] = vi © cia(u,)

end for

Ts(w) = (Ky,, £, UpdatedV al)

R is retuned to ADV

The KeyStore[w] dictionary is used to keep track of the last key K,, used for each
keyword w. The Oracle[K,,][j][¢] dictionary is used to reply to ADV’s queries. For example,
Oracle[K,,][0][¢] represents the address of a Dict entry assigned to the i — th id contained
in the result R. Similarly, Oracle[K,,][1][{] represents the masked value needed to recover
id(d;). Tt is clear, that the simulated search token has exactly the same size and format as
the real one and thus:

|Pr[Hybrid 1 = 1] — Pr[Hybrid 2 = 1}|= negl(\) (2)
By combining equations (1) and (2) we get:

| Pr[Hybrid 0 = 1] — Pr[Hybrid 2 = 1]|= negl(\)
which is equivalent to:

|Pr[Real g4y (A, q) = 1] —
Pr(ldeal apy.s.c(A, q) = 1|= negl(A)

And thus our proof is complete.

6.1 Side Channel Attacks

Many recent works [XCP15,1L.SG™17,CD16] have shown that SGX is vulnerable to software
attacks. However, according to [FVBG17] leakage can be avoided if the programs running
in the enclaves do not have memory access patterns or control flow branches that depend
on the values of sensitive data. In our case, no heavy computations occur in the Fog Node
enclave and the only operation is the application of a hash function. To this end, we
could use leakage resilient primitives as in [TS14]. Hence, by assuming a constant time
implementation for the software running in an SGX enclave, our construction is secure
against timing attacks.

7 EXPERIMENTAL RESULTS

In this section, we present the results of experiments we conducted to demonstrate the
feasibility of our proposed work. Our experiments focused primarily on evaluating the
performance of the algorithms described in section 5 on both the sensor device and the
fog node. For this work, we utilized a zolertia device with 512KB programmable flash
and 32KB RAM as our sensor device while using an Intel i7 Ubuntu desktop with 16GB
RAM as the fog node. To implement the necessary algorithms, we developed a Contiki-NG
application on the sensor device written in C, using modified cryptographic functions from
the Tinycrypt library [Woo19]. On the fog node, we developed a node js application to
interact with a local database. With regards to this database, our dictionary is implemented
as tables in a MySQL database hosted on the fog node. Although existing works in the
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field of SSE rely on data structures such as arrays, maps, sets, lists, trees, etc, we opted
for a relational database to represent a persistent storage.

The experiments measure the performance of the core cryptographic components of
our work on the resource constrained sensor device, as well as the overall performance of
the add and search algorithms using datasets of arbitrary sizes.

Datasets To comprehensively measured the performance of both the search and add
algorithms, it was important that we utilized datasets of different sizes. Due to the
uniqueness of our work, the datasets had to be created as part of our experiments (i.e.
using the add algorithm of the protocol). We left the sensor device to collect the temperature
in a room every 5s for a varying number of hours and forwarded that information to the
fog node. We did this for 1hr, 4hrs, 12hrs and 24hrs with a temperature range of 10-to-35
degrees Table 1.

Table 1: Dataset Size

Duration (hrs) Number of Entries
DS1 1 737
DS2 4 2,844
DS3 12 8,617
DS4 24 17,287

Add Algorithm This part of our work consists of two phases and is performed on both
the sensor device and the fog node:

PH1: The sensor device collects data on a sensed event, generate a unique id, hash the
data about the sensed event, encrypt the unique id, and finally send both the hashed
data and the ciphertext to the fog node;

PH2: The fog node retrieves the NoApp and NoSearch from the database based on the
hashed message received from the sensor device, build the encrypted index and
generate the dictionary.

We measure the total performance of the add algorithm by evaluating the performance of
the cryptographic components on the sensor device and the time taken by the fog node to
complete the algorithm.

