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Abstract—Threshold signing research progressed a lot in the
last three years, especially for ECDSA, which is less MPC-
friendly than Schnorr-based signatures such as EdDSA. This
progress was mainly driven by blockchain applications, and
boosted by breakthrough results concurrently published by
Lindell and by Gennaro & Goldfeder. Since then, several
research teams published threshold signature schemes with
different features, design trade-offs, building blocks, and
proof techniques. Furthermore, threshold signing is now de-
ployed within major organizations to protect large amounts
of digital assets. Researchers and practitioners therefore need
a clear view of the research state, of the relative merits of the
protocols available, and of the open problems, in particular
those that would address “real-world” challenges.

This survey therefore proposes to (1) describe thresh-
old signing and its building blocks in a general, unified
way, based on the extended arithmetic black-box formalism
(ABB+); (2) review the state-of-the-art threshold signing pro-
tocols, highlighting their unique properties and comparing
them in terms of security assurance and performance, based
on criteria relevant in practice; (3) review the main open-
source implementations available.

Index Terms—cryptography, threshold signature, blockchain

1. Introduction

A threshold signature scheme (TSS) enables a group
of parties to collectively compute a signature without
learning information about the private key. In a (t, n)-
threshold signature scheme, n parties hold distinct key
shares and any subset of t + 1 ≤ n distinct parties can
issue a valid signature, whereas aby subset of t or fewer
parties can’t. TSS’ setup phase relies on distributed key
generation (DKG) protocol, whereby the parties generate
shares without exposing the key. In practice, TSS is often
augmented with a reshare protocol (a.k.a. share rotation),
to periodically update the shares without changing the
corresponding key.

More than 30 years after Desmedt introduced [Des87]
the idea of threshold signing, and 15–20 years after
a peak of results [Sho00], [aK01], [MR01], [LP01],
[BLS04], blockchain applications have sparked a renewed
interest in TSS, with works such as [BDN18], [GG18],
[DKLas18], [DKLas19], [DKO+19], [GRSB19], [Cs19],
[SA19], [CCL+19a], [CCL+20a], [KG20], [CMP20],
[GG20] in the last 3 years. These thus tend to focus on

signature schemes used in blockchain protocols, namely
ECDSA (most often with secp256k1 elliptic curve) and
EdDSA (as Ed25519)—note that fast threshold RSA sig-
natures have been around for 20 years [Sho00], [aK01].

In this article, we attempt to summarize the state of the
art established by all these recent works, and in particular
to review efficient TSS constructions that can be deployed
at scale to protect cryptocurrency or other assets. We
focus on the ECDSA case, because (1) it is currently
the most important application-wise, ECDSA being at the
time the only signature scheme supported by Bitcoin1

and Ethereum; and (2) “thresholdizing” ECDSA is more
complex than EdDSA or pure Schnorr signatures, which
are relatively threshold-friendly thanks to the linearity of
their s computation.

This survey aims to help researchers and engineers
understand how TSS protocols differ and what are their
strengths and limitations in terms of security, performance,
and functionality. This understanding is essential when
choosing a protocol for a digital asset custody solu-
tion, where TSS can be used for shared control between
multiple parties, or to distribute trust within a single
organization. Indeed, as the attacks in [AS20] showed,
subtle properties or shortcomings of TSS protocols and
in their implementations can have disastrous effects. This
work will also help security auditors review TSS imple-
mentations, and security architects ensure that the proper
controls are in place for a safe integration of TSS in their
environment.

We structured the survey as follows:

• §2 defines threshold signatures, the arithmetic black-
box formalism used throughout the paper, and briefly
presents the main cryptographic building blocks of
TSS protocols.

• §3 reviews secret sharing techniques as well as their
variants and related techniques, such as the conver-
sion from multiplicative to additive shares.

• §5 describes evaluation criteria for TSS protocols,
with a focus on practical applications.

• §6 discusses the relative merits of selected protocols,
based on the evaluation criteria proposed.

• §7 reviews some of the main open-source imple-
mentations available, focusing on “battle-tested” and
audited code.

1. Although, at the time of writing, support for secp256k1 Schnorr
signatures has just been integrated in Bitcoin’s code as per BIP340, but
is not activated yet.



2. Preliminaries

2.1. Notations

Participants in a protocol P1, . . . ,Pn are modeled
as probabilistic polynomial time Turing machines. The
adversary A, controlling a subset of the participants, is
modelled the same.

Within a procedure, a variable is assigned values using
the ← operator. When the right-hand side is any set X
or a probabilistic function F then the value assigned is
uniformly sampled from X or from the distribution over
F. We write a← b as a shorthand for a← {b}.

In general, private/public key pairs are denoted sk, pk
and are obtained from a key generation procedure KGen.
The algorithms for signature generation and verification
are Sig,Vf. Encryption and decryption functions are Enc
and Dec.

We write H for hash functions. Depending on the
context it can be a general-purpose hash to bit strings,
or a hash into a specific set.

An elliptic curve E over a finite field K is denoted
E(K), and we write G ⊆ E(K) a subgroup of E(K)
of prime order q. A generator for G is denoted G and
we assumed that G is known to all parties as part of the
group’s description.

We use the additive notation for operations, and denote
the multiplication of a point P ∈ G by a scalar k ∈ Zq
as k · P .

The multi-party computation (MPC) functionality we
use operates over shared secret values in Zq and G.
We call these values shared secrets, defined via a secret
sharing scheme (SSS). Shared secrets of field elements
x ∈ Zq are denoted as [x], and shared secrets of elliptic
curve points x · G ∈ G are denoted 〈x〉, to emphasize
the notion that they are representations of the underlying
value.

Algorithms and protocols that use this MPC func-
tionality are written from the perspective of a party Pi.
Whenever a shared secret is established, this implicitly
defines a variable representing Pi’s share. These shares
are denoted xi and Xi for the respective representations
[x] and 〈x〉.

A (t, n)-threshold scheme involves n parties, where
the threshold t < n is the maximum number of parties
that can be corrupted, while still keeping the underlying
scheme secure. Whenever such a threshold is used, we
sometimes add t as subscript for clarity. Note that not all
values of t are supported by a given TSS protocol, as its
security depends on the adversarial model (e.g., honest vs.
dishonest majority, as discussed in §5.2.3).

Remark: Some papers use the convention that t par-
ties are necessary and sufficient to issue a signature (and
thus up to t− 1 can be corrupted), whereas other papers
use t + 1 and t, respectively. The later seems to be the
most common convention in recent papers, therefore we
adopt it as well.

2.2. Threshold Signature Schemes

The following semi-formal definition should be
enough for this survey:

Definition 2.1. A (t, n)-threshold signature scheme
(TSS) for a given (single-party) signature scheme
(KGen,Sig,Vf) involves n > 1 parties P1, . . . ,Pn ca-
pable of running the following protocols:

• Thresh-KGen is a distributed key generation (DKG)
protocol, with no previously shared key material, but
only public identities/addresses. When the protocol
successfully completes, each party Pi has their pri-
vate share ski of the secret key sk, all parties know
the public key pk, and none of the parties learns
information about sk.

• Thresh-Sig is a distributed signing protocol, whereby
all parties receive a message to be signed and jointly
return a valid signature.

The following protocols are optional:

• Thresh-PreSig is a sub-protocol of Thresh-Sig that
does not depend on the message to be signed. Upon
successful execution, each participant stores a presig-
nature that can be retrieved when Thresh-Sig is later
completed .

• Thresh-Reshare is a threshold secret sharing protocol
that can be performed after Thresh-KGen. On input
t′ ≤ n, the secret shares ski are refreshed such that
the scheme satisfies a (t′, n) threshold.

