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Università degli Studi del Molise, Italy

Abstract. A hierarchical key assignment scheme (HKAS) is a method
to assign some private information and encryption keys to a set of classes
in a partially ordered hierarchy, so that the private information of a
higher class together with some public information can be used to derive
the keys of all classes lower down in the hierarchy. Historically, HKAS
have been introduced to enforce multi-level access control, where it can
be safely assumed that the public information is made available in some
authenticated form. Subsequently, HKAS have found application in sev-
eral other contexts where, instead, it would be convenient to certify the
trustworthiness of public information. Such application contexts include
key management for IoT and for emerging distributed data acquisition
systems such as wireless sensor networks. In this paper, motivated by
the need of accommodating this additional security requirement, we first
introduce a new cryptographic primitive: Verifiable Hierarchical Key
Assignment Scheme (VHKAS). A VHKAS is a key assignment scheme
with a verification procedure that allows honest users to verify whether
public information has been maliciously modified so as to induce an hon-
est user to obtain an incorrect key. Then, we design and analyse verifiable
hierarchical key assignment schemes which are provably secure. Our so-
lutions support key update for compromised encryption keys by making
a limited number of changes to public and private information.
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1 Introduction

Users of a computer system could be organized into a hierarchy consisting of a
number of separate classes. These classes, called security classes, are positioned
and ordered within the hierarchy according to the fact that some users have
more access rights than others. For instance, in a hospital, doctors can access
their patients’ medical records, while researchers can only consult anonymous
clinical information for studies.

A hierarchical key assignment (HKAS) scheme is a method to assign an en-
cryption key and some private information to each class in the hierarchy. The
encryption key will be used by each class to protect its data by means of a sym-
metric cryptosystem, whereas, the private information will be used by each class
to compute the keys assigned to all classes lower down in the hierarchy. This
assignment is carried out by a central authority, the Trusted Authority (TA),
which is active only at the distribution phase. Following the seminal work by
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Akl and Taylor [2], many researchers have proposed different HKASs that either
have better performances or allow dynamic updates to the hierarchy (e.g., [3, 5,
9, 13, 11]). Crampton et al. in [14] provided a detailed classification for HKASs,
according to several parameters, including memory requirements for public and
private information and the complexity of handling dynamic updates. In partic-
ular, they identified families of schemes where the public information is used to
store encryption keys1. The use of HKASs belonging to such families is desir-
able to prevent or limit the change of private information and its redistribution
when handling encryption key updates. Indeed, for these schemes, the key up-
date procedure which is essential to replace compromised encryption keys, often
requires changing only the public information. In the remainder of the paper
when referring to HKAS we mean a scheme in such families.

Historically, HKASs have been introduced to enforce multi-level access con-
trol in scenarios where it can be safely assumed that the public information is
made available to everyone via a publicly accessible repository for which only
the TA has write permissions. However, key assignment schemes have recently
been employed in different application context where the public information
may be exposed to changes by malicious users. These application contexts in-
clude key management for IoT and distributed data acquisition systems such as
wireless sensor networks [4, 9, 20] as well as sensitive data outsourcing within a
cloud server [8, 10, 15–17, 19]. For instance, consider sensitive data outsourcing
in cloud; the data owner encrypts the data before outsourcing them at the server
by means of an HKAS and distributes the encryption and derivation keys to the
users according to the access policy. Only the data owner and users who know
the appropriate encryption and derivation keys will be able to decrypt the data.
However, metadata which includes the public information will also be stored at
the server and thus may be modified voluntarily or involuntarily by those who
have access to it, including the cloud service provider which is not necessarily
trusted. Unfortunately, a change in the public information will lead an honest
user to derive a corrupted decryption key. Similarly, in wireless sensor networks,
the cluster head nodes are responsible for forwarding any public information
that has been changed as a result of encryption key updates. If a cluster head
node is corrupted, this information may be maliciously modified before reaching
its destination.

The scenarios outlined above introduce the need for an honest user to verify
the trustworthiness of the public information. In order to accommodate this ad-
ditional security requirement, we first introduce a new cryptographic primitive:
Verifiable Hierarchical Key Assignment Scheme (VHKAS). A VHKAS is a key
assignment scheme with a verification procedure that allows honest users to ver-
ify whether public information has been maliciously modified so as to induce him
to obtain an incorrect key. Then, we design and analyse verifiable hierarchical
key assignment schemes which are provably secure and support key update for
compromised encryption keys.

More in detail, our contributions are as follows:

1 Such families include IKEKAS, DKEKAS, and TKEKAS[14].
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– we first give a formal definition for verifiable hierarchical key assignment
scheme;

– then, in order to capture a notion of security against an adversary who has
the ability to replace or modify the public information, we propose the secu-
rity notion of key-consistency and study the relations among static, adaptive
and strong adversaries;

– subsequently, we design and analyze a VHKAS. Our construction uses as a
building block a message locked encryption scheme and is provably-secure
with respect to key indistinguishability which corresponds to the requirement
that an adversary is not able to learn any information about a key that it
should not have access to. Also, our construction achieves the notion of key-
consistency;

– afterwards, we show how to handle key replacement for compromised en-
cryption keys by making a limited number of changes to public and private
information;

– finally, we instantiate our MLE-based construction with the deterministic
MLE scheme proposed by Abadi et al. [1] and show it to be provably-secure
with respect to key-consistency and key indistinguishability.

The paper is organized as follows: in Section 2 we review the definitions of
HKAS, and MLE as well as their notions of security. In Section 3 we define
VHKAS and introduce the security notion of key-consistency. In Section 4 we
show our MLE-based construction and show it to be provably-secure with respect
to key-consistency and key indistinguishability. Finally, in Section 5 we show
how to handle key replacements and instantiate our MLE-based construction
with the deterministic MLE scheme proposed by Abadi et al.[1] showing it to be
provably-secure with respect to key-consistency and key insistinguishability.

2 Preliminaries

In this section we recall definitions and security notions of hierarchical key-
assignment schemes, and message-locked encryption schemes as well as the no-
tions of collision-resistance and pseudorandomness.