Performance of Cryptographic Components on Sensor Device: As mentioned
during the description of our dataset, the sensor device is left to collect measurements for
a varying period of time. From table 1, it is observed that, for a timespan of 24 hours, the
sensor device and the fog node run through various portions of the add algorithm 17,287
times. The system time for the CC2538 platform for which the sensor device is based
on is represented as CPU ticks. As a result of this limitation, the performance metrics
on the sensor devices are recorded in ticks and externally converted to seconds. Specific
figures are derived by dividing the number of ticks by 128 (CPU ticks per second [Kurl8]).
In 17,287 iterations of the first part of the add function, the sensor device takes an average
of 4.5 ticks to generate the hash of the keyword (temperature) and the ciphertext of the
unique filename. This corresponds to 0.035s.

Execution Time on the Fog Node: In this part of our experiments, we measured
the time taken by the fog node to build the index table and generate the encrypted
dictionary. For 17,287 runs of our protocol, the fog node takes an average of 14.516ms
for each keyword hash received from the sensor device. This time includes the time taken
to query and update the database. This is a very encouraging result as it illustrates that
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Table 2: Performance Summary

Function Execution Time (ms)
Add (Sensor Side) 35
Add (Fog Node Side) 14.516
Total Add Algorithm 49.51
Search Token Generation 0.066

the fog node will continue to be very efficient even if we increase the number of sensor
devices that communicate with it. We acknowledge that the results for this section would
better resemble real life scenarios if we utilized multiple sensor devices. Unfortunately, our
current implementation supports just one sensor device per fog node.

From the measurements described above, it can be seen that the add algorithm is quite
efficient and fast. Hence, we can safely assume that there will be no backlog on both the
sensor device and the fog node even if the sensor device collects data every 1s and sends
to the fog node. The total execution time of the add algorithm is 0.0495s.

Search Algorithm In this part of our experiments, we measured the total time taken
to complete the search algorithm over the encrypted dictionary generated by the add
algorithm. As described in Section 5, the search algorithm is performed on the fog node
in a local search and is performed on the CSP in a global search. For the purposes of our
experiments, we assumed that the CSP has the same specifications as the fog node. Hence,
the performance of both the local and global search will only vary based on the size of the
dataset. The search time is calculated by measuring the following:

1. Time taken by the fog node to generate a search token from a hashed keyword sent
by a user;

2. Time needed to find the respective matches in the database;

3. Generate a new keyword address to replace the address retrieved in the dictionary.

On average, the time taken to generate the search token is 0.066ms. The search
algorithm involves generating a new keyword address for every keyword value found. As
such, the actual search time also includes the time taken to generate new keyword addresses.
Searching for a keyword that appears 760 times in a database with 17,287 entries takes
approximately 11.36s (i.e. time taken to find all the keyword values and generate new
keyword addresses for all 760). The search algorithm for a keyword that appears 22 times
in a database with 737 entries takes approximately 134ms. These two times represent the
lower and upper bounds of our experiments.

Open Science & Reproducible Research To support open science and reproducible
research and to give the opportunity to other researchers to use, test and hopefully extend
our scheme, we plan to make the source code of our scheme available. However, to keep
our anonymity we will make the link available in the camera-ready version if the paper
gets accepted.

8 CONCLUSION

In this paper, we proposed a forward private dynamic SSE scheme that can ran on con-
strained devices. Our system model is utilizing fog computing to reduce the computational
burden on the sensor devices and increase the overall efficiency of the scheme. Our proposed
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scheme allows sensor devices to securely encrypt data on sensed events, store them in a
remote location and then search over the encrypted data without revealing anything about
the content of the stored data. Our scheme achieves efficient computational operations
and supports the multi-client model. The performance of the scheme is evaluated by
conducting extensive experiments while its security is proven through a theoretical analysis
that considers the existence of a malicious adversary. We believe this work can serve as
groundwork for researchers who wish to build IoT services based on the promising concept
of SSE.
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