In practice, a number of assumptions are required
on the reliability and integrity of the communications
between participants, as we’ll discuss in §5.3.

2.3. The Arithmetic Black-Box Formalism

To describe MPC protocols operating over shared se-
crets, complex operations can be broken down in a set
of simple operations that are each individually defined
as secure MPC operations. For this, we use the arith-
metic black box (ABB) [DN03] framework and its exten-
sion ABB+ [DKO+19], which includes all the operations
needed to compute threshold signatures.

In particular, ABB+ allows parties to securely perform
arithmetic operations with shared secrets with representa-
tions [x] or 〈x〉 for x ∈ Zq. It is important that the imple-
mentation of these functions does not leak any information
about inputs or outputs.

ABB+ assumes that the secrets are shared via a linear
secret sharing scheme. That is, for any a, b ∈ Zp and
representations [x], [y] or 〈x〉, 〈y〉, the parties can compute
a[x]+b[y] = [ax+by] and a · 〈x〉+b · 〈y〉 = 〈ax+ by〉 lo-
cally. We refer to §3 for descriptions of different possible
implementations of linear secret sharing schemes.

Formally, ABB+ consists of the following operations:



Rand() Returns a representation [x] of a ran-
dom secret value x sampled uniformly
from Zp.

RandMul() Returns a triple ([x], [y], [z]) of repre-
sentations of random values (x, y, z)
such that z = xy.

Convert([x]) Returns a representation 〈x〉 of x ·G.

Open([x]) Reveals the secret value x to all par-
ties.

Open(〈x〉) Reveals the value X = x · G to all
parties.

Mul([x], [y]) Returns a representation [z] of the
value z = xy

While some of these functions are trivial to implement,
they often require extra steps to guarantee their security.
For example, a call to Open usually involves the parties
to commit their share beforehand, to prevent manipulation
of the result.

To understand how we can use and compose these
functions to build an MPC protocol, we present in fig-
ure 1 the two well known examples from Beaver [BIB89],
[Bea91] which implement Mul and Invert.

Mul([x], [y])

[a], [b], [c]← RandMul()

d← Open([x] + [a])

e← Open([y] + [b])

[z]← [c] + e[x] + d[y]− ed
return [z]

Invert([x])

[a]← Rand()

[w]← Mul([a], [x])

w ← Open([w])

[y]← w−1[a]

return [y]

Figure 1. Beaver’s tricks for multiplication and inversions.

We notice the use of auxiliary random secret sharings
in these two examples. They are often referred to as
blinding values as they allow the parties to open represen-
tations derived from the input, without revealing any secret
information about the shares or the secret. Multiplying
shared secrets securely it not trivial, and was the main
challenge to build efficient ECDSA threshold schemes.

In §3 we present such implementation that do not rely
on RandMul, and we refer the reader to [Mau06], [DN07]
for other construction of Mul.

2.4. Cryptographic Toolbox

We briefly summarize the main components founds in
ECDSA TSS protocols:

2.4.1. Commitment Schemes. A party A can temporarily
hide a message m that cannot be changed by first comput-
ing c← Commit(m, r) where r is fresh randomness, and
later sharing r with B, which allows them to verify the
commitment’s validity by running Open(m, c; r), which
always succeeds if c = Commit(m, r) (correctness).

Definitions and notations slightly differ, and some-
times involved a “public commitment key”.

A commitment scheme’s security properties are:

• Hiding: The commitment c does no reveal informa-
tion about m.

• Binding: An adversary cannot find a (m′, r′) 6=
(m, r) such that Open(m′, c, r′) succeeds.

TSS protocols often use Pedersen commitments, which
work as follows: Given a cyclic group G of prime order q
and two generators G,H ∈ G, the commitment of an m ∈
Zq picks r ← Zq and sets Commit(m, r) = m ·G+ r ·H .
The opening phase checks if c = m ·G+ r ·H given m.

ElGamal commitments are also found in TSS: A dif-
ference with Pedersen is that committed messages are G
elements rather than Zq elements, and that commitment
computes Commit(M, r) = (r ·G,M + r ·H).

2.4.2. Additively Homomorphic Encryption. An addi-
tively homomorphic encryption scheme consists of three
algorithms KGen,Encpk and Decsk, such that:
• (pk, sk)← KGen() is the public/private key pair.
• M and E are message and ciphertext domains that

might be parametrized by pk.
• Encpk :M→ E is a probabilistic algorithm.
• Decsk : E →M is a deterministic algorithm.
• There exist two group operations ⊕ : E ×E → E and
� : Z× E → E such that

m1 +m2 = Decsk(Encpk(m1)⊕ Encpk(m2))

k ·m = Decsk(k � Encpk(m))

The most common homomorphic encryption in TSS
is Paillier, which works like this:
• KGen:

Generate two large primes p, q of the same bit length
and set N = p · q, and compute λ := (p− 1)(q− 1).
Return sk := λ and pk := N .

• Encpk : ZN → ZN2 :
For a message m ∈ ZN , sample a random r ∈ Z?N .
Return c := (N + 1)

m
rN mod N2.

• Decsk : ZN2 → ZN :
Define the function L(u) := (u− 1)/N over all u ∈
ZN2 such that N |u− 1.
Given a ciphertext c ∈ ZN2 , return m := L(cλ)·λ−1.

For the homomorphic property, we have:

Encpk(c1)⊕ Encpk(c2) = Encpk(c1) · Encpk(c2)
k � Encpk(c) = Encpk(c)

k
.

When Paillier is used to encrypt elements from Zq
with q < N , we will often use zero-knowledge range
proofs to ensure that that the above operations do not cause
an “overflow” of Zq, resulting in a wrong decryption.

The ElGamal scheme is also sometimes used, under
its in-the-exponent version. Such ElGamal encryption is
strictly speaking not a valid encryption scheme, since de-
cryption requires solving the discrete logarithm problem.
It works as follows:

The public parameters are a group G of order q
generated by G ∈ G, and the public key pk is an element
P ∈ G. The secret key is sk := d where P = d · G. En-
cryption is defined as the following probabilistic function
with randomness r ← Zq:

Encpk( · ; r) : Zq → G×G
m 7→ (r ·G, r · P +m ·G) = (U, V )



Given the discrete logarithm of P , we can obtain m · G
by computing V − d · U .

Recovering m then requires to compute a discrete
logarithm, which is only possible when m is small. ElGa-
mal in-the-exponent is often useful in obtaining security
against malicious adversaries (as it is the case in TSS
protocols) by carrying out computations over the cipher-
texts and verify them in zero-knowledge without ever
decrypting.

For the homomorphic property, we have:

Encpk(m1; r1)⊕Encpk(m2; r2) = Encpk(m1+m2; r1+r2)

k � Encpk(m; r) = Encpk(km; kr).

2.4.3. Zero-Knowledge Proofs. TSS protocols use zero-
knowledge proofs to ensure that participants do not deviate
from the prescribed protocol. Zero-knowledge proofs are
usually the most computationally expensive parts, com-
pared to other cryptographic operations.

Proofs used are for example proofs of knowledge of
discrete logarithm, of a modulus factorization, proofs of
consistency of a Paillier ciphertext, and range proofs. For
example, [GG18] uses range proofs in the share conver-
sion step, to ensure that a participant’s input will not
“overflow” the modulus.

3. Secret Sharing Schemes

A (t, n)-secret sharing scheme (SSS) splits a (secret)
value x into n different shares, such that t+1 ≤ n shares
xi are necessary and sufficient to reconstruct x.