Notation. We use the standard notation to describe probabilistic algorithm and
experiments. If A(·, ·, . . .) is any probabilistic algorithm then a ← A(x, y, . . .)
denotes the experiment of running A on inputs x, y, . . . and letting a be the
outcome, the probability being over the coins of A. Similarly, if X is a set then
x ← X denotes the experiment of selecting an element uniformly from X and
assigning x this value. If w is neither an algorithm nor a set then x ← w is
a simple assignment statement. For two bit-strings x and y we denote by x||y
their concatenation. A function ϵ : N→ R is negligible if for every constant c > 0
there exists an integer nc such that ϵ(n) < n−c for all n ≥ nc.
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2.1 Collision-resistance and pseudorandomness

Definition 1. Collision-resistance. Let H=h : {0, 1}n → {0, 1}m be a family
of functions, mapping elements from a (large) universe to a (small) range, typi-
cally m = n/2. A family H is said to be a collision resistant hash family, if for all
PPT A there exists a negligible function ϵ such that for all security parameters
τ ∈ N, Pr[(x0, x1)← A(1τ , h) : x0 ̸= x1 ∧ h(x0) = h(x1)] ≤ ϵ(τ).

Definition 2. Pseudorandom Functions. Let F :{0, 1}n × {0, 1}n → {0, 1}n

be an efficient keyed function. F is a pseudorandom function (PRF ) if for all
PPT algorithms D, there exists a negligible function ϵ such that Advprf

F
(n) =

|Pr[DF(k,·)(n) = 1]–Pr[Df(·)(n) = 1]| ≤ ϵ(n) where key k ∈R {0, 1}n and
f : {0, 1}n → {0, 1}n is a randomly chosen function.

2.2 Hierarchical Key Assignment Schemes

Consider a set of users divided into a number of disjoint classes, called security
classes. A binary relation ≼ that partially orders the set of classes V is defined in
accordance with authority, position, or power of each class in V . The poset (V,≼)
is called a partially ordered hierarchy. For any two classes u and v, the notation
u ≼ v is used to indicate that the users in v can access u’s data. The partially
ordered hierarchy (V,≼) can be represented by the directed graph G = (V,E),
where each class corresponds to a vertex and there is a path from class v to
class u if and only if u ≼ v. A hierarchical key assignment scheme is a method
to assign an encryption key and some private information to each class in the
hierarchy. The encryption key will be used by each class to protect its data by
means of a symmetric cryptosystem, whereas, the private information will be
used by each class to compute the keys assigned to all classes lower down in
the hierarchy. This assignment is carried out by a central authority, the Trusted
Authority (TA), which is active only at the distribution phase. Formally:

Definition 3 ([18]). Let Γ be a family of graphs corresponding to partially or-
dered hierarchies. A hierarchical key assignment scheme for Γ is a pair (Gen,Der)
of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as input the security parameter 1τ and a graph G = (V,E) in Γ ,
and produces as outputs
– a private information su, for any class u ∈ V ;
– a key ku, for any class u ∈ V ;
– a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen, where s and k
denote the sequences of private information and of keys, respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as input the security parameter 1τ , a graph G = (V,E) in Γ , two classes
u, v in V , the private information su assigned to class u and the public
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information pub, and produces as output the key kv assigned to class v if
v ≼ u, or a special rejection symbol ⊥ otherwise.
We require that for each class u ∈ V , each class v ≼ u, each private infor-
mation su, each key kv, each public information pub which can be computed
by Gen on inputs 1τ and G, it holds that Der(1τ , G, u, v, su, pub) = kv.

Security notions. Atallah et al. [5] first introduced two different security goals
for hierarchical key assignment schemes: security with respect to key indistin-
guishability and security against key recovery. In this paper, we only consider
the stronger notion of key indistinguishability [6, 5].

STATu is a static adversary which wants to attack a class u ∈ V and which is
able to corrupt all users not entitled to compute the key of class u. Algorithm
Corruptu which, on input the private information s generated by the algorithm
Gen, extracts the secret values sv associated to each classe that the adversary is
able to corrupt. In the indistinguishability game, the adversary must distinguish
the key of class u from a random value.

Definition 4. [IND-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der) be a hierar-
chical key assignment scheme for Γ and let STATu be a static adversary which
attacks a class u. Consider the following two experiments:

Experiment ExpIND−1
STATu

(1τ , G) Experiment ExpIND−0
STATu

(1τ , G)
(s, k, pub)← Gen(1τ , G) (s, k, pub)← Gen(1τ , G)
corr ← Corruptu(s) corr ← Corruptu(s)
d← STATu(1

τ , G, pub, corr, ku) ρ← {0, 1}length(ku)

return d d← STATu(1
τ , G, pub, corr, ρ)

return d

The advantage of STATu is defined as AdvIND
STATu(1

τ , G) = |Pr[ExpIND−1
STATu

(1τ , G) =

1]− Pr[ExpIND−0
STATu

(1τ , G) = 1]|. The scheme is secure in the sense of IND-ST if, for
each graph G = (V,E) in Γ and each u ∈ V , the function AdvIND

STATu
(1τ , G) is

negligible, for each adversary STATu with time complexity polynomial in τ2.

2.3 Message-Locked Encryption

An Message-Locked Encryption (MLE) is a symmetric encryption scheme in
which the key is itself derived from the message. Provably-secure MLE schemes
have been first proposed by Bellare et al. in [7].

Definition 5 ([1]). An Message-Locked Encryption is a tuple (PPGen,KD,
Enc,Dec, V alid)3 of algorithms satisfying the following conditions:

2 In [6] it has been proven that security against adaptive adversaries is (polynomially)
equivalent to security against static adversaries.

3 MLE definition also includes an equality algorithm. We omit it since it is not neces-
sary for our goals.
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1. The parameter generation algorithm PPGen on input 1τ returns a public
parameter pp.

2. The key derivation function KD takes as input the message m in the message
space M and pp and produces as output message-derived key km.

3. The encryption algorithm Enc takes as input pp, the key km, and the mes-
sage m in M, and produces as output the ciphertext c.

4. The decryption algorithm Dec takes as input pp the key km and the cipher-
text c and produces as output the message m or ⊥.

5. The validity-test V alid takes as input public parameters pp and a ciphertext
c and outputs 1 if the ciphertext c is a valid ciphertext, and 0 otherwise.

Security notions. In order to capture a notion of security against an adver-
sary that carries out attacks by choosing messages that may depend on the
public parameters, Abadi et al. [1] introduced the notions of polynomial-size
X-source adversaries, real-or-random encryption oracle, and PRV-CDA2 security.
These definitions make use of some parameters that are functions of the security
parameter. Specifically, k = k(τ) denoting min-entropy requirements over mes-
sage sources, and T = T (τ) representing the number of blocks in the message.

