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Abstract Almost perfect nonlinear functions possess optimal resistance to
differential cryptanalysis and are widely studied. Most known APN functions
are defined using their representation as a polynomial over a finite field and
very little is known about combinatorial constructions of them on Fn

2 . In this
work we propose two approaches for obtaining quadratic APN functions on
Fn
2 . The first approach exploits a secondary construction idea, it considers

how to obtain a quadratic APN function in n + 1 variables from a given
quadratic APN function in n variables using special restrictions on the new
terms. The second approach is searching for quadratic APN functions that
have a matrix representation partially filled with the standard basis vectors
in a cyclic manner. This approach allows us to find a new APN function in
7 variables. We prove that the updated list of quadratic APN functions in
dimension 7 is complete up to CCZ-equivalence.
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1 Introduction

Vectorial Boolean functions are components of many block ciphers, and their
properties affect the cryptographic strength of the corresponding cipher. Func-
tions that show optimal resistance to differential attack [4] are called almost
perfect nonlinear (APN) functions. APN functions have been widely studied
since the 90’s [47], but there is still a significant list [24] of important open
questions, such as lower and upper bounds on the number of APN functions,
the minimum distance between two APN functions, an upper bound on the
algebraic degree of an APN function, the existence of bijective APN functions
in even dimensions, etc. Moreover, at the moment we know more than 20
000 CCZ-inequivalent instances of APN functions, but only about 20 infinite
families have been constructed so far [22]. In particular, finding a secondary
construction of APN functions is a well-known open problem which was stated
as Problem 3.8 in [24]. Another problem is to find new APN functions in the
vector space Fn

2 without using the finire field structure, since, to the best of our
knowledge all the known constructions of this class are found only using their
representation as polynomials over finite fields, and there are only a few com-
binatorial approaches to search for APN functions over Fn

2 . The classification
of APN functions is another hard open problem. A complete classification
of APN functions (up to CCZ-equivalence) was obtained up to 5 variables,
and quadratic and cubic APN functions were classified for dimension 6. Also,
quadratic APN polynomials over finite fields with binary coefficients have been
classified up to n = 9.

This paper is devoted to methods of searching for APN functions and
corresponding problems. We investigate a few combinatorial approaches to
search for APN functions, in particular, quadratic APN functions. Moreover,
we provide a complete classification of quadratic APN functions in dimension
7. Generally, quadratic APN functions are not suitable for use as S-boxes
(components of symmetric ciphers that perform substitutions of bits) due to
the low algebraic degree, but obtaining new quadratic representatives can lead
us to other useful functions. This is also one of the topics that we discuss in
our work. Moreover, this is especially important for even dimensions n > 8,
since new APN permutations CCZ-equivalent to quadratic functions might be
found in a similar way that this was done for dimension six [10].

We start in Section 2 by considering necessary definitions, discussing rele-
vant open problems and surveying some results in this area. Further, we pro-
pose two approaches for generating quadratic APN functions on Fn

2 . The first
approach is described in Section 3. It considers the algebraic normal form of a
given quadratic APN function G in n variables and extends it into an ANF of
a quadratic function F in n+1 variables, using special restrictions on the coef-
ficients of the new terms. In Section 4 we propose another method to generate
quadratic APN functions, which we call the cyclic approach. In this method
we consider special matrices that are partially filled with the vectors of the
standard basis, and search for corresponding APN functions using the same
idea of restrictions. Using this approach we found one previously unknown (up
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to CCZ-equivalence) quadratic APN function for n = 7. In Section 5 we show
that the updated list of quadratic APN functions in 7 variables is complete up
to CCZ-equivalence. Thus, all quadratic APN functions in 7 variables fall into
exactly 488 distinct CCZ-classes. In Section 6 we observe that the quadratic
parts of some non-quadratic APN functions have a low differential uniformity.
Based on this, we introduce the notion of a stacked APN function and find
such functions in dimensions up to 6 using quadratic APN functions obtained
with some of the approaches mentioned above.

2 Preliminaries

2.1 Definitions

Let F2 be the finite field with two elements. Let Fn
2 be the n-dimensional

vector space over F2. A function F from Fn
2 to Fm

2 , where n and m are positive
integers, is called a vectorial Boolean function. If m = 1, such a function is
called Boolean. Every vectorial Boolean function F can be represented as an
ordered set of m coordinate functions F = (f1, . . . , fm), where fi is a Boolean
function in n variables. Any vectorial function F can be represented uniquely
in its algebraic normal form (ANF):

F (x) =
∑

I∈P(N)

aI

(∏
i∈I

xi

)
,

where P(N) is the power set of N = {1, . . . , n}, x = (x1, x2, . . . , xn) and
aI ∈ Fm

2 . The algebraic degree of a given function F is the degree of its ANF:
deg (F ) =max{|I| : aI 6= 0, I ∈ P(N)}. If the algebraic degree of a function F
is at most 1 then F is called affine. If for an affine function F it holds F (0) = 0
then F is called linear. If the algebraic degree of a function F is equal to 2
then F is called quadratic.

Let us further consider the case m = n only. It is well known that we can
put the finite field F2n in a one-to-one correspondence with the vector space
Fn
2 and consider a vectorial Boolean function as a function over F2n . Then any

vectorial function F has a unique univariate polynomial representation over
F2n :

F (x) =

2n−1∑
i=0

λix
i, λi ∈ F2n .