Before diving into the details, we establish some
notations: We consider secret values in Zp, and assume
all arithmetic operations perform modular reduction. For
elements x ∈ Zp and associated elliptic curve point
x · G ∈ G, the notations [x] and 〈x〉 indicate that the
underlying values are guarded by a SSS and therefore
unknown to the parties. An elliptic curve point a · G
for which the exponent a is hidden is denoted by the
uppercase character (i.e., A = a ·G).

This section focuses on the two main secret sharing
schemes used in TSS protocols:

Additive SSS, which is trivial: the secret x is just the
sum of all shares, that is, x = x1 + · · · + xn. The TSS
functionality can be easily described when this scheme is
used, and we show how to fully implement ABB+ in this
case. Since all shares are required to reconstruct x, it is
sometimes called full threshold.

We also describe Shamir SSS, which works for any
threshold 0 ≤ t ≤ n − 1. It is used mainly in the
Thresh-KGen phase, and therefore we do not describe a
full ABB+ implementation over Shamir. Indeed, we will
show that it is easy to convert a (t, n) Shamir SSS to an
additive SSS between t parties. The ABB+ implementa-
tion over SSS can then be used without loss of generality.

3.1. Additive Secret Sharing

We describe an implementation of ABB+ over the
additive secret sharing scheme x = x1 + · · · + xn. We
omit RandMul, since we do not use it.

First, observe that additive sharings satisfy linearity,
since the linear combination [z]← a·[x]+b·[y], for a, b ∈
Zp can be computed locally with shares zi = axi + byi.

Figure 2 presents naive implementations of Rand,
Convert and Open Ẇe notice they are quite straightfor-
ward and require little to no collaboration. Unfortunately,
this is not enough to prevent a party from cheating and
manipulating the outcome of Open. The nature of additive
secret sharing would allow an adversary to observe all
other shares before publishing theirs. This can be reme-
died in part by requiring the parties to commit to their
share before hand.

Rand()

xi ← Zq
return [x]

Convert([x])

Xi ← xi ·G
return 〈x〉

Open([x])

Broadcast(xi)

Wait for all xj
x← x1 + · · ·+ xn

return x

Figure 2. Simple implementations of Rand, Convert and Open, for
ABB+ with additive secret sharing.

3.1.1. Multiplication and Share Conversion. The lack
of an efficient and secure protocol for performing multi-
plication of two shared secrets was the main obstacle in
designing efficient threshold ECDSA.

Given two additive sharings [x], [y] and their multipli-
cation [z]← Mul([x], [y]), the value of z should be

z = xy =
( n∑
i=1

xi

)( n∑
j=1

yj

)
=

n∑
i=1

xiyi +

n∑
i,j=1,i6=j

xiyj .

Generating individual shares zi for each party can be
done with a multiplicative-to-additive (MtA) share con-
version protocol. This is executed between two parties
Pi and Pj holding respective secrets xi and yj . It is
initiated by party Pi, and results in each party obtaining
their new secret ai→j and bi→j respectively, such that
xiyj = ai→j + bi→j . The notation i → j indicates that
party Pi is the initiator.

Every pair of parties (Pi,Pj) performs the protocol
twice, swapping the role of initiator in each execution.
Once all exchanges have ended, each party Pi possess
the values (ai→j , bj→i) for all j 6= i. Their share zi can
then be computed as

zi := xiyi +

n∑
j=1,j 6=i

ai→j +

n∑
j=1,j 6=i

bj→i.

When Pi initiates the protocol with Pj with respective
inputs xi, yj , we write this step as MtA(Pi(xi)→ Pj(yj))
which returns the values ai→j and bi→j respectively.
Therefore, given such an MtA protocol, computing Mul
can implemented as in figure 3.

In the following, we present four ways to implement
MtA, as used in various threshold ECDSA constructions.
The first three are based on homomorphic encryption
schemes from §2.4.2, which follow a protocol similar to
figure 4.



Mul([x], [y])

zi ← xiyi

foreach Pj 6= Pi do
ai→j ← MtA(Pi(xi)→ Pj(yj))
bj→i ← MtA(Pj(xj)→ Pi(yi))
zi ← zi + ai→j + bj→i

return [z]

Figure 3. ABB+ multiplication using MtA.

MtA(Pi(xi)→ Pj(yj))
Party: Pi Party: Pj
Input: xi Input: yj

ci ← Encpki(xi)
ci

bi→j ← Zq
c′j ← ci � Encpki(yj)

cj cj ← c′j ⊕ Encpki(−bi→j)

ai→j ← Decski(cj)

Return ai→j Return bi→j

Figure 4. Multiplicative to additive share conversion protocol using
homomorphic encryption.

3.1.2. MtA With Paillier. The main issue when using
the Paillier cryptosystem for MtA is that it operates over
messages in ZN , where N is the RSA modulus.

In general, the parameters will be such that q < N , and
thus the shares xi, yi can be embedded in ZN . When Pi
decrypts cj , they perform a reduction modulo q to obtain
an element of Zq. If all parties behave honestly, then a
modulo q reduction will not occur, and the values are
computed correctly. To make this protocol secure though,
we need to check that all values being encrypted lie in
the the range {0, . . . , q − 1}.

Zero-knowledge range proofs are a solution to this
problem, as statements proving that the value encrypted
lies within a certain interval over the integers. They can
also be extended to prove that an affine transformation
over the ciphertext was correctly performed, and that
the multiplicative coefficient is related to a known secret
exponent.

These proofs are unfortunately quite computationally
intensive, and it is possible that some information would
get leaked if they are not used.

3.1.3. MtA with Class Group (CL). A new linear homo-
morphic encryption scheme was introduced in [CLT18].
This scheme can be implemented over a class group,
which is a group of unknown order. The mechanics of the
MtA protocols depicted above remains the same in regard
to the homomorphic operations. However, range proofs
are no longer needed since the message space of the CL
scheme is the same as the order of the elliptic curve q.
We are still left with a zero-knowledge proof for correct
encryption, which is more complex for class groups than
for Paillier or ElGamal.

3.1.4. MtA with ElGamal. ElGamal encryption “in-the-
exponent” , and more specifically, its elliptic curve equiv-

alent based on the hardness of EC-DDH, can natively
work over the same elliptic curve as of the TSS. The
issue however is with decryption, as explained in §2.4.2,
which is why ElGamal cannot be used alone in a protocol.
It can however accompany almost all private computation
operations, providing a tag-along commitment to the com-
putation being done in parallel to the actual computations.
At each step of the computation, the same operation is
done homomorphically on the ElGamal ciphertexts and
proven correct in zero-knowledge, which for the most part
can be done efficiently using sigma protocols. At the end
of the computation when the output is revealed, ElGamal
can be decrypted as well and tested for correctness against
the known plaintext: i.e., if the output value is a signature
s, and the ElGamal decrypted value is S = s ·G it is easy
the verify that s is the discrete logarithm of S.

In the context of MtA, several protocols uses ElGamal
in such a way to save on expensive proofs. In some cases,
ElGamal ciphertexts are carried on to other parts of the
TSS protocol.

3.1.5. MtA with Oblivious Transfer. In the context of
additive sharing, MtA can be realized with a 1-of-2 obliv-
ious transfer. In this two-party protocol, a sender submits
two messages m0,m1 and the receiver submits a single
bit b. At the end, the receiver learns mb and the sender
learns nothing and thus b is kept private. Gilboa [Gil99]
showed how this primitive can be used for semi-honest
MtA, letting the parties run single OT for each input bit
and performing binary multiplication. Since TSS protocols
offer malicious security there are additional checks and/or
proofs that must be added to the base protocol but they
can be done efficiently.