Entropy. The min-entropy of a random variable X is defined as H∞(X) =−log
(maxx Pr[X = x]). In other words, H∞(X)= k, if maxxPr[X = x] = 2−k. A
k-source is a random variable X with H∞(X) ≥ k. A (k1, . . . , kT )-source is a
random variable X = (X1, . . . , XT ) where each Xi is a ki -source. A (T, k)-
source is a random variable X = (X1, . . . , XT ) where, for each i = 1, . . . , T , it
holds that Xi is a k-source. Next, we recall the definitions of real-or-random
encryption oracle, polynomial-size X-source adversary, and, for schemes that
rely on random oracles, q-query X-source adversary.

Definition 6 ([1]). Real or Random encryption oracle. The real-or-random
encryption oracle, RoR, takes as input triplets of the form (mode, pp,M), where
mode ∈ {real, rand}, pp denotes public parameters, and M is a polynomial
size circuit representing a joint distribution over T messages. If mode = real
then the oracle samples (m1, . . . ,mT ) ←M, and if mode = rand then the oracle
samples uniform and independent messages (m1, . . . ,mT ) ←M. Next, for each
i = 1, . . . , T , it samples ki ← KD(pp,mi), computes ci ← Enc(pp, ki,mi) and
outputs the ciphertext vector (c1, . . . , cT ).

Definition 7 ([1]). Poly-sampling complexity adversary. Let A be a prob-
abilistic polynomial-time algorithm that is given as input a pair (1τ , pp) and ora-
cle access to (1τ , pp) for some mode ∈ {real, rand}. Then, A is a polynomial-size
(T, k)-source adversary if for each of A’s RoR-queries M it holds that M is an
(T, k)-source that is samplable by a circuit of (an arbitrary) polynomial size in
the security parameter.

Definition 8 ([1]). q-query adversary. Let A be a probabilistic polynomial-
time algorithm that is given as input a pair (1τ , pp) and oracle access to (1τ , pp)
for some mode ∈ {real, rand}. Then, A is a q-query (T, k)-source adversary if
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for each of A’s RoR-queries M it holds that M is a (T, k)-source that is samplable
by a polynomial size circuit that uses at most q queries to the random oracle.

Definition 9 ([1]). PRV-CDA2 security4. An MLE scheme Π = (PPGen,
KD, Enc,Dec,EQ, V alid) is (T, k)-source PRV-CDA2 secure, if for any proba-
bilistic polynomial-time polynomial-size (T, k)-source adversary A, there exists a
negligible function ϵ(τ) such that the advantage of A is defined as

AdvPRV−CDA2
A (1τ ) = |Pr[Expreal

A (1τ ) = 1]− Pr[Exprand
A (1τ ) = 1]| ≤ ϵ(τ)

where for each mode ∈ {real, rand} the experiment Expmode
A (τ) is defined in

the following game:

Experiment ExpPRV−CDA2
A

pp← PPGen(1τ )
return ARoR(mode,pp,·)(1τ , pp)

3 Verifiable Hierarchical Key Assignment Schemes

In this section, we introduce a novel cryptographic primitive that we call Verifi-
able Hierarchical Key Assignment Scheme (VHKAS). A VHKAS is a hierarchical
key assignment scheme equipped with a verification procedure that allows honest
users to check whether the public information has been maliciously changed.

A verifiable hierarchical key assignment scheme for a family Γ of graphs,
corresponding to partially ordered hierarchies, is defined as follows:

Definition 10. A verifiable hierarchical key assignment scheme is a triple (Gen,
Der, V er) of algorithms satisfying the following conditions:

1. The information generation algorithm Gen is probabilistic polynomial-time.
It takes as input 1τ and a graph G = (V,E) in Γ and produces as output:
– a private information su, for any class u ∈ V ;
– a key ku, for any class u ∈ V ;
– a public information pub.

We denote by (s, k, pub) the output of the algorithm Gen on inputs 1τ and
G, where s and k denote the sequences of private information and of keys,
respectively.

2. The key derivation algorithm Der is deterministic polynomial-time. It takes
as input the security parameter 1τ , a graph G = (V,E) in Γ , two classes
u, v in V , the private information su assigned to class u and the public
information pub, and produces as output the key kv assigned to class v ≼ u,
or a special rejection symbol ⊥ otherwise. We require that for each class
u ∈ V , each class v ≼ u, each private information su, each key kv, each
public information pub which can be computed by Gen on inputs 1τ and G,
it holds that

Der(1τ , G, u, v, su, pub) = kv.
4 Notice that PRV-CDA2 notion enables adversaries to query the oracle with message
distributions that depend on the public parameters pp.
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3. The verification algorithm V er is deterministic polynomial-time. It takes as
input the security parameter 1τ , a graph G = (V,E) in Γ , a class u in V ,
the private information su, a public information pub and it outputs 1 if for
each class v ∈ V such that v ≼ u, Der(1τ , G, u, v, su, pub) return a valid key
for the class v, 0 otherwise.

Security Notions. In order to capture a notion of security against an adversary
who has the ability to replace or modify the public information, we introduce
a security requirement: key-consistency. Informally, a scheme is said to be key-
consistent if an adversary is unable to mislead an honest user into deriving
an incorrect key by replacing or partially modifying the public information.
We provide definitions of key-consistency with respect to static and adaptive
adversaries. A static adversary first chooses a class u ∈ V ; then it is allowed to
access the private information assigned to all classes in V , as well as all public
information. On the other hand, an adaptive adversary is first allowed to access
all public information as well as all private information of a number of classes
of its choice; afterwards, it chooses a class u. Both adversaries’ goal is that of
providing a public information pub′ different from pub such that the key of some
class v derived by a user in class u according to pub differs from that derived
according to pub′ while the verification procedure succeeds in both cases. We also
define strong key-consistency (Strong-KC) where an adversary SSTAT, having the
same goal as the previous adversaries, is able to generate the secret information
s, the set of keys k, and two different public value pub and pub′ by itself. Such
an adversary models the fact that even the TA is unable to maliciously modify
the public information.

Finally, we explore the relationships among static, adaptive and strong key
consistent adversaries. Figure 1 summarizes our results.

KC-ST KC-AD

Strong-KC

Th: 2

Th: 1

Fig. 1: Relations among key-consistency definitions.