2.2 APN functions

Let F be a vectorial Boolean function from Fn
2 to Fn

2 . For vectors a, b ∈ Fn
2 ,

where a 6= 0, consider the value

δF (a, b) =
∣∣{ x ∈ Fn

2

∣∣ F (x+ a) + F (x) = b}
∣∣.
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Denote by ∆F the following value:

∆F = max
a6=0, b∈Fn2

δF (a, b).

Then F is called a differentially ∆F -uniform function. The smaller the
parameter ∆F , the better the resistance of a cipher containing F as an S-box
to differential attack [4]. The smallest possible value of ∆F is equal to 2. In
this case the function F is called almost perfect nonlinear (APN). This no-
tion was introduced by K. Nyberg [47], also differential properties of vectorial
functions were investigated in the USSR, but these results were not published
[37]. Despite extensive reserch, there are many important open problems. One
of these problems is to find lower and upper bounds on the number of APN
functions (most recent improvement of previous results was made in [45]).
Another open problem is to find an upper bound on the algebraic degree of
an APN function, for some partial answers see [12]. The minimum distance
between two APN functions is also unknown, but there exist some results on
this question [13], [42]. The problem on existence of bijective APN functions
in even dimensions is referred as ”Big APN problem” and widely mentioned
[1]. For further details, we refer the reader to the reviews of C. Blondeau and
K. Nyberg [5], C. Carlet [24], M. M. Glukhov [37], A. Pott [48], M. E. Tuzhilin
[50] and to the books of L. Budaghyan [11], C. Carlet [25] for an exhaustive
discussion of the topic.

Well-known examples of constructions of APN functions are monomial
functions over F2n , they are provided in Table 1. Also, there exist many con-
structions and infinite families of APN functions over finite fields (for example,
see [14], [15], [17], [18] and [19] of L. Budaghyan et al., the paper of Y. Edel et
al. [32]). All known infinite families of quadratic APN polynomials are listed in
Table 2. Several combinatorial approaches for searching for new APN functions
from known ones have been proposed. An approach using special matrices was
proposed in [52] and further developed in [53] and [54]. Y. Edel and A. Pott
proposed the so-called switching method that searches for suitable coordinate
functions in order to obtain a new APN function from a given one [31]. A
combinatorial approach using subfunctions was proposed by A. Gorodilova
[35]. V. Idrisova introduced an approach for finding APN permutations using
2-to-1 APN functions [40]. Recently, more than 13 000 new quadratic APN
functions were found with a recursive tree search algorithm [2]. For more on
constructions of APN functions the reader can consult [22].

2.3 Classifications of APN functions

Let us recall the main equivalence relations that preserve the APN property
of a given vectorial Boolean function. Two vectorial Boolean functions F and
G are extended affine equivalent (EA-equivalent) if F = A1 ◦G ◦A2 +A where
A1, A2 are affine permutations on Fn

2 and A is an affine function. Two functions
F and G are called Carlet-Charpin-Zinoviev [26] equivalent (CCZ-equivalent)
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Table 1 Known APN power functions xd on F2n .

Functions Exponents Conditions References

Gold d = 2t + 1 gcd(t, n) = 1 [33], [47]

Kasami d = 22t − 2t + 1 gcd(t, n) = 1 [41], [44]

Welch 2t + 3 n = 2t + 1 [23], [28]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 [29], [39]

2t + 2
3t+1

2 − 1, t odd

Inverse 22t − 1 n = 2t + 1 [3], [47]

Dobbertin 24t + 23t + 22t + 2t − 1 n = 5t [30]

if their graphs ΓF = {(x, F (x))
∣∣ x ∈ Fn

2} and ΓG = {(x,G(x))
∣∣ x ∈ Fn

2}
are affine equivalent, that is, there exists an affine permutation A of Fn

2 × Fn
2

such that {A(x, y)
∣∣ (x, y) ∈ ΓF } = ΓG. Let us recall that in the case of

quadratic APN functions, two APN functions are CCZ-equivalent if and only
if they are EA-equivalent [51], but in general, CCZ-equivalence does not im-
ply EA-equivalence. Also, there exists the notion of DDT-equivalence which
applies to vectorial Boolean functions that share the same difference distribu-
tion table [6], [36]. It is an open question whether DDT-equivalence implies
CCZ-equivalence.

To find a complete classification of APN functions under CCZ-equivalence
is a complicated open question. M. Brinkmann and G. Leander found a com-
plete classification of APN functions up to n = 5 [9]. When n = 6 APN
functions have been classified only for algebraic degree up to 3 (the list can
be found in [9] and a complete classification of cubics was described by P.
Langevin in [46]). Also, M. Calderini provided all the representatives of the
EA-classes of APN functions in 6 variables as well as partial results for 7, 8 and
9 variables [21]. Moreover, the classification for quadratic APN functions over
F2n with coefficients from F2 up to n = 9 was obtained by Y. Yu et al. [53].
Until recently there were known 487 CCZ-classes of quadratic APN functions
in 7 variables and 8179 CCZ-classes of quadratic APN functions in 8 variables;
most of them were found in [52]. However, C. Beierle and G. Leander found
12921 new quadratic APN functions in dimension 8, 35 new quadratic APN
functions in dimension 9 and five new quadratic APN functions in dimension
10 in their very recent breakthrough work [2]. In the conference version of this
paper [43] we found a new APN function in 7 variables, later this function was
also independently found in [2].