Secure OT constructions exist under the EC-DDH
assumption. This is the same security assumption we
assume anyway for the security of ECDSA (in the generic
group model). This differentiates OT-based MtA from
other methods discussed as this is the only one that does
not require an additional security assumption behind the
security of ECDSA.

3.2. Shamir Secret Sharing

The Shamir [Sha79] secret sharing scheme supports
any threshold 0 ≤ t ≤ n − 1. Its main idea is that a
polynomial f(X) of degree t over a finite field can be
reconstructed given t+ 1 different points (i, f(i)).

We start by presenting the scheme in the situation
where a dealer D distributes the shares to all parties.
To generate a secret sharing [x], D samples a random
polynomial f [X] = a0 + a1X + · · · + atX

t ∈ Zq[X]
of degree t, such that the constant term a0 is equal to
x. For each i = 1, . . . , n, D computes Pi’s share as
xi ← f(i), and sends it to them. The procedure in Figure 5
encapsulates the protocol, and is run from D’s perspective
and results in each party obtaining their share of [x].

3.2.1. Linearity. We can verify that linearity is satisfied.
If [x], [y] are two secrets generated by polynomials f(X)
and g(X) respectively, then the secret [z] := α ·[x]+β ·[y]
can be viewed as a secret generated by the polynomial
h(X) = αf(X) + βg(X). By definition of Zp, we have
h(i) = αf(i) + βg(i), which implies that z := αx + βy
and the shares of [z] are zi = αxi + βyi.



GenShamir(x)

{ak}, {xi} ← GenPolyt,n(x)

for i = 1, . . . , n do

Send xi to Pi

GenPolyt,n(x)

a0 ← x

for k = 1, . . . , t do

ak ← Zq
f(X) :=

∑n
k=0akX

k

for i = 1, . . . , n do

xi ← f(i)

return {ak}tk=0, {xi}ni=0

Figure 5. Shamir secret sharing generation (with dealer).

3.2.2. Recovering the Secret. Given a Shamir sharing
of [x], it is possible for any set of t + 1 parties S ⊂
{P1, . . . ,Pn} to recover the value x. We denote the share
of Pi ∈ S as xi,S .

Using the Lagrange interpolation formula over the
points {(i, xi,S)}i∈S , we can evaluate f at any point k.

f(k) =
∑
i∈S

`i,S(k)xi,S , where `i,S(k) :=
∏

j∈S:j 6=i

k − j
i− j

We define the function Interpolatet,S({xi,S}; k) which
performs the above computation and returns f(k).

Once the parties in S have exchanged their shares, they
can run Interpolatet,S({xi,S}; 0) to recover x = f(0).

3.2.3. Zero Secret Sharing. Some situations required the
parties to have access to a secret sharing of 0, which can
be generated by a dealer that executes GenShamir(0). We
denote the representation as [0] with accompanying shares
0i, by slight abuse of notation.

Given secret sharings [x] and [0], then the addition
[x′] = [x] + [0] yields a new secret sharing with x′ ≡ x
with different shares x′i = xi+0i. This can be practical as
a trick for blinding calculations, but it can also be used as
a way of refreshing shares. Indeed, whenever the parties
add [0] to a secret [x], then all previous shares become
incompatible with the new ones, but the underlying secret
remains the same. We expand on this in §4.2.

Note that it is also possible to generate an additive
sharing of zero, but which requires significantly more
work than a call to Rand.

3.2.4. Multiplication. An interesting property about the
Shamir SSS is that Mul is very easy to implement when
t < n/2. Indeed, if [x]t, [y]t were generated by poly-
nomials fx, fy, then the parties can compute a share
zi = xi · yi = fx(i) · fy(i) locally. This gives a secret
sharing [z]2t generated by a polynomial g = fx · fy
of degree 2t. Using the same interpolation technique as
mentioned above, a set of 2t+1 shares zi can be used to
reconstruct z = fx(0)fy(0) = xy.

To guarantee the privacy of the input when the parties
broadcast their share xiyi, they can use a zero secret
sharing [0]2t as blinding. They reveal the value xiyi+02i,
which is a share of the secret [z′]2t = [xy]2t+[0]2t, where
z′ = z.

3.2.5. Verifiable Secret Sharing. Whenever a party re-
ceives their share of a Shamir shared secret, there is
no guarantee that this value was honestly generated. To

make sure that this is the case, the dealer can provide
extra information about the coefficients of the chosen
polynomial so that the receiving player can verify that
their share is correct. This technique, known as Feldman
verifiable secret sharing [Fel87], extends Shamir’s scheme
by having the dealer publish the values {Ak := ak ·G}
where the ak are the coefficients of the polynomial. When
a player receives their share xi, they can verify:

xi ·G ≡
t∑

k=0

ik ·Ak =

(
t∑

k=0

aki
k

)
·G = f(i) ·G.

This unfortunately requires the dealer to reveal A0 = x ·
G, but this is not a problem under the assumption that
computing the discrete logarithm is hard in G.

3.2.6. Distributed Secret Generation. All the techniques
mentioned so far can be adapted to a scenario without a
trusted dealer. To do so, the parties will each perform their
own secret generation procedure, acting both as the dealer
and a receiving party (since we will be referring to n
different secret sharing with all their associated variables,
we use a superscript ·(i) to indicate that the variable relates
to the secret generated by party Pi).

Once each party has successfully distributed a sharing[
x(i)] of a secret value x(i) of their choosing (which can

be 0), then the parties can compute the final sharing
[
x
]
←[

x(1)
]
+ · · ·+

[
x(n)

]
, where the share xi of each party Pi

is xi = x
(1)
i + · · ·+x(n)i . If the values x(i) are committed

right after they are sampled, then the parties cannot cheat,
and the distribution of x will be uniform as long as one
party has done so.

Figure 6 presents a full protocol that returns a Shamir
shared secret [x] with verification as in §3.2.5. In this case,
it would constitute a correct implementation of Rand in
ABB+. The protocol is performed by all players that take
the perspective of Pi in the left-hand column. The right-
hand column describes the checks that all other parties
must perform to verify correctness. Moreover, a double-
headed arrow indicates that the value being sent is not
specific to Pj and is sent via broadcast.

This protocol requires at least two rounds, and should
be aborted by any party Pj that fails any one of the checks.
If they all succeed, then the sharing [x] is correct.

We can see that this variant requires a lot more
communication, and forces parties to wait for each other
because of the commitments. Unfortunately, it unclear
how this procedure could be improved while maintaining
the same level of security.

As a side note, two extra values can be computed
from elements sent out via broadcast. The first is X ←∑n

i=1X
(i) = x · G, which can be computed from the

commitments. If the secret generated by this protocol
is a secret key [sk], then the value X corresponds to
the public key pk = sk · G. For the last step of the
protocol, the parties send out a proof of knowledge of their
share xi. Verification of this proof requires that the values
Xi := xi · G be public. Fortunately, it can be computed
using the coefficients {A(i)

k } from the Feldman VSS step
as follows:

Xi ←
n∑
`=1

t∑
k=0

ik ·A(`)
i =

n∑
`=1

x
(`)
i ·G = xi ·G



[x]← RandShamir()

Pi Pj
x(i) ← Zq, X(i) ← x(i) ·G

c(i) ← Commit(X(i), r(i)) c(i)

c(j)

. . . . . . . . . . . . . . . . . . . Wait for all c(j) . . . . . . . . . . . . . . . . . . .