First, consider the case where a static adversary STATu attacks classes u ∈ V :

Definition 11. [KC-ST] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er) be a
verifiable hierarchical key assignment scheme for Γ and let STATu be a static
adversary. Consider the following experiment:
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Experiment ExpKC−ST
STATu

(1τ , G)
(s, k, pub)← Gen(1τ , G)
pub′ ← STATu(1

τ , G, pub, s)
if (V er(1τ , G, u, su, pub) = 0 ∨ V er(1τ , G, u, su, pub

′) = 0) return 0
for each v ≼ u

if (Der(1τ , G, u, v, su, pub) ̸= Der(1τ , G, u, v, su, pub
′))

return 1
return 0

The advantage of STATu is defined as AdvKC−ST
STATu

(1τ ) = |Pr[ExpKC−ST
STATu

(1τ ) =
1]|. The scheme is said to be secure in the sense of KC-ST if, the function
AdvKC−ST

STATu
(1τ ) is negligible, for each static adversary STATu whose time com-

plexity is polynomial in τ .

Now, we consider the case of adaptive adversaries:

Definition 12. [KC-AD] Let Γ be a family of graphs corresponding to partially
ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er) be
a verifiable hierarchical key assignment scheme for Γ and let ADAPT=(ADAPT1,
ADAPT2) be an adaptive adversary that is given access to the oracle Os(·), during
both stages of the attack, where s is the sequence of secret information. Consider
the following experiment:

Experiment ExpKC−AD
ADAPT (1

τ , G)
(s, k, pub)← Gen(1τ , G)

(u, state)← ADAPT
Os(·)
1 (1τ , G, pub)

pub′ ← ADAPT
Os(·)
2 (1τ , G, pub, u, state)

if (V er(1τ , G, u, su, pub) = 0 ∨ V er(1τ , G, u, su, pub
′) = 0) return 0

for each v ≼ u
if (Der(1τ , G, u, v, su, pub) ̸= Der(1τ , G, u, v, su, pub

′))
return 1

return 0

The advantage of ADAPT is defined as AdvKC−AD
ADAPT (1

τ ) = |Pr[ExpKC−AD
ADAPT (1

τ ) =
1]|. The scheme is said to be secure in the sense of KC-AD if, the function
AdvKC−AD

ADAPT (1
τ ) is negligible, for each adaptive adversary ADAPT whose time com-

plexity is polynomial in τ .

We now prove that a verifiable key assignment scheme is secure in the sense
of KC-ST if and only if it is also secure in the sense of KC-AD.

Theorem 1. [KC-ST⇔KC-AD] Let Γ be a family of graphs corresponding to
partially ordered hierarchies. A verifiable hierarchical key assignment scheme for
Γ is secure in the sense of KC-ST if and only if it is secure in the sense of KC-AD.

Proof. The implication KC-AD⇒ KC-ST is trivial, thus we only prove that KC-ST
⇒ KC-AD. Let (Gen,Der, V er) be a verifiable hierarchical key assignment scheme
for Γ secure in the sense of KC-AD and assume by contradiction the existence
of an adaptive adversary ADAPT = (ADAPT1, ADAPT2) whose advantage AdvKC−AD

ADAPT

on input a given graph G′ = (V ′, E′) in Γ is non negligible. Let u be output by
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ADAPT1 with probability at least
1

|V |
, where the probability is taken over the coin

flips of Gen and ADAPT1. This means that u belongs to the set of the most likely
choices made by ADAPT1. We show how to construct a static adversary STATu,
using ADAPT, such that AdvKC−ST

STATu
on input G′ is non negligible. In particular,

we show that STATu,v’s advantage is polynomially related to ADAPT’s advantage.
The algorithm STATu, on inputs the graph G′, the public information pub output
by the algorithm Gen, the private information s assigned by Gen to all users,
runs the algorithm ADAPT1, on inputs G′, and pub. Notice that STATu is able to
simulate the interaction between ADAPT1 and the oracle Os(·). Indeed, for each
query Os(z), STATu simply retrieves from s the private information sz¸ and gives
it to ADAPT1. Let u′ be the class output by ADAPT1. If u = u′, then STATu outputs
the same output as ADAPT2, on inputs G′, pub, u. On the other hand, if u ̸= u′,
STATu outputs 0. It is easy to see that whether G = G′, it holds that

AdvKC−ST
STATu

(1τ , G) = Pr[u = u′] ·AdvKC−AD
ADAPT (1

τ )

Since u is chosen by ADAPT1 with probability at least
1

|V |
and AdvKC−AD

ADAPT on

input G′ is non negligible, it follows that also AdvKC−ST
STATu

on input G′ is non
negligible. Contradiction.

⊓/
Now, we define the notion of Strong-KC:

Definition 13. [Strong-KC] Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er)
be a verifiable hierarchical key assignment scheme for Γ and let SSTAT be an
adversary. Consider the following experiment:

Experiment Exp
Strong−KC
SSTAT (1τ , G)

(s, k, pub, pub′, u)← SSTAT(1τ , G)
if (V er(1τ , G, u, su, pub) = 0 ∨ V er(1τ , G, u, su, pub

′) = 0) return 0
for each v ≼ u

if (Der(1τ , G, u, v, su, pub) ̸= Der(1τ , G, u, v, su, pub
′))

return 1
return 0

The advantage of SSTAT is defined as AdvStrong−KC
SSTAT (1τ ) = |Pr[ExpStrong−KC

SSTAT (1τ ) =
1]|. The scheme is Strong-KC secure if, the function AdvStrong−KC

SSTAT (1τ ) is negli-
gible, for each adversary SSTAT whose time complexity is polynomial in τ .

Theorem 2. [Strong-KC⇒KC-ST] Let Γ be a family of graphs corresponding
to partially ordered hierarchies. A Strong-KC secure verifiable hierarchical key
assignment scheme for Γ is also secure in the sense of KC-ST.

Proof. The adversary SSTAT, by using the generation algorithm Gen, can con-
struct the private information s as well as the public information pub. The ad-
versary SSTAT can then use STATu as a subroutine to produce pub′. It is easy to
see that if STATu wins its game then SSTAT wins its game too. ⊓/

From Theorems 1 and 2 the following result holds:
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Corollary 1. [Strong-KC⇒KC-AD] Let Γ be a family of graphs corresponding
to partially ordered hierarchies. A Strong-KC secure verifiable hierarchical key
assignment scheme for Γ is also secure in the sense of KC-AD.

4 An MLE-based Construction

In this section, we present a VHKAS which uses as a building block an MLE
scheme. The scheme assumes that the partially ordered hierarchy has been par-
titioned into chains [12]. Thus, in the following we will only consider a family Γ
of graphs corresponding to chains.