3 On a secondary approach to search for quadratic APN functions

Since EA-equivalence preserves the APN property, it is always possible to
omit linear and constant terms in the algebraic normal form of a given APN
function. We shall then consider quadratic vectorial Boolean functions that
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Table 2 Known classes of quadratic APN polynomials on F2n inequivalent to power func-
tions [22].

Functions Conditions References

n = pk, gcd(k, p) = gcd(s, pk) = 1, [16]

x2
s+1 + u2

k−1x2
ik+2mk+s p ∈ {3, 4}, i = sk mod p, m = p − i,

n > 12, u primitive in F∗
2n

q = 2m,n = 2m, gcd(i,m) = 1,

sxq+1 + x2
i+1 + xq(2

i+1) c ∈ F2n, s ∈ F2n\Fq,

+cx2
iq+1 + cqx2

i+q X2i+1 + cX2i + cqX + 1 [19]

has no solution x such that xq+1 = 1

x3 + a−1Tr(a3x9) a 6= 0 [14]

x3 + a−1Tr3n(a3x9 + a6x18) 3|n, a 6= 0 [15]

x3 + a−1Tr3n(a6x18 + a12x36) 3|n, a 6= 0 [15]

n = 3k, gcd(k, 3) = gcd(s, 3k) = 1,

ux2
s+1 + u2

k
x2
−k+2k+s+ v, w ∈ F

2k
, vw 6= 1, [7, 8]

vx2
−k+1 + wu2

k+1x2
s+2k+s 3|(k + s), u primitive in F∗

2n

(x + x2
m

)2
i+1+ n = 2m,m > 2 even,

u′(ux + u2
m
x2
m

)(2
i+1)2j+ gcd(i,m) = 1 and j > 2 even, [55]

u(x + x2
m

)(ux + u2
m
x2
m

) u primitive in F∗
2n
, u′ ∈ F2m not a cube

n = km,m > 1, gcd(n, i) = 1,

L(x)2
i
x + L(x)x2

i
L(x) =

∑k−1
j=0

ajx
2jm satisfies [17]

the conditions in Theorem 6.3 of [17]

u(uqx + xqu)(xq + x)+

(uqx + xqu)2
2i+23i q = 2m,n = 2m, gcd(i,m) = 1, u primitive in F∗

2n
, [49]

+a(uqx + xqu)2
2i

(xq + x)2
i
+ X2i+1 + aX + b

b(xq + x)2
i+1 has no solution over F2m

n = 2m = 10, (a, b, c) = (β, 0, 0),

x3 + ax2
k(2i+1)+ i = 3, k = 2, F∗4 = 〈β〉, or

bx3·2
m

+ cx2
n+k(2i+1) n = 2m, m odd, 3 - m, (a, b, c) = (β, β2, 1) [20]

F∗4 = 〈β〉, i ∈ {m − 2,m, 2m − 1,

(m − 2)−1 mod n}

u[(uqx + xqu)2
i+1+

(uqx + xqu)(xq + x)2
i
+ q = 2m,n = 2m,

(xq + x)2
i+1] gcd(3i,m) = 1, [34]

+(uqx + xqu)2
2i+1+ u primitive in F∗

2n

(uqx + xqu)2
2i

(xq + x)+

(xq + x)2
2i+1

u[(uqx + xqu)2
i+1+

(uqx + xqu)(xq + x)2
i
+ m odd, q = 2m,

(xq + x)2
i+1] n = 2m, gcd(3i,m) = 1, [34]

+(uqx + xqu)2
3i

(xq + x)+ u primitive in F∗
2n

(uqx + xqu)(xq + x)2
3i

have only quadratic terms in their ANF. The following result of T. Beth and
C. Ding gives a necessary condition on the ANF of a given APN function.

Theorem 1 (Theorem 6 in [3]) Let F = (f1, . . . , fn) be an APN function in
n variables. Then every quadratic term xixj, where i 6= j, appears in at least
one coordinate function of F .

Proof Without loss of generality consider an APN function F such that there is
no quadratic term x1x2. Therefore, F (x1, x2, 0, . . . , 0) = a0+a1x1+a2x2, where
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a0, a1, a2 ∈ Fn
2 . Let x = (0, 0, . . . , 0), y = (1, 0, . . . , 0) and a = (0, 1, 0, . . . , 0).

Then F (x)+F (x+a)+F (y)+F (y+a) = a0+a0+a2+a0+a1+a0+a1+a2 = 0,
thus, we have a contradiction to the definition of an APN function.

This property motivated us to suggest the following construction of quadratic
APN functions. Let G = (g1, . . . , gn) be a quadratic APN function in n vari-
ables. Consider a vectorial Boolean function F = (f1, . . . , fn, fn+1) in n + 1
variables such that:

f1 = g1 +

n∑
i=1

α1,ixixn+1;

. . .

fn = gn +

n∑
i=1

αn,ixixn+1;

fn+1 = gn+1 +

n∑
i=1

αn+1,ixixn+1,

(1)

where α1,i . . . , αn+1,i ∈ F2 for i = 1, . . . , n and gn+1 =
∑

16j<k6n βj,kxjxk
for some fixed βj,k ∈ F2. Note that if α1,i, . . . , αn,i are such that each term
xixn+1 appears in at least one of the coordinate functions f1, . . . , fn, then
the necessary condition of Theorem 1 is satisfied for the constructed function
F . Since an exhaustive search for the given APN function becomes infeasible
starting from n = 6, we need to find some necessary and sufficient conditions
on the new coefficients of F .