X(i),r(i)

Check: Open(c(j), X(j), r(j))
X(j),r(j)

. . . . . . . . . . . . . . . . Wait for all X(j), c(j) . . . . . . . . . . . . . . . .

{a(i)k }, {x
(i)
j } ← GenPoly(x(i)) x

(i)
j

{A(i)
k } ← {a

(i)
k ·G} {A(i)

k
}

x
(j)
i ·G

?
=

∑t
k=0i

k ·A(j)
k x

(j)
i ,{A(j)

k
}

. . . . . . . . . . . . . . . Wait for all x(j)i , {A(j)
k } . . . . . . . . . . . . . . .

xi ←
∑n
`=1x

(`)
i

πXi ← ZKProve{xi : Xi = xi ·G}
πXi

ZKVerify(πXj ) πXj

Figure 6. Distributed random secret sharing generation.

3.2.7. Converting Secret Sharings. There are different
ways to convert a representation of a secret x to another.

The first possible conversion is from a (t, n) Shamir
SSS [x]t to an (t, t + 1) additive SSS. If we let S be a
set of t + 1 parties, then each Pi ∈ S can multiply their
own share xi,S by the Lagrange interpolating coefficient
for f(0). The same can be done for public shares Xi,s of
〈x〉. Moreover, these computations can all be performed
locally using only a group multiplication.

Second, we can convert an n-additive secret sharing
into a (t, n) Shamir sharing. Given a preexisting additive
sharing [x], the parties can run the distributed key gener-
ation protocol wherein they set x(i) to be their share of
[x] instead of a randomly sampled value.

4. Threshold ECDSA

For completeness, we briefly describe ECDSA:

Sigsk(M)

Sample k ← Zq
R← k ·G = (rx, ry)

r ← rx mod q

s← k−1 (H(M) + r · sk) mod q

return (r, s)

Figure 7. ECDSA signature generation.

The two main challenges when computing an ECDSA
signature in a distributed fashion are (1) the inversion of

k, and (2) the multiplications by k−1 and by sk, which
should leak no information on these operators.

4.1. Key Generation

A successful execution of Thresh-KGen should pro-
duce a secret sharing of the secret key [sk] and reveal the
public key pk = sk ·G.

This procedure is described in Figure 8, using the
ABB+ framework.

Thresh-KGen

[sk]← Rand()

pk← Open(Convert([sk])) = sk ·G
return [sk], pk

Figure 8. Threshold ECDSA key generation.

At this point, it is possible to generate [sk] additively
and run the additive to Shamir conversion at a later stage.
This is often done within a Thresh-Reshare procedure.

Usually though, Thresh-KGen generates a (t, n)
Shamir sharing of [sk], and replaces the call to Rand by
RandShamir from §3.2.6.

4.2. Key Refresh

The Thresh-Reshare protocol can be called at any
point after a secret key [sk] has been setup. Given the
shared secret key [sk], the main purpose of this protocol
is to replace individual shares ski with a new shares sk′i
of a secret sharing [sk′] such that sk ≡ sk′.

If [sk] is an additive sharing, the conversion is done
by running RandShamir where the initial value x(i) is set
to ski. When [sk] is already a Shamir sharing, the parties
simply generate a zero secret sharing which they add to
the existing secret.

While Thresh-Reshare is technically optional, it would
not be prudent to forgo it. Indeed, the main “selling point”
of TSS is that no single party holds the secret key since
the shares are held by n different parties. An adversary
wishing to recover sk would need to compromise t + 1
of these shares. This greatly increases the difficulty in
pulling off such an attack, especially if the shares are
stored in physically distant distinct locations. If these
shares are static however, then a discrete adversary could
simply steal them one-by-one, until they have the required
threshold.

As long as no more than t shares are extracted,
running Thresh-Reshare will render them useless, forcing
the attacker to start over. It is therefore important to run
Thresh-Reshare regularly, or whenever suspicious activity
is detected.

4.3. Signing

The ECDSA signature generation algorithm performs
mostly arithmetic operations over its inputs. By substi-
tuting these operations by their equivalent functions in
ABB+, we obtain a multiparty protocol that accomplishes
the same result, but where the secrets are shared among
the participants.



Thresh-Sigsk(M)

(r, [k−1], [σ])← Thresh-PreSigsk()

[s]← H(M)[k−1] + r[σ]

s← Open([s]) // s = H(M)k−1 + rk−1sk

return (r, s)

Thresh-PreSigsk()

[k]← Rand()

[γ]← Rand()

[δ]← Mul([γ], [k]) // δ = γ · k
[η]← Mul([γ], [sk]) // η = γ · sk
δ ← Open([δ])

R← Open(Convert([k])) // R = (rx, ry)

r ← rx

[σ]← δ−1 · [η] // σ = k−1sk

[k−1]← δ−1 · [γ]
return (r, [k−1], [σ])

Figure 9. Threshold ECDSA signature.

The benefit of this approach is that the protocol be-
comes easier to understand, since most of the communi-
cation steps are abstracted within the ABB+ functionality.
It also stays closer to the original description.

We describe in Figure 9 an implementation of
Thresh-Sig using these ideas, and note the following:

• We assume without loss of generality that an additive
secret sharing scheme is used. If that is not the case
for [sk], then we can apply the conversion described
in §3.2.7.

• The Mul function can be implemented using any of
proposed protocols in §3.1.1.

The main trick involved here, is the use of the random
secret [γ] as blinding factor, which allows us to safely
open [δ] without revealing k. We can then multiply both
[γ] and [η] by the inverse inverse of δ to obtain [k−1] and
[k−1sk].

By simple substitution, it is easy to verify that the out-
put of Thresh-Sig corresponds with a signature produced
by the original Sig algorithm.

In practice though, many extra steps need to be per-
formed to guarantee the overall security of the func-
tionality. Most implementations rely on a combination
of commitments and zero-knowledge proofs to prevent
malicious parties from manipulating the outcome, or gain-
ing information about the secret key. This increases the
complexity and the number of communication rounds
necessary. Taking this into account, some steps that do
not depend on each other can be performed in the same
round, and therefore the chosen order of the operations
may differ from the one presented above.

In §4.4, we explain why it is useful to split up the func-
tion into two different procedures. The main idea though,
is that Thresh-PreSig does not depend on the message
M being signed, and could therefore be performed at an
earlier stage.

4.4. Presigning

In Thresh-Sig, we ordered the different steps in such
a way that the message M is only required as late as
possible in the protocol. This allowed us to split the
protocol into two different phases.

We call Thresh-PreSig the preprocessing or offline
phase, and the tuple (r, [k−1], [σ]) it returns is usually
referred to as a presignature. This terminology stems from
the fact that it does not depend on any particular message
M . Therefore, we can run this procedure in advance and
store the computation for later use.

The online phase starts when a signature is requested.
Rather than performing the signing protocol in full, the
parties skip the call to Thresh-PreSig and instead retrieved
the stored presignature. The actual signing is much more
efficient in this scenario, as it only requires the parties
to reveal their share of [s], which is computed locally.
Moreover this skips the expensive calls to Mul and Rand.
The presignatures must then be properly wiped from
storage to prevent them from being reused.

Computing presignatures in batches is also possible,
and it ensures that signatures can be generated efficiently
most of the time. These must be securely stored, since
they can be used to sign messages without knowing sk.
As a precaution, they should also be deleted whenever
Thresh-Reshare is run.

5. Protocols Evaluation Criteria

This section describes (in arbitrary order) the criteria
that are the most relevant for practical deployments.