Figure 2 shows the MLE-based construction for a chain of t classes u1, . . . , ut.
In order to simplify the exposition, we consider a dummy class ut+1. This will
enable us to consider all public information as values associated to the edges of
a chain. The public information, associated to the edges of the chain, is used to
store the encryption keys in an encrypted form. Indeed, for each i = 1, . . . , t,
kui
← F(πui

, rui
) can be obtained by retrieving πui

and rui
, respectively from

p(ui−1,ui) and p(ui,ui+1). Figure 3 illustrates the public information computed
by the scheme for a chain of length t = 3. The verification procedure allows
to check whether a honest user is able to derive valid keys. Specifically, in the
MLE-based construction a honest user in some class ui will derive valid keys
kuj

= Der(1τ , G, ui, uj , sui
, pub), if for each j = i, . . . , t, the public information

p(uj ,uj+1) stores a value x such that πuj
= KD(pp, x).

4.1 Analysis of the Scheme

In this section we show that the security of the MLE-based construction depends
upon the security properties of the underlying MLE scheme.

Theorem 3. Let Π = (PPGen,KD,Enc,Dec, V alid) be a (T, µ)-source PRV-CDA2
secure MLE scheme where µ = ω(log τ) and let F : {0, 1}τ×{0, 1}τ → {0, 1}τ be
a PRF. The MLE-based verifiable key assignment scheme of Figure 2 is secure
in the sense of IND-ST.

Proof. Let STATu be a static adversary attacking class u. Let V = {u1, . . . , ut}
and (ui, ui+1) ∈ E, for i = 1, . . . , t − 1, and, w.l.o.g., let u = uj for some
1 ≤ j < t. In order to prove the theorem, we need to show that the adversary’s
views in experiments ExpIND−1

STATu
and ExpIND−0

STATu
are indistinguishable. Notice that

the only difference between ExpIND−1
STATu

and ExpIND−0
STATu

is the last input of STATu,
which corresponds to the key ku in the former experiment and to a random value
in the latter. Thus, while in ExpIND−1

STATu
the public information is related to the

last input of STATu, in ExpIND−0
STATu

it is completely independent on such a value.

We construct a sequence of 4 experiments Exp1
u, . . . ,Exp4

u, all defined over
the same probability space, where the first and the last experiments of the se-
quence correspond to ExpIND−1

STATu
and ExpIND−0

STATu
, respectively. In each experiment

we modify the way the view of STATu is computed, while maintaining the view’s
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Let Γ be a family of graphs corresponding to chains. Let G = (V,E) ∈ Γ and let Π
= (PPGen, KD, Enc,Dec, V alid) be an MLE scheme whose key derivation function
KD is collision-resistant and let F : {0, 1}τ × {0, 1}τ → {0, 1}τ be a PRF.

Algorithm Gen(1τ , G)

1. Let u1, . . . , ut be the classes in the chain.
2. Let pp← PPGen(1τ );
3. Let πut+1 ← {0, 1}τ ;
4. For each class ui, for i = t, . . . , 1, let

(a) rui ← {0, 1}τ ;
(b) πui ← KD(pp,πui+1 ||rui);
(c) kui ← F(πui , rui);
(d) sui = (pp, rui ,πui , kui);

5. Let s and k be the sequences of private information su1 , su2 , . . . , sut and keys
ku1 , ku2 , . . . , kut , respectively, computed in the previous steps;

6. For each i = 1, . . . , t, compute the public information

p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui);

7. Let pub be the sequence of public information p(u1,u2), p(u2,u3), . . . , p(ut,ut+1) com-
puted in the previous step;

8. Output(s, k, pub).

Algorithm Der(1τ , G, u, v, su, pub)

1. Let u = ui and v = uj , for some j ≥ i, j = 1. . . . , t.
2. Parse su as (pp, rui ,πui , kui);
3. For any z = i, . . . , j, extract the public value p(uz ,uz+1) from pub

(a) if V alid(pp, p(uz ,uz+1)) = 0, return ⊥;
(b) compute

(πuz+1 ||ruz )← Dec(pp,πuz , p(uz ,uz+1));

4. Output kv ← F(πuj , ruj ).

Algorithm V er(1τ , G, u, su, pub)

1. Let u = ui, for some i = 1, . . . , t.
2. Parse su as (pp, rui ,πui , kui);
3. For each j = i, . . . , t,

(a) extract the public value p(uj ,uj+1) from pub;
(b) if V alid(pp, p(uj ,uj+1)) = 0, return 0;
(c) let αi = πui , compute

(αj+1||βj)← Dec(pp,αj , p(uj ,uj+1));

(d) if KD(pp,αj+1||βj) is different from αj , return 0;
4. return 1.

Fig. 2: The MLE-based Construction.
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u1

u3

u2

u4

p(u3,u4)= Enc(pp,πu3 ,πu4 ||ru3)

p(u1,u2) = Enc(pp,πu1 ,πu2 ||ru1)

p(u2,u3) = Enc(pp,πu2 ,πu3 ||ru2)

Fig. 3: The MLE-based construction for a chain of length t = 3.

distributions indistinguishable among any two consecutive experiments. For any
q ∈ {2, 3}, experiment Expq

u is defined as follows:

Experiment Expq
u(1

τ , G)
(s, k, pubq)← Genq(1τ , G)
corr ← Corruptu(s)
return STATu(1

τ , G, pubq, corr,αu)

The algorithm Genq used in Expq
u(1

τ , G) differs from Gen for the way part
of the public information pubq is computed. Indeed, for any i = 1, . . . , j, the
public values associated to the edge (ui, ui+1) is computed as the encryption
Enc(pp,πi, γui+1 ||rui

) where γui+1 and rui
are random values in {0, 1}τ and

πi ← KD(pp, γui+1 ||rui
). Moreover, Exp2

u(1
τ , G) differs from Exp3

u(1
τ , G) for

the way αuj
is constructed. Specifically, αuj

← F(γuj
, ruj

) in Exp2
u while αuj

←

{0, 1}τ in Exp3
u.

Now we show that, the adversary’s view in Exp1
u is indistinguishable from

the adversary’s view in Exp2
u. Assume by contradiction that there exists a

polynomial-time adversary A which is able to distinguish between the adversary
STATu’s views in experiments Exp1

u and Exp2
u with non-negligible advantage.

We show how to construct a polynomial-time distinguisher D which uses A to
break the security of the (T, µ)-source PRV-CDA2 MLE scheme.