Let us denote the lexicographically ordered elements of Fn
2 as x0, . . . , x2

n−1.
Since all the values G(x0), . . . , G(x2

n−1) of the function G are known, we can
represent values of the constructed function F only through the unknown
coefficients αi,k and some constant terms. Since F is an APN function, for a
nonzero a all the sums F (x) + F (x + a) and F (y) + F (y + a), where x 6= y
and x 6= y + a, should be pairwise distinct. Then additional restrictions on
the coefficients αi,k can be obtained from this condition. For the convenient
representation of these restrictions further we consider the following matrix
approach that was also proposed by T. Beth and C. Ding in [3].

Each quadratic vectorial Boolean function G in n variables can be consid-
ered as a symmetric matrix G = (gij), where each element gij ∈ Fn

2 is a vector
of the coefficients corresponding to the term xixj in the algebraic normal form
of G and all the diagonal elements gii are null.

Example 1 Let us consider the function G = (g1, g2, g3) = (x1x2 + x2x3,

x2x3, x1x2 + x1x3) =

1
0
1

 · x1x2 +

0
0
1

 · x1x3 +

1
1
0

 · x2x3.

Then the corresponding matrix G is the following:



8 Konstantin Kalgin, Valeriya Idrisova

G =

(000) (101) (001)
(101) (000) (110)
(001) (110) (000)

 .
It is necessary to mention that matrices of a similar form were used in [52]

and [53] to construct and classify a lot of new quadratic APN functions using
the univariate representation. We refer the reader to the book of C. Carlet for
more details on the link between the algebraic normal form and the univariate
representation of a given vectorial Boolean function [25]. Using these matrices
the APN property can be formulated in the following way:

Proposition 1 Let G be the matrix that corresponds to the quadratic vectorial
function G. Then the function G is APN if and only if xGaT 6= 0 for all
a, x ∈ Fn

2\{0} with x 6= a.

Proof The proof follows directly from Theorem 10 of [3]. This theorem states
that a permutation G is APN if and only if the rank of the matrix GaT is
equal to n − 1 for any nonzero a ∈ Fn

2 . Since there is no a requirement for
the function to be bijective in the original proof, it can be generalized to
non-bijective vectorial Boolean functions.

In terms of matrices the method described in (1) can be considered as an
extension of a given G with an extra bit that represents gn+1 in every element
and an extra pair of row and column that represents the set of new terms
xixn+1.

Example 2 For the previously considered function G = (g1, g2, g3) = (x1x2 +
x2x3, x2x3, x1x2 + x1x3) we choose null gn+1 and construct an APN function
F = (f1, f2, f3, f4) in 4 variables, where:

f1 = g1 + x3x4;
f2 = g2;
f3 = g3 + x2x4;
f4 = x1x4 + x3x4.

Then the corresponding matrix F is the following:

F =


(0000) (1010) (0010) (0001)
(1010) (0000) (1100) (0010)
(0010) (1100) (0000) (1001)
(0001) (0010) (1001) (0000)

 .
Consider a quadratic APN function G and the corresponding n×n matrix

G. Denote the vector of nonzero coefficients for the new variables by α =
(α1, . . . , αn), where αi ∈ Fn+1

2 . Let us fix gn+1 and construct an (n+1)×(n+1)
matrix F by adding (α1, . . . , αn, 0) to G as the last column and the last row
and adding a new bit to every element of G according to the choice of gn+1.
Let us denote by G′ the submatrix (fij) of F , such that i, j < n + 1. Let
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B = (b1, . . . , bm) be a vector of length m, where m is some positive integer
and bi ∈ Fn

2 , for i = 1, . . . ,m. Then 〈B〉 denotes the linear span of the set
{b1, . . . , bm}. Let F be the quadratic vectorial function corresponding to the
constructed matrix F . Then the following proposition is true.

Proposition 2 F is APN if and only if αa′ does not belong to 〈G′a′T 〉 for
any a′ ∈ Fn

2 , a′ 6= 0.

Proof Let us note that F =

[
G′ αT

α 0

]
. Consider some x = (x′, β), a = (a′, γ)

for β, γ ∈ {0, 1}, x′, a′ ∈ Fn
2 and α = (α1, . . . , αn), where αi ∈ Fn+1

2 . Then we

can write xGaT = (x′, β)

[
G′ αT

α 0

]
(a′, γ)T = x′G′a′T + γ(αx′) + β(αa′).

Let us prove that if the function F ia APN then αa′ does not belong to
〈G′a′T 〉 for any a′ ∈ Fn

2 , a′ 6= 0. Since the function F is APN, from Propo-
sition 1, we have that xGaT 6= 0 for all x 6= a, where a, x ∈ Fn

2\{0}. Let
γ = 0, β = 1, therefore, xGaT = x′G′a′T + αa′ 6= 0 ⇒ x′G′a′T 6= αa′ for all
x′. It can be seen that all possible x′ give us all possible vectors of 〈G′a′T 〉,
therefore, αa′ does not belong to 〈G′a′T 〉 for any a′ ∈ Fn

2 , a′ 6= 0.
Suppose that we have that αa′ /∈ 〈G′a′T 〉, i.e., αa′ 6= x′G′a′T for all a′ ∈

Fn
2\{0} and all x′, and we want to prove that the relation xGaT 6= 0 holds for

all nonzero x and a such that x 6= a. There are 4 possible cases for the choice
of β and γ:

1) β = 0, γ = 0. Therefore, xGaT = x′G′a′T 6= 0 since G is an APN function
and we have that a′ 6= 0, x′ 6= 0, a′ 6= x′, since we consider only the case a 6= 0,
x 6= 0 and a 6= x due to Proposition 2.