5.1. Hardness Assumptions

In principle, the fewer the hardness assumptions the
better. Most ultimately rely on factoring or discrete log-
arithm, or closely related problems, and are relatively
established assumptions: ECDSA TSS schemes inevitably
rely on ECDSA’s security (under the standard EU-CMA
definition), but also sometimes on other assumptions such
as the Strong RSA assumption (sufficient for Paillier’s
IND-CPA security) or (elliptic-curve) decisional Diffie–
Hellman.

Furthermore, the proof tightness with respect to such
assumptions might be worth taking into account in the
security assessment.

5.2. Adversarial Model

A TSS adversary is first a network adversary capable
of modifying, injecting, and dropping messages exchanges
throughout the protocol. An adversary can also control
(the “corruption” notion) participants to the protocol,
which entails having access to their secrets.

In the simplest case, only one party is controlled by
the attacker, to model a malicious participant. The case
of multiple parties controlled by the attacker models a
collusion of participants, or an attacker who compromised
multiple systems participants to the protocol execution.



5.2.1. Corruption Type. The way participants are “cor-
rupted” is modelled with the following notions:
• Static: The adversary must choose which participants

to corrupt before starting the protocol.
• Adaptive: The adversary may wait until after the

protocol has started to choose which participants to
corrupt—and then obtain the entire trace of their
computation, as per the erasure-free model. There
are standard ways to convert a protocol from secure
against static corruption to secure against adaptive
corruption.

5.2.2. Protocol Obedience. An adversary is further char-
acterized by its capabilities:
• Honest-but-curious: They learn information from

corrupted parties, but cannot force them to deviate
from the protocol. This for example models “read-
only” compromises, where an attacker gets a snap-
shot of a system’s memory, both storage and RAM.

• Malicious: Parties may arbitrarily deviate from the
prescribed protocol. This for example models sys-
tems fully compromised (root access) by an external
attacker, or insider attacker (from operators with
admin privileges).

In real TSS deployments, the most relevant adversary type
to consider is probably a static–malicious one.

A specific property of the adversary is that it is usually
assumed to be a rushing one: In any round of the protocol,
this adversary gets to “speak last”, after viewing the honest
parties’ messages. In all protocols we’ll review, a rushing
adversary is considered by the security proofs.

5.2.3. Majority Honesty. Many distributed protocols as-
sume that a certain fraction of the parties behaves honestly.
Oftentimes, this fraction is at least half of the participants,
which is called the honest majority assumption. That is,
out of n participants, at least (n−1)/2 follow the protocol
as described and don’t attempt to attack it.

The honest majority assumption simplifies protocols,
because a party receiving inconsistent values during a
communication round knows that the message appearing
the most is the correct one.

However, in real threshold signing or secret sharing
deployments, an honest majority is often too strong an
assumption, and may go against operational requirements.
In digital asset custody, for example, a common deploy-
ment is with (5, 7) threshold setup, and thus a protocol
safe with a dishonest majority of 4 malicious parties.

Generally speaking, the dishonest majority setting
allows for the adversary to corrupt up to all but one
participants. A protocol secure in this model must thus
be safe with a (n− 1, n)-threshold configuration, that is,
where all participants except one are corrupted, and all n
participants must cooperate to issue a signature.

5.3. Communication Assumptions

For the signing parties to communicate, all the pro-
tocols discussed in this paper assume the existence of
both a broadcast channel and a point-to-point channel
between each pair of parties. It is important that these
channels are authenticated, as an adversary controlling the

communication medium could otherwise impersonate the
participants.

Note however that the pure network adversary is not
discarded in the analysis of these protocols, as it is covered
by the stronger model of corrupted participant.

There are many ways to instantiate an authenticated
communication layer. Without going into much detail, we
do mention a few points:
• A reliable broadcast is not necessary, and can be

replaced by the echo or lossy variant which reduces
the underlying communication complexity.

• Point-to-point secure channels (authenticated and en-
crypted) can be realized either if direct communica-
tion is available, via some static addressing scheme,
or on top of a broadcast channel.

• The secure channel can be established by leveraging
a PKI or (as often found in practice) hardcoded
identities and public keys.

• In a broadcast, each party can send a hash of all
broadcasted messages for others to check, as basic
extra layer of integrity.

5.4. Performance

For TSS protocols, performance is about speed of
execution, and is mostly driven by network latency, and
thus by the communication rounds. Indeed, as in most
MPC protocols, communication in TSS is considered syn-
chronous and thus progresses in rounds. In each round,
each party either sends a private message to some set of
parties or sends a broadcast message to all the other parties
and/or wait to receive a message.

All the TSS protocols we analyze are multi-round
protocols. Under real network conditions, network latency
is the main factor determining speed. This involves pure
transmission latency, as well as intermediate processing
(network software stacks, infrastructure components such
as load balancers, data encoding/decoding, etc.).

The concept of pre-signatures, as described in 4.4 can
provide significant boost to this metric, although with
potential impact on security. We therefore distinguish it
in our analysis from a standard online computation of a
signature.

Secondary factors we account for when evaluating
performance are the amount of data transmitted, and the
amount of computation performed by the participants.

We add that In practice, if TSS is used for a cold
wallet, the performance differences between protocols
have little impact. However, if TSS were to be used in a
“warmer” context, with a higher rate of transactions, and
associated costs (CPU, bandwidth), then small differences
might at scale lead to significant discrepancies.

5.5. Additional Criteria

Besides the security goals of a TSS scheme, protocols
differ in how they fulfill certain properties or provide
certain features. For example:
• Security with abort, or the assurance that an attack

that leads to an interruption of the protocol will not
learn exploitable information.



• Identifiable abort, or the assurance that if the protocol
fails because of a malicious player, the honest parties
will agree on its identity.

• Universal composability (UC) guarantees, which
contributes to greater assurance against (for example)
parallel-session attacks.

• Complexity, in terms of number of components,
messages types, etc. Less complex protocols offer
higher security assurance because they are easier to
implement correctly, require fewer lines of code, are
easier to audit, to test, and to integrate in production
systems.

6. Threshold Signature Protocols

Threshold signature schemes have existed for some
time, and have come in many different flavours. In the
following, we review the following efficient protocols for
ECDSA threshold signing:
• “Lindell”, from [LNR18a]
• “GG18”, from [GG18]
• “DKLS”, from [DKLas19]
• “Damgård”, from [DJN+20]
• “GG20”, from [GG20]
• “CMP”, from [CMP20]
• “CCLST” from [CCL+20b]
• “GKSS” from [GKSS20]

All these protocols were published in the last three years,
with the last five published in 2020.

In the following, we review each of these protocols in
terms of hardness assumptions, adversarial model, build-
ing blocks, performance, and features, commenting on
their unique aspects and properties. The best protocol to
choose depends on the use case and its specific functional
and security requirements. Generally, it’s safer to use an
established, well analyzed protocols, as opposed to more
recent and experimental ones. But in the case of TSS, all
the practically relevant protocols are relatively recent so
this criteria is perhaps not the most differentiating one.

Besides the choice of protocol, an important aspect is
the security of its implementation. Again, it’s usually safer
to use battle-tested, audited software, rather than com-
pletely new implementations. We’ll thus discuss (open-
source) implementations in §7.