In particular, the distinguisher D constructs the public values associated to
the edges (ui, ui+1), for i = 1, . . . , j, calling the RoR oracle where M implements
the circuit of Figure 4 with π = πuj+1 and T = j. Notice that M is (T, µ)-source.
Indeed, since rui

is chosen at random by M, it is easy to see that the min-entropy
of mi is at least τ , for each i = 1, . . . , T . Distinguisher D is defined in Figure 6.

Notice that if mode = real, then STATu’s view is that of Exp1
u(1

τ , G) while
when mode = rand, STATu’s view is that of Exp2

u(1
τ , G). Therefore, if the algo-

rithm A is able to distinguish between such views with non negligible advantage,
it follows that D is able to break the PRV-CDA2 security of the MLE scheme.
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Let Π = (PPGen,KD,Enc,Dec, V alid) be an MLE scheme.

Algorithm for M

On input the public parameter pp output by PPGen, and a τ -length value π, produces
T messages m1, . . . ,mT as follows:

– choose rT ∈ {0, 1}τ ;
– compute mT ← π||rT ;
– compute π

T
← KD(pp,π||r

T
);

– for i = 1, . . . , T − 1, choose ri ∈ {0, 1}τ ;
– for i = 1, . . . , T − 1, compute πi ← KD(pp,πi+1||ri);
– for i = 1, . . . , T − 1, compute mi ← πi+1||ri.

Fig. 4: Polynomial size circuit M representing a joint distribution over T messages.

Now we show that, the adversary’s view in Exp2
u is indistinguishable from

the adversary’s view in Exp3
u. Assume by contradiction that there exists a

polynomial-time algorithm B which is able to distinguish between the adversary
STATu’s views in experiments Exp2

u and Exp3
u with non-negligible advantage.

We show how to construct a polynomial-time distinguisher D′ which uses B to
distinguish whether its oracle f(·) corresponds to the pseudorandom function
F(k, ·) or to a random function F(·). Notice that if αuj

corresponds to the eval-
uation of the pseudorandom function F(k, ·) on ruj

then STATu’s view is that

of Exp2
u(1

τ , G) while when it is the output of a random value, STATu’s view is
that of Exp3

u(1
τ , G). Therefore, if the algorithm B is able to distinguish between

such views with non negligible advantage, it follows that the distinguisher D′ is
able to break the pseudorandomness of F . Figure 6 defines distinguisher D′.

We finally show that, the adversary’s view in Exp4
u is indistinguishable from

the adversary’s view in Exp3
u. Assume by contradiction that there exists a

polynomial-time algorithm C which is able to distinguish between the adversary
STATu’s views in experiments Exp4

u and Exp3
u with non-negligible advantage.

Notice that such views differ only for the the public values associated to the edges
(ui, ui+1) for i = 1, . . . , j. We show how to construct a polynomial-time distin-
guisher D′′ which uses C to break the PRV-CDA2 security of the MLE scheme.
In particular, the algorithm D′′, on input 1τ , constructs the public values asso-
ciated to the edges (ui, ui+1), for i = 1, . . . , j, calling the RoR oracle where M
implements the circuit of Figure 4 with π = πuj+1 and T = j. Formally, distin-
guisher D′′ is defined in Figure 6. Notice that if mode = real, then STATu’s view
is that of Exp4

u while when mode = rand, STATu’s view is that of Exp3
u.

Thus, if C distinguishes such views with non negligible advantage, it follows
that algorithm D′′ breaks the PRV-CDA2 security of the MLE scheme. ⊓/

The proof of next theorem is along similar lines to that of Theorem 3.
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Algorithm DROR(mode,pp,·)(1τ ) Algorithm D′f(·)(1τ )
πut+1 ← {0, 1}τ πut+1 ← {0, 1}τ

corr ← ∅ for each i = t, . . . , j + 1
for each i = t, . . . , j + 1 rui ← {0, 1}τ

rui ← {0, 1}τ πui ← KD(pp,πui+1 ||rui)
πui ← KD(pp,πui+1 ||rui) kui ← F(πui , rui)
kui ← F(πui , rui) p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui)
p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui) corr ← (πuj+1 , kuj+1 , ruj+1)
corr ← corr ∪ (πui , kui , rui) for each i = j, . . . , 1

Let ci = p(ui,ui+1), for i = 1, . . . , j rui ← {0, 1}τ

(c1, . . . , cj)← RoR(mode, pp, M(πuj+1 , j)) πui ← {0, 1}τ

b← A(1τ , G, pub, corr, kuj ) p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui)
αuj ← f(ruj )
b← B(1τ , G, pub, corr,αuj )

Fig. 5: Distinguishers D and D′.

Algorithm D′′ROR(mode,pp,·)(1τ )
πut+1 ← {0, 1}τ

corr ← ∅
for each i = t, . . . , j + 1
rui ← {0, 1}τ

πui ← KD(pp,πui+1 ||rui)
kui ← F(πui , rui)
p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui)
corr ← corr ∪ (πui , kui , rui)

Let ci = p(ui,ui+1), for i = 1, . . . , j
(c1, . . . , cj)← RoR(mode, pp, M(πuj+1 , j))
ρ← {0, 1}τ

b← C(1τ , G, pub, corr, ρ)

Fig. 6: Distinguisher D′′.
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Theorem 4. Let Π = (PPGen,KD,Enc,Dec, V alid) be a t-query (T, µ)-
source PRV-CDA2 secure MLE scheme where µ = ω(log τ) and let F : {0, 1}τ ×
{0, 1}τ → {0, 1}τ be a PRF. The MLE-based VHKAS of Figure 2 is secure in
the sense of IND-ST, where t is the number of classes in the chain.

Theorem 5. Let Π = (PPGen,KD,Enc,Dec, V alid) be an MLE scheme
whose key derivation function KD is collision-resistant. The MLE-based VHKAS
of Figure 2 is secure in the sense of Strong-KC.

Proof. Let V = {u1, . . . , ut} and (ui, ui+1) ∈ E, for i = 1, . . . , t − 1. We show
by contradiction that if there exists a static adversary SSTAT whose advantage
AdvStrong−KC

SSTAT is non-negligible, then there exists a PPT adversary A such that
Pr[(x0, x1) ← A(1τ ,KD(pp, ·)) : x0 ̸= x1 ∧KD(pp, x0) = KD(pp, x1)] is non-
negligible. The adversary SSTAT first produces two public values pub and pub′

along with the private information. Then, it chooses a class u ∈ V such that
V er(1τ , G, u, su, pub) = V er(1τ , G, u, su, pub′) = 1 while there exists a class
v ≺ u where Der(1τ , G, u, v, su, pub) = kv, Der(1τ , G, u, v, su, pub′) = k′v and
kv ̸= k′v. W.l.o.g., let u = ui and v = uj , for some 1 ≤ i < j ≤ t where j is the
smallest index such that kuj

= F(πuj
, ruj

) is different from k′uj
= F(π′

uj
, r′uj

).
We distinguish the following two cases:

1. πuj
= π′

uj
and ruj

̸= r′uj
;

2. πuj
̸= π′

uj
.