2) β = 1, γ = 0. Therefore, xGaT = x′G′a′T + αa′ 6= 0 since we have that
αa′ /∈ 〈G′a′T 〉 for all a′ ∈ Fn

2 , a′ 6= 0. As we showed above, we also do not
consider the case a′ = 0 since γ = 0.

3) β = 0, γ = 1. Therefore, xGaT = x′G′a′T + αx′ 6= 0 as we have seen
in the previous case (we just need to denote x′ by a′ since the matrix G′ is
symmetric).

4) β = 1, γ = 1. Therefore, xGaT = x′G′a′T + αx′ + αa′. Let us note that
x′G′x′T is equal to 0 since the matrix G′ is symmetric and the main diagonal
is zero, so, we can write x′G′a′T +αx′+αa′ = x′G′a′T +x′G′x′T +αx′+αa′ =
x′G′(a′ + x′)T + α(a′ + x′). Since we consider the case a 6= x then a′ 6= x′ as
well. So, (a′+ x′) 6= 0 and if we denote (a′+ x′) by a′′ we obtain case 2 again.
This proves the statement.

Remark 1 Let us note that Proposition 2 shows how to obtain restrictions on
the new coefficients in a convenient form. Our algorithm for searching for APN
functions using these restrictions is very similar to Algorithm 1 in [52], but in
our work we start from a n× n matrix corresponding to an APN function in
n variables, add an extra bit to each element that corresponds to gn+1 and
search through all possible values of the elements in the last column in order
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to construct a (n+ 1)× (n+ 1) matrix corresponding to an APN function in
n+ 1 variables. In [52] the authors started from a n×n matrix corresponding
to an APN function and searched through all possible evaluations of the last
column (or last few columns) in order to construct a n× n matrix.

Let us show that our method can be also extended to the case when G is
not an APN function, but the ANF of G and gn+1 together contain all possible
quadratic terms. The following proposition describes a necessary condition on
the choice of such functions.

Proposition 3 Let G be a quadratic vectorial function in n variables and F
be an APN function in n+1 variables that is obtained from G using the method
from (1). Then ∆G 6 4.

Proof Consider the vectorial function F = (f1, . . . , fn, fn+1) that is obtained
from the vectorial function G = (g1, . . . , gn) using the method described in
(1). Then for all arguments x = (x1, . . . , xn+1) such that xn+1 = 0, we have
that F (x) = (g1(x), . . . , gn(x), gn+1(x)), where gn+1 is a coordinate function
that was added according to the method. Since the function F (x) satisfies the
APN property for all nonzero a = (a1, . . . , an+1) such that an+1 = 0 and any
b ∈ Fn+1

2 , the equation F (x) + F (x + a) = b has no more than 2 solutions
x such that xn+1 = 0. Therefore, for any nonzero a = (a1, . . . , an) and any
b ∈ Fn

2 , the equation G(x) +G(x+ a) = b has no more than 4 solutions and G
is APN or differentially 4-uniform.

For example, for a differentially 4-uniform function G = (g1, g2, g3, g4, g5),
where:

g1 = x1x2 + x3x5 + x4x5;
g2 = x1x3 + x4x5;
g3 = x2x3 + x1x4 + x3x5 + x4x5;
g4 = x2x4 + x1x5 + x4x5;
g5 = x3x4 + x2x5 + x4x5,

and g6 contains all the terms xixj , where i < j 6 n, we obtained all 13
CCZ-classes of APN functions in 6 variables among the constructed functions.

Remark 2 It can be seen that any quadratic APN function in n variables
can be obtained using the method described in (1) from a quadratic APN or
differential 4-uniform function in n− 1 variables.

It is also worth mentioning that when n = 3, 4 and 5 for all possible (up
to CCZ-equivalence [9]) quadratic APN functions we obtained all the possible
quadratic APN functions for 4, 5 and 6 variables, respectively.

Note that for a given APN function G in n variables we have 2
(n2−n)

2

possibilities to choose gn+1. It is interesting to see how the choice of gn+1

affects the possibility of obtaining an APN function F in n + 1 variables,
the number of such constructed functions and the variety of different CCZ-
classes among the obtained functions. For example, when n = 5 and gn+1 is
null, all known quadratic APN functions give us only one CCZ-class of APN
functions in 6 variables (class 11 in the list from [9]). At the same time, when
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gn+1 contains all quadratic terms xixj , these functions give 13 CCZ-classes of
quadratic APN functions in 6 variables. Unfortunately, for n > 7 it becomes
harder to choose the proper initial function and gn+1 and to obtain a large
amount of generated functions. It seems that the method from (1) is not so
efficient on large dimensions.

OPEN QUESTION Q1: How to choose properly the initial function G
in this approach? It seems that for most APN functions in n variables it is
possible to find corresponding APN functions in n+1 variables for some gn+1,
but we have found one counterexample for n = 6. That function is the APN
function #11 in the classification [9].

OPEN QUESTION Q2: Given an APN (or differentially 4-uniform) func-
tion G, how to choose the function gn+1 in such a way that the number of
CCZ-classes of obtained APN functions is maximal?