6.1. Lindell

• Majority: Dishonest
• Adversary: Static
• Assumptions: DDH, Paillier indistinguishability
• Building blocks:

– ElGamal (in-the-exponent version)
– Paillier (or oblivious transfer)
– Pedersen commitments

• Performance:
– Setup: 5 rounds
– Signing: 8 rounds

Concurrently with [GG18], this protocol was the first
to provide efficient threshold ECDSA, including a dis-
tributed key generation. Compared to earlier (EC)DSA
TSS schemes, this protocol replaces Paillier with the

“in-the-exponent” version of ElGamal encryption as an
additively homomorphic encryption scheme. Using elliptic
curve additive notation, in-the-exponent ElGamal encrypts
a message m ∈ Zq as the pair R ·G, r · pk+m ·G, given
a random r ∈ Zq.

The paper includes detailed operations and bandwidth
values in [LNR18a, Tables 1&2].

6.2. GG18

• Majority: Dishonest
• Adversary: Static
• Assumptions: DDH, strong RSA
• Building blocks:

– Feldman verifiable secret sharing (with a blame
phase)

– MtA
– Non-malleable equivocable commitments
– Paillier encryption (or other additively homomor-

phic encryption)
– Range proofs

• Performance:
– Setup: 4 rounds
– Signing: 9 rounds

Along with [LNR18a], this protocol came as a signif-
icant progress and was the first of a series of efficient
ECDSA threshold schemes. Besides the above points,
another difference with Lindell’s scheme is that it relies
on game-based proofs, whereas Lindell’s scheme is proven
secure as an ideal functionality, with composability guar-
antees.

6.3. DKLS

• Majority: Dishonest
• Adversary: Static
• Assumptions: ECDH
• Building blocks:

– Shamir secret sharing
– Correlated oblivious transfer
– 2-party multiplication (to build t-party inverse

sampling)
• Features:
• Performance:

– Setup: 5 rounds (key generation) + 3 rounds (“aux-
iliary setup”)

– Signing: 6+dlog te rounds (only the last is online)

This protocol extends the same authors’ previous 2-
party protocol [DKLas18] to the general (t, n) case. Its
security is proven in the UC framework under the global
random oracle model [CJS14], thus ensuring security with
concurrent sessions.

Among the protocols presented, this is the only one
with a non-constant number of signing rounds. However,
the protocol can be turned into a constant-round one, with
additional communication overhead.

The only proof of knowledge used is in the distributed
key generation (simple discrete log proof).

Interestingly, the paper reports on a test involving 256
parties [DKLas19, §7], both in LAN and WAN setups.



6.4. Damgård

• Majority: Honest (t ≤ (n− 1)/2)
• Adversary: Static
• Assumptions: None beyond ECDSA security
• Building blocks:

– Feldman verifiable secret sharing
– Shamir multiplication (since 2t+ 1 ≤ n)

• Features:
– Fairness guarantee
– Only one ZKPoK required, and only in variant

with fairness
• Performance:

– Setup: 3 rounds
– Signing: 4 rounds (including 3 offline, +2 with

fairness)

The main difference with the previous two protocols
is the assumption of an honest majority, imposing the
condition t ≤ (n−1)/2. This restriction enables the use of
Shamir-type secret multiplication, and leads to a simpler
and more efficient protocol than dishonest majority proto-
cols. In particular, no zero-knowledge proofs are involved
(unless fairness is guaranteed).

6.5. GG20

• Majority: Dishonest
• Adversary: Static
• Assumptions: Enhanced ECDSA, DDH, strong RSA
• Building blocks:

– Feldman verifiable secret sharing (with a blame
phase)

– MtA
– Non-malleable equivocable commitments
– Paillier encryption (or other additively homomor-

phic encryption)
– Range proofs

• Features: Identifiable aborts (in DKG and signing)
• Performance (identifiable case):

– Setup: 4 rounds
– Signing: 7 rounds (including 1 online)

This paper improves upon GG18 by reducing the num-
ber of required rounds, and introduce a new mechanisms
to deal with misbehaving parties causing an abort of the
protocol. Such deviation from the protocol can be the sign
of a compromised node, controlled by an adversary trying
to abuse the protocol; it can also be, and is arguably more
likely in practice, a system problem (outdated software
version, network issues, hardware failure, etc.).

When the “attributable” version of the protocol is
used, be it the key generation or signing protocol, honest
parties would agree on the identity of the party(ies) that
caused the abort, as detailed in [GG20, §4.3]. Note that
the identifiable abort property is only concerned with
deviations from the protocol, and not with other (non-
cryptographic) failures that could cause the protocol to
abort, but these are usually simpler to detect.

6.6. CMP

• Majority: Dishonest

• Adversary: Adaptive
• Assumptions: Enhanced ECDSA, DDH, strong RSA
• Building blocks:

– MtA with Pailler + range proof
– Paillier as non-malleable equivocable commitment
– Ring Pedersen commitments

• Features:
– UC security proof
– Explicit key refresh mechanism

• Performance:
– Setup : 3 rounds
– Key refresh: 2 rounds (3 without range proofs)
– Signing: 4 rounds (including 3 offline)

Compared to the other protocols, CMP directly sup-
ports adaptive corruptions, and the capability for attackers
to “decorrupt” parties and start corrupting others, between
one epoch to another (where an epoch is a period during
which a given set of shares is used, and a reshare step
initiates a new epoch).

6.7. CCLST

• Majority: Dishonest
• Adversary: Static
• Assumptions: Low order and strong root assumptions

(with respect to class groups of quadratic fields)
• Building blocks:

– Class group-based linearly homomorphic encryp-
tion

– Feldman verifiable secret sharing
– Non-malleable equivocable commitments

• Performance:
– Setup: 5 rounds
– Signing: 8 rounds

This protocol, together with its predecessor for the
two-party setting [CCL+19b], replaces Paillier with in-
stantiations based on class groups of imaginary quadratic
fields. This allows the protocol to replace the expensive
range proofs from [GG18] with proofs of valid cipher-
texts in the new cryptosystem. Two recently introduced
assumptions on class groups are required for the protocol
in this paper to be efficient and save bandwidth: low
order assumption and strong root assumption. We refer the
reader to [Wes19] to learn more about those assumptions
and to [CCL+19b] to learn about the hash proof system
instantiated with class groups.

In terms of performance, we’ll note a detailed com-
munication cost comparison in [CCL+20a, Fig.8], as well
as the following comment [CCL+20a, p.41]: “[benchmark
from the authors] shows that the protocols of [LNR18a],
[GG18] are faster for both key generation and signing for
standard security levels for the encryption scheme (112
and 128 bits of security) while our solution remains of
the same order of magnitude. However for high security
levels, our signing protocol is fastest from a 192-bits
security level.”

6.8. GKSS

• Majority: Dishonest



• Adversary:
• Assumptions: DDH (+ others depending on commit-

ment scheme, MtA used)
• Building blocks:

– ElGamal commitments/“encryption in the expo-
nent”

– Any privacy preserving MtA protocol
• Features:

– Fault attribution in online phase
• Performance:

– Setup : 4 rounds
– Signing: 13 rounds (including 10 offline)

Building upon the Lindell protocol, the protocol lever-
ages the idea of presignatures, along with improved ef-
ficiency in bandwidth and running time. The choice of
ElGamal commitments as a guarantee of correctness also
allows for efficient fault attribution during the online
signing phase, at the cost of more communication rounds.
More assumptions may be required depending on building
blocks chosen.

7. Implementations

This section briefly reviews two major open-source
libraries implementing ECDSA TSS, which, to the best
of our knowledge, are the only open-source software
being used in production and having undergone thorough
security review and performance optimization2.

We therefore did not consider proof-of-concept code,
as well as proprietary code, as for example used by
companies offering solutions based on TSS protocols (for
example, a company offering “MPC wallet as-a-service”
is known to rely on [CMP20]).