In the following, for each class us we will denote by suz
= (pp, rus

,πus
, kus

)
and su′

z
= (pp, r′us

,π′
us
, k′us

), the private information computed by using the
derivation procedure with respect of respectively pub and pub′. Consider the
first case. In order for the verification procedure to succeed on both pub and
pub′ it must be πuj

= KD(pp,πuj+1 ||ruj
) = KD(pp,π′

uj+1
||r′uj

) where πuj+1

may or may not be equal to π′
uj+1

. Thus, the adversary A wins his game by
exhibiting x0 = πuj+1 ||ruj

and x1 = π′
uj+1

||r′uj
.

Now, consider the second case. In order for the verification procedure to
succeed on both pub and pub′ it must be

πui = KD(pp,πui+1 ||rui)

= KD(pp,KD(pp,πui+2 ||rui+1)||rui)

= KD(pp,KD(. . . (KD(pp,πuj ||ruj−1)||ruj−2) . . .)||rui)

and

πui = KD(pp,π′
ui+1

||r′ui
)

= KD(pp,KD(pp,π′
ui+2

||r′ui+1
)||r′ui

)

= KD(pp,KD(. . . (KD(pp,π′
uj
||r′uj−1

)||r′uj−2
) . . .)||r′ui

).

Since πuj
is different from π′

uj
and πui

= KD(pp,πui+1 ||rui
) = KD(pp,π′

ui+1
||r′ui

)
it holds that KD is not collision resistant, thus if SSTAT wins his game with non-
negligible probability also A succeeds with overwhelming probability. ⊓/
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5 Handling Key Replacement

Cryptographic keys need to be periodically changed. Thus, a key assignment
scheme should feature an efficient procedure for the TA to handle key replace-
ments. Specifically, a VHKAS which handles key replacement is a tuple (Gen,Der,
V er, KReplace), where (Gen,Der, V er) is defined in Definition 10 and algorithm
KReplace satisfies the following conditions:

– The key replacement algorithm KReplace is probabilistic polynomial-time.
It takes as input 1τ and a graph G = (V,E) in Γ , a class u, the secret
information s, the public information pub and produces as output (s, k, pub).

A key replacement procedure may require both public information and private
values to be changed. Ideally, such a procedure will only change public infor-
mation so that private values are not redistributed. In general, it is desirable to
design the key replacement algorithm to modify as few private values as possible.

5.1 MLE-based Construction with Key Replacement

In this section we show how the TA can handle the replacement of a key ku for
a class u in the MLE-based construction of Figure 2. In such a procedure only
the classes higher than u in the chain are affected by the change. In particu-
lar, for those classes the TA needs to re-compute and re-distribute the private
information. Figure 7 shows the key-replacement procedure.

Let (Gen,Der, V er) be the verifiable hierarchical key assignment scheme of Figure 2.
The MLE-based verifiable key assignment scheme with key replacement is the tuple
(Gen,Der, V er,KReplace) where the algorithm KReplace is as follows:

Algorithm KReplace(1τ , G, u, s, pub)

1. Let u1, . . . , ut be the classes in the chain.
2. Let u = uj , for some 1 ≤ j ≤ t;
3. For i = j, . . . , 1, let

(a) choose a new rui ← {0, 1}τ ;
(b) πui ← KD(pp,πui+1 ||rui);
(c) p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui);
(d) kui ← F(πui , rui).

4. Let s, k, and pub be the new sequences of private information, keys and public
values, respectively;

5. Output(s, k, pub).

Fig. 7: MLE-based construction with key replacement.
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We modify Definition 4 as to provide an indistinguishability game for an
adversary which is able to look at the public information, the corrupted values,
and the old keys generated by a polynomial number of key replacements. In
particular, we assume that the adversary STAT

(u,up)
holds the class u it wants

to attack and a sequence of n = poly(τ) classes up, for which the TA performs

the key replacement. We also define vectors s⃗, k⃗, and p⃗ub which respectively
store the secret values, the keys and the public information obtained following
the initial generation algorithm and the subsequent key replacements. Moreover,
algorithm Corruptu on input the vector of private information s⃗, extracts the
secret values (including old values) associated to all classes that the adversary
is able to corrupt. Similarly, algorithm OldKeys on input the vector of private
information s⃗, extracts the old keys of classes in the sequence up.

Definition 14. [IND-ST∗]5 Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er,
KReplace) be a verifiable hierarchical key assignment scheme for Γ and let
STAT

(u,up)
be a static adversary which attacks a class u after the keys of the

classes in the sequence up have been replaced. Consider the following two exper-
iments:

Experiment ExpIND∗−1
STAT

(u,up)
(1τ , G) Experiment ExpIND∗−0

STAT
(u,up)

(1τ , G)

(s, k, pub)← Gen(1τ , G) (s, k, pub)← Gen(1τ , G)
Let up =< v1, . . . , vn > Let up =< v1, . . . , vn >
for each i = 1, . . . , n for each i = 1, . . . , n

(s⃗, k⃗, p⃗ub)← (s, k, pub) (s⃗, k⃗, p⃗ub)← (s, k, pub)
(s, k, pub)← KReplace(1τ , G, vi, s) (s, k, pub)← KReplace(1τ , G, vi, s)
⃗corr ← Corruptu(s⃗) ⃗corr ← Corruptu(s⃗)

o⃗ld← OldKeys(s⃗) o⃗ld← OldKeys(s⃗)

d← STAT
(u,up)

(1τ , G, p⃗ub, ⃗corr, o⃗ld, ku) ρ← {0, 1}length(ku)

return d d← STAT
(u,up)

(1τ , G, ⃗pub, ⃗corr, o⃗ld, ρ)
return d

The advantage of STAT
(u,up)

is defined as AdvIND∗

STAT
(u,up)

(1τ , G) = |Pr[ExpIND∗−1
STAT

(u,up)

(1τ , G) = 1] − Pr[ExpIND∗−0
STAT

(u,up)
(1τ , G) = 1]|. The scheme is secure in the sense

of IND-ST∗ if, for each graph G = (V,E) in Γ and each u ∈ V , the function

AdvIND∗

STAT
(u,up)

is negligible, for each static adversary STAT
(u,up)

whose time com-

plexity is polynomial in τ .