4 On a cyclic approach to search for quadratic APN functions

As noted earlier, each row and each column of a symmetric matrix correspond-
ing to an APN function in n variables consists of n − 1 linearly independent
vectors from Fn

2 . Let us introduce another approach for constructing quadratic
APN functions using the matrix representation from the previous section. Let
{e1, . . . , en} be the standard basis of Fn

2 . For the given n, consider the following
matrix with elements from Fn

2 :

T =



0 e1 e2 e3 . . . en−2 en−1
e1 0 e3 e4 . . . en−1 en
e2 e3 0 e5 . . . en t3,n
e3 e4 e5 0 . . . t4,n−1 t4,n
...

...
...

...
. . .

...
...

en−2 en−1 en tn−1,4 . . . 0 tn−1,n
en−1 en tn,3 tn,4 . . . tn,n−1 0


,

where ti,j = tj,i and ti,j denote some unknown elements in Fn
2 . Our aim

is to find the values of the unknown matrix elements such that the matrix
T represents an APN function. We can apply the approach with restrictions
from the previous section.

Let us consider the following procedure.

1. Without loss of generality consider the first unknown element of the matrix
T , that is t3,n. According to Proposition 2 the last column of T should
satisfy (en−1, en, t3,n, . . . , 0)a′ /∈ 〈T ′a′T 〉, where a′ ∈ Fn−1

2 , a′ 6= 0 and
T ′ = T \ (en−1, en, t3,n, . . . , 0).

2. We consider all a′ = a′1, . . . , a
′
n−1 such that a′3 = 1 and a′i = 0, if i > 3,

and obtain restrictions on the value of t3,n that are independent from any
other unknown element of T .
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Repeating this procedure step by step for every new element after fixing values
of previous variables ti,j allows us to obtain all possible assignments for the
given matrix T .

For n = 3, 4 and 5 this construction covered all CCZ-classes of quadratic
APN functions. For n = 6 it covered 11 out of 13 CCZ-classes. Unfortunately,
for larger dimensions the number of generated functions dropped dramatically
and the construction covers only 7 CCZ-classes for n = 7 and only one class
for n = 8. As a consequence, we consider the following generalization of this
construction.

For the given n consider the same matrix T . Suppose that T contains k
unknown elements. Consider the subdiagonal that contains all elements en in
T . It is easy to see that we can remove any element en from this subdiago-
nal and apply the above procedure to the new matrix with k + 1 unknown
elements. Moreover, we can remove any number of elements from T and the
more elements that are removed, the more APN functions can be constructed
using this matrix.

For n = 6 we removed one element en from this subdiagonal in T . Applying
the above procedure to the new matrix resulted in covering all 13 CCZ-classes
of quadratic APN functions. For n = 7 we removed all elements en from the
mentioned subdiagonal and generated more than two million quadratic APN
functions. We have found a new CCZ-class for n = 7 among the obtained
functions. Here we provide a representative of this class in the univariate form:

F (x) = a100x+ a88x2 + a89x3 + a107x4 + a57x5 + a98x6 + a56x8 + a9x9 +
a58x10+a60x12+a109x16+a47x17+a44x18+a27x20+a91x24+a71x32+a96x33+
a101x34 +a7x36 +a12x40 +a34x48 +a66x64 +a4x65 +a4x66 +a73x68 +a73x72 +
a56x80 + a20x96,
where a is the primitive element whose minimal polynomial over F27 is x7 +
x+ 1.

5 Classification of quadratic APN functions in dimension 7

Let us recall that APN functions are classified completely only up to n = 5.
APN functions in 6 variables are classified for the case of algebraic degree no
greater than 3. We complete the classification of quadratic APN functions for
n = 7.

Given a quadratic APN function F , let F be its corresponding symmetric
matrix. It can be seen that the first row of F is equal to (0 1 2 4 8 16 32)
(that is the row (0 e1 e2 e3 e4 e5) in decimal notation) up to EA-equivalence,
since we can map any set of (n − 1) linearly independent elements to the
standard basis.

It was shown in [52] (see Corollary 1) that if the APN functions F and
G are EA-equivalent, then for their matrices F and G the following relation
holds:

G = L(PFP t),
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where P is an invertible matrix with elements from F2 and L is a linear per-
mutation on Fn

2 . Let us briefly describe the procedure of finding a lexicograph-
ically minimal matrix in the EA-class. Our aim is to transform the first k (for
n = 7 we considered the case k = 2) rows of a given matrix in order to ob-
tain lexicographically minimal ones using only transformations that preserve
EA-equivalence.

For all possible values of the first two rows of the matrix F such that
the condition from Proposition 1 is true, we implement a search through all
possible matrices P of the form

P =



x x 0 0 0 0 0
x x 0 0 0 0 0
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x
∗ ∗ x x x x x


,

where the upper left 2×2 square and the lower right 5×5 square are invertible
matrices and the lower left part can be any 5 × 2 matrix. We consider such
matrices P since our aim is to find the minimal values of the first two rows for
a given EA-class and we want only these two rows to interact with each other
(since we do not know the rest of the rows when k = 2). For each matrix P
we perform the following steps:

P1: Search through all possible L such that the first row of G is equal to
(0 1 2 4 8 16 32);

P2: If P and L are such that G < F lexicographically, we discard F .
We implemented the above procedure and obtained that there are only

five possible options for the second row of a given quadratic matrix up to EA-
equivalence. We list below these options and the number of EA-inequivalent
APN functions that have such a lexicographically minimal matrix:

1. Case (1 0 4 8 16 32 64) contains 3 quadratic APN functions up to
EA-equivalence (all are equivalent to monomial functions);

2. Case (1 0 4 6 16 32 64) contains 2 functions;
3. Case (1 0 4 6 16 32 24) contains no functions;
4. Case (1 0 4 6 16 26 64) contains 220 functions;
5. Case (1 0 4 6 16 24 64) contains 263 functions.