These criteria leave us with two libraries to examine:
• multi-party-ecdsa, from the research group

of the mobile wallet company ZenGo, available at
https://github.com/ZenGo-X/multi-party-ecdsa under
GPLv3 license.

• tss-lib, from the cryptocurrency exchange Bi-
nance, available at https://github.com/binance-chain/
tss-lib under MIT license.

7.1. Similarities

• GG18: Both implement [GG18] with flexibility in
choosing the access structure, and with comparable
running times.

• Battle-tested: Both are used in production environ-
ments to enable shared control of digital assets, yet
for a different purpose and with different types of
parties.

• API type: Their API is low-level and requires some
knowledge of the implemented protocol. Although
TSS is interactive, the libraries do not contain a
network layer, and only advise on the proper network
configuration.

• Security audits: Both libraries’ code running [GG18]
was audited by the same company at roughly at the

2. Conflict of interest disclosure: a co-author of this paper is also
co-maintainer of one of the libraries.

same period. The issues identified were addressed
and are detailed in the reports, published in the
repositories of the libraries.

• Security liabilities: Both libraries have relatively
few third-party dependencies, compared to typical
projects in Go and Rust. This reduces the risk from
vulnerabilities in other people’s code.

However, there are substantial differences between the
libraries:

7.2. Software Comparison

• tss-lib is written in native Go while
multi-party-ecdsa is written in Rust,
using GMP for big integer arithmetic. Both are
memory-safe languages that are actively developed.

• tss-lib approach is ad-hoc: all cryptographic
primitives necessary for [GG18] and only these
primitives are implemented as part of the library.
multi-party-ecdsa takes a modular approach:
It consumes more general low level libraries (by the
same vendor), such as a library for elliptic curve
cryptography and a library for Paillier cryptosystem.

• While both libraries provide support for Bitcoin
elliptic curve secp256k1, multi-party-ecdsa
claims to support a large set of curves, including
most popular ones, yet to change a curve requires
to change hard-coded values in the code.

• multi-party-ecdsa is part of an eco-system.
From the code repository there are links to higher
level libraries that provide a relaxed, more friendly
API, support for network and hierarchical determin-
istic keys.

7.3. Functionality Comparison

• In addition to [GG18] the libraries provide support
for other TSS protocols as well, yet not audited with
a public report:
– tss-lib implements a protocol for threshold Ed-

DSA, although it is not clear from which reference
this protocol was taken.

– multi-party-ecdsa on the other hand,
provides a handful of alternative threshold
ECDSA protocols; in particular, the implementa-
tion of [GG20] is relevant to the general threshold
case.

• multi-party-ecdsa provides a demo code, that
includes a network in a coordinator model.

7.4. Security Assurance Comparison

• tss-lib provides API for proactive security: a way
for an old set of parties to rotate the keys to a new
set of parties, invalidating the old set of keys.

• Some security issues were discovered in tss-lib
even after the security audit, notably one recorded as
CVE-2020-12118 (“The keygen protocol implemen-
tation in Binance tss-lib before 1.2.0 allows attackers
to generate crafted h1 and h2 parameters in order
to compromise a signing round or obtain sensitive
information from other parties.”)

https://github.com/ZenGo-X/multi-party-ecdsa
https://github.com/binance-chain/tss-lib
https://github.com/binance-chain/tss-lib


8. Future Research

We list some of the open problems and research di-
rections related to TSS, for ECDSA and in general:
• Non-interactive signatures: While presigning al-

lows parties to run one online round, all such so-
lutions suffer from several shortcomings: (1) They
require a long and recurring offline phase, (2) which
forces parties to store a large amount of sensitive
cryptographic material, and (3) the techniques work
per specific signing scheme, such as ECDSA. An
interesting idea is to establish a framework for offline
parties to participate in threshold signing that would
apply to all signing algorithms. The field of non-
interactive secure computation (NISC) [AMPR14],
[CDI+18] might provide a promising starting point.

• Reliable and scalable implementations: Deploy-
ments of TSS in a performance-critical environment
must optimize the efficiency and address the prob-
lems related to asynchronous communications. Fur-
thermore, performance optimizations such as batch
signing would be of great practical interest.

• Wallet support: Most users of cryptocurrency
manage their account (and thus private keys) via
BIP32/BIP44 hierarchical key derivation, whereby
a multitude of account or multiple asset types are
generated from a single seed stored by the wallet
owner. However, this hierarchical derivation can’t be
fully “thresholdized” using the schemes proposed.
Simpler sequential schemes can be imagined, but the
ideal would be to support hierarchical derivation with
“strengthened” addresses as with BIP32.
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[aK01] Ivan Damgård and Maciej Koprowski. Practical threshold
RSA signatures without a trusted dealer. In EUROCRYPT,
2001. https://iacr.org/archive/eurocrypt2001/20450151.pdf.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben
Riva. Non-interactive secure computation based on cut-
and-choose. In EUROCRYPT, 2014.

[AS20] Jean-Philippe Aumasson and Omer Shlomovits. Attack-
ing threshold wallets. Cryptology ePrint Archive, Report
2020/1052, 2020. https://eprint.iacr.org/2020/1052.

[BDN18] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact
multi-signatures for smaller blockchains. In ASIACRYPT,
2018.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In CRYPTO, 1991.

[BIB89] Judit Bar-Ilan and Donald Beaver. Non-cryptographic fault-
tolerant computing in constant number of rounds of inter-
action. In ACM Symposium on Principles of Distributed
Computing. Association for Computing Machinery, 1989.

[BLS04] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signa-
tures from the Weil pairing. J. Cryptology, 17, 2004.

[CCL+19a] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker. Two-party ECDSA from
hash proof systems and efficient instantiations. Cryptology
ePrint Archive, Report 2019/503, 2019. https://eprint.iacr.
org/2019/503.

[CCL+19b] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker. Two-party ecdsa from
hash proof systems and efficient instantiations. In An-
nual International Cryptology Conference, pages 191–221.
Springer, 2019.

[CCL+20a] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker. Bandwidth-efficient
threshold EC-DSA. Cryptology ePrint Archive, Report
2020/084, 2020. https://eprint.iacr.org/2020/084.

[CCL+20b] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie,
Federico Savasta, and Ida Tucker. Bandwidth-efficient
threshold ec-dsa. In IACR International Conference on
Public-Key Cryptography, pages 266–296. Springer, 2020.

[CDI+18] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel
Kraschewski, Tianren Liu, Rafail Ostrovsky, and Vinod
Vaikuntanathan. Reusable non-interactive secure compu-
tation. Cryptology ePrint Archive, Report 2018/940, 2018.
https://eprint.iacr.org/2018/940.

[CJS14] Ran Canetti, Abhishek Jain, and Alessandra Scafuro. Prac-
tical UC security with a global random oracle. Cryptology
ePrint Archive, Report 2014/908, 2014. https://eprint.iacr.
org/2014/908.

[CLT18] Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker.
Practical fully secure unrestricted inner product functional
encryption modulo p. In International Conference on the
Theory and Application of Cryptology and Information
Security, pages 733–764. Springer, 2018.

[CMP20] Ran Canetti, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA. Cryptology
ePrint Archive, Report 2020/492, 2020. https://eprint.iacr.
org/2020/492.

[Cs19] Daniele Cozzo and Nigel P. smart. Sharing the LUOV:
Threshold post-quantum signatures. Cryptology ePrint
Archive, Report 2019/1060, 2019. https://eprint.iacr.org/
2019/1060.

[Des87] Yvo Desmedt. Society and group oriented cryptography:
A new concept. In CRYPTO, 1987.
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