Thus, there exist only 488 quadratic APN functions up to CCZ-equivalence,
and the updated list is complete.

For n = 8 we implemented the procedure as well. There exist 11 possible
options for the second row of a given quadratic matrix (while the first row is
equal to (0 1 2 4 8 16 32 64)):

1. Case (1 0 4 8 16 32 64 128);
2. Case (1 0 4 8 16 32 64 18);
3. Case (1 0 4 8 16 32 64 6);
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4. Case (1 0 4 6 16 32 64 128);
5. Case (1 0 4 6 16 32 64 24);
6. Case (1 0 4 8 16 32 24 128);
7. Case (1 0 4 8 16 26 64 128);
8. Case (1 0 4 8 16 26 64 104);
9. Case (1 0 4 8 16 24 64 128);

10. Case (1 0 4 8 16 24 64 98);
11. Case (1 0 4 8 16 24 64 96).

The number of EA-inequivalent APN functions for each case is being com-
puted at the moment.

6 Using of quadratic functions to search for APN fuctions of higher
algebraic degree

In this section we disscuss possible approaches for the use of quadratic func-
tions with low differential uniformity to search for APN fuctions of higher
algebraic degree. Also, we introduce the notion of a stacked APN function as
an APN function of algebraic degree d such that eliminating monomials of
degrees k + 1, . . . , d for any k < d results in an APN function of algebraic
degree k.

6.1 The differential uniformity of the quadratic parts of APN functions and
the class of stacked APN functions

Let F be a vectorial Boolean function of algebraic degree d. Then it can be
represented as the sum F = F (c)+F (1)+F (2)+ . . .+F (d), where each function
F (j) contains only monomials of algebraic degree j in its algebraic normal form
and F (c) is a constant term. We observe that if F is an APN function then
its quadratic part F (2) has a low differential uniformity. In particular, we can
state the following proposition based on our computational results:

Proposition 4 Let F be an APN function from F4
2 to F4

2. Then ∆F (2) 6 4.

Some sporadic examples of non-quadratic APN functions in 5, 6 and 7
variables have a quadratic part with differential uniformity not greater than
4. For the Dillon APN permutation P of F6

2 [10], the value ∆P (2) is equal to
8. When n = 8, 9 there also exist APN functions F (e.g. the Kasami power
functions for n = 8 and the inverse function for n = 9) such that ∆F (2) =
8. Nevertheless, for these large dimensions the differential uniformity of the
quadratic parts is still quite low. Further we consider only functions without
affine terms. The observation on low differential uniformity of the quadratic
parts of APN functions motivated us to introduce a new subclass of APN
functions.
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Definition 1 Let F = F (2)+. . .+F (d) be an APN function of algebraic degree
d. If all functions F −F (d), F −F (d)−F (d−1), . . . , F −F (d)−F (d−1)− . . .−F 3

are APN functions, then F is called a stacked APN function.

Let us describe one of the possible approaches to construct stacked APN
functions of algebraic degree 3. Let h be a cubic Boolean function in n vari-
ables with no affine or quadratic terms, i.e. a homogenous one. Let us call a
vectorial function H a cubic shift if H = h · v for a nonzero vector v in Fn

2 . In
2009, Y. Edel and A. Pott introduced a new approach for searching for APN
functions, the so-called switching method [31]. It is necessary to mention that
the same principle was previously used to construct an infinite family of APN
polynomials in [14]. This approach describes how to find new APN functions
from known ones by changing their coordinate functions. In particular, the
following result for functions of the form F + f · v was obtained.

Theorem 2 (Theorem 3 in [31]) Let F be an APN function from Fn
2 to Fn

2 .
Let v be a nonzero vector in Fn

2 , and h be a Boolean function in n variables.
Then the function F + h · v is an APN function if and only if

h(x) + h(x+ a) + h(y) + h(y + a) = 0

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = 0

and x 6= y, x 6= y + a.

The next property directly follows from Theorem 2 and it is also described
in [13] (see Section V “Single shift”):

Proposition 5 Let F be an APN function in n variables. Let v be a nonzero
vector in Fn

2 , and h1, h2 be different Boolean functions in n variables. If both
F +h1 ·v and F +h2 ·v are APN functions, then the function F +h1 ·v+h2 ·v
is also APN.

The next simple corollary follows from Proposition 5 and allows us to
potentially reduce the complexity of an exhaustive search for all suitable cubic
shifts.

Corollary 1 Let F be a quadratic APN function in n variables. Suppose that
there exist homogenous cubic Boolean functions h1, h2 such that both F +h1 ·v
and F + h2 · v are APN. Then, there exist Boolean functions h, where h = h1
or h = h2 or h = h1 + h2, such that h contains an even (or, equivalently, an
odd) number of monomials and F + h · v is an APN function.

For n = 4, 5 we implemented a search for cubic APN functions F =
F (2) + F (3) such that F (3) is some cubic part and F (2) is a quadratic APN
function constructed using the cyclic matrix T from the previous section. For
n = 6 we implemented a similar search, but F (3) was a cubic shift since it is
computationally hard to search through all possible cubic parts. We found a
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Table 3 Examples of stacked cubic APN functions (both F and F (2) are APN).

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
F (x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 11 12

F (2)(x) 0 0 0 1 0 2 4 7 0 4 6 3 8 14 10 13

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

F (x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 28 27
0 8 16 25 11 1 29 22 15 3 17 28 31 17 6 9

F (2)(x) 0 0 0 1 0 2 4 7 0 4 10 15 19 21 29 26
0 8 16 25 11 1 31 20 15 3 21 24 23 25 9 6

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

F (x) 0 0 0 1 0 2 4 13 0 4 8 7 16 22 28 27
0 8 16 19 9 3 29 22 45 33 53 56 52 58 40 45
0 16 60 45 26 8 34 59 55 35 3 28 61 43 13 26
5 29 41 58 22 12 62 37 31 3 59 38 28 2 60 41

F (2)(x) 0 0 0 1 0 2 4 7 0 4 8 13 16 22 28 27
0 8 16 25 9 3 29 22 45 33 53 56 52 58 40 39
0 16 60 45 26 8 34 49 55 35 3 22 61 43 13 26
5 29 41 48 22 12 62 37 31 3 59 38 28 2 60 35

large amount of cubic stacked APN functions for n = 4, 5, 6. Some examples
are listed in Table 3.

It is worth mentioning that for quadratic APN functions from the different
CCZ-classes for n = 6 we have found more than 70 000 cubic stacked APN
functions. All these functions belong to the same CCZ-class that is the only
known class of APN functions in 6 variables that does not contain quadratic
functions (class number 13 in the list from [9]), despite the fact that all 14
CCZ-classes contains cubic representatives [21].

6.2 A generalization of the switching method to differentially 4-uniform
functions

Here we show that the switching method mentioned earlier can be applied not
only to APN functions, but also to differentially 4-uniform functions.

Proposition 6 Let F be a vectorial Boolean function in n variables. Let v be
a nonzero vector in Fn

2 , and h be a Boolean function in n variables, such that
F + h · v is an APN function. Then there exists a vectorial function G, such
that G is EA-equivalent to F and G+h · e1 is APN, where e1 is a vector from
the standard basis.
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Proof Consider the bijective linear mapping L such that L(v) = e1. Then
L(F + h · v) = L(F ) + h · e1 = G+ h · e1 and G is EA-equivalent to F .

It is interesting that for n = 4, 6 we found cubic APN functions C such
that C = F + h · e1, where F is APN and h is a homogenous cubic function
only one of whose terms in ANF has a nonzero coefficient. An example of such
F and C for n = 4 can be found in Table 3. An example for n = 6 is the
following:

c1 = x1x2 + x4x6 + x5x6 + x2x3x5;
c2 = x1x3 + x3x5 + x4x5 + x2x6 + x5x6;
c3 = x2x3 + x1x4 + x4x5 + x5x6;
c4 = x2x4 + x1x5 + x3x5 + x2x6 + x3x6 + x4x6 + x5x6;
c5 = x3x4 + x2x5 + x3x5 + x4x5 + x1x6 + x2x6 + x3x6 + x5x6;
c6 = x3x5 + x2x6 + x5x6.

Remark 3 Let F be an APN function in n variables. Let G = F + f · e1 for
some Boolean function f , then ∆G 6 4, since changing one coordinate of an
APN function can not increase the differential uniformity more than two times
[14]. This implies the following result:

Corollary 2 Let F be a vectorial Boolean function in n variables. Let v be a
nonzero vector in Fn

2 , and h be a Boolean function in n variables, such that
F + h · v is an APN function. Then ∆F 6 4.

This corollary implies that the switching method for obtaining APN func-
tions can be applied only to APN and differentially 4-uniform functions. The
following analog of Theorem 2 for differentially 4-uniform functions is also
known from [13]:

Theorem 3 Let F be a differentially 4-uniform function from Fn
2 to Fn

2 . Let
v be a nonzero vector in Fn

2 , and h be a Boolean function in n variables. Then
the function F + h · v is APN if and only if the following conditions hold:

C1. h(x) + h(x+ a) + h(y) + h(y + a) = 0

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = v

and x 6= y, x 6= y + a.

C2. Zh(x) + h(x+ a) + h(y) + h(y + a) = 1

for all x, y, a such that

F (x) + F (x+ a) + F (y) + F (y + a) = 0

and x 6= y, x 6= y + a.
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Remark 4 These observations emphasize the possible role of quadratic APN
and differentially 4-uniform functions in obtaining new APN functions of
higher algebraic degree and motivates further research in this direction.

OPEN QUESTION Q3: Do there exist stacked APN functions of algebraic
degree higher than 3?

OPEN QUESTION Q4: Do there exist stacked APN functions for dimen-
sions larger than 6?

7 Conclusion

In this paper we considered two combinatorial approaches that allow to search
for quadratic APN functions using special matrices. Given a quadratic APN
function in n variables, the first approach searches for quadratic APN func-
tions in n+1 variables using special restrictions that can be described in terms
of matrices. The second approach uses matrices of a cyclic form to generate
quadratic APN functions. Using these approaches we found a new APN func-
tion in 7 variables. Moreover, we obtained a complete classification of quadratic
APN functions up to CCZ-equivalence in dimension 7. Also, we noted that the
quadratic parts of some APN functions have a low differential uniformity and
introduced the notion of stacked APN functions.
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