We modify Definition 13 as to provide a strong-kc game for an adversary which
is able to generate by itself vectors of secret information, keys, and pairs of
public values simulating the initial generation algorithm and the subsequent
key replacements. Moreover, the adversary SSTAT∗ generates the sequence of
n = poly(τ) classes up, for which the TA performs the key replacement and
chooses the class u it wants to attack after that the key updates in up have been
performed.

5 A similar definition is considered in [9] where a larger set of updates is allowed.
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Definition 15. [Strong-KC∗] Let Γ be a family of graphs corresponding to par-
tially ordered hierarchies, let G = (V,E) be a graph in Γ , let (Gen,Der, V er,
KReplace) be a verifiable hierarchical key assignment scheme with key replace-
ment for Γ and let SSTAT∗ be an adversary. Consider the following experiment:

Experiment Exp
Strong−KC∗

SSTAT∗ (1τ , G)

(s⃗, k⃗, ⃗pub, ⃗pub
′

, u, up)← SSTAT∗(1τ , G)
if (V er(1τ , G, u, su, pub) = 0 ∨ V er(1τ , G, u, su, pub

′) = 0) return 0
for each v ≼ u

if (Der(1τ , G, u, v, su, pub) ̸= Der(1τ , G, u, v, su, pub
′))

return 1
return 0

The advantage of SSTAT∗ is defined as AdvStrong−KC∗

SSTAT∗ (1τ ) = |Pr[ExpStrong−KC∗

SSTAT∗ (1τ ) =

1]|. The scheme is Strong-KC∗ secure if, the function AdvStrong−KC∗

SSTAT∗ (1τ ) is neg-
ligible, for each adversary SSTAT∗ whose time complexity is polynomial in τ .

Theorem 6. If the MLE scheme Π = (PPGen,KD,Enc,Dec, V alid) is (T, µ)-
source PRV-CDA2 secure where µ = ω(log τ), and F : {0, 1}τ × {0, 1}τ → {0, 1}τ

is a PRF then the MLE-based verifiable key assignment scheme with key replace-
ment is secure in the sense of IND-ST∗.

Theorem 7. If the MLE scheme Π = (PPGen,KD,Enc,Dec, V alid) is t-
query (T, µ)-source PRV-CDA2 secure where µ = ω(log τ) and F : {0, 1}τ ×
{0, 1}τ → {0, 1}τ is a PRF then the MLE-based verifiable key assignment scheme
with key replacement is secure in the sense of IND-ST∗, where t is the number of
classes in the chain.

Theorem 8. Let Π = (PPGen,KD,Enc,Dec, V alid) be an MLE scheme
whose key derivation function KD is collision-resistant. The MLE-based ver-
ifiable key-assignment scheme with key replacement is secure in the sense of
Strong-KC∗.

The proofs of Theorems 6 and 7 are along similar lines to that of Theorem 6
while the proof of Theorem 8 is along similar lines to that of Theorem 5.

A concrete instance of VHKAS with key replacement can be obtained by
instantiating the scheme of Figure 7 with the q-query (T, k)-source PRV-CDA2-

secure deterministic MLE scheme Π(q)
det proposed in [1]. Following we show such

an instance which is secure with respect to IND-ST∗ and in the sense of Strong-KC∗.
We instantiate the scheme of Figure 7 with the deterministic MLE scheme

Π(q)
det proposed in [1].

Π(q)
det uses as a building block a symmetric-key encryption scheme SE =

(K, E ,D) and two hash functions H1 : {0, 1}∗ → {0, 1}τ and H2 : {0, 1}∗ →
{0, 1}ρ with randomness length ρ. If SE is an IND-CPA secure scheme and H1

and H2 are modeled as random oracles, then, for any T = poly(τ) and any

k = ω(logτ), Π(q)
det is q-query (T, k)-source PRV-CDA2-secure.

We first recall the deterministic MLE scheme Π(q)
det proposed in [1], where K

and C are respectively the set of keys and the set of chiphertexts:
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– Parameter-generation algorithm: On input 1τ , the algorithm PPGen
chooses two hash functions H1 : {0, 1}∗ → K and H2 : {0, 1}∗ → {0, 1}ρ. It
outputs the public parameters pp = (H1, H2, q).

– Key-derivation function: The algorithm KD takes as input public pa-
rameters pp, the message m and outputs the message-derived key km =
H1(m||1)⊕H1(m||2)⊕ . . .⊕H1(m||q + 1) ∈ K.

– Encryption algorithm: The algorithm Enc takes as input public param-
eters pp, a message m, and a message-derived key km. It computes wm =
H2(m||1)⊕H2(m||2)⊕ . . .⊕H2(m||q + 1) and outputs Ekm

(m||wm) ∈ C.
– Validity test: The algorithm V alid outputs 1 on any input c ∈ C.
– Decryption algorithm: Dec takes as input public parameters pp, a cipher-

text c, and a message-derived key km and outputs m← Dkm
(c).

The resulting verifiable key assignment scheme with key replacement is shown

in Figure 8. From the PRV-CDA2 security of Π(q)
det and Theorem 7, it holds:

Theorem 9. The MLE-based verifiable key assignment scheme with key replace-
ment of Figure 8 is secure with respect to IND-ST∗.

From Theorem 5 the following result holds:

Theorem 10. The MLE-based verifiable key-assignment scheme with key re-
placement of Figure 8 is secure in the sense of Strong-KC∗.

6 Conclusion

In this paper we have introduced verifiable hierarchical key assignment schemes
and have designed VHKAS using an MLE scheme as a building block. The se-
curity properties of our construction depends on those of the underlying MLE
scheme. Our proposal also manages with the replacement of compromised en-
cryption keys by making a limited number of changes to public and private
information.
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Let Γ be a family of graphs corresponding to chains. Let G = (V,E) ∈ Γ and let

(PPGen,KD,Enc,Dec, V alid) be the Π
(q)
det scheme and let F : {0, 1}τ × {0, 1}τ → {0, 1}τ

be a PRF.

Algorithm Gen(1τ , G)

1. Let u1, . . . , ut be the classes in the chain.
2. Let pp = (H1, H2, q)← PPGen(1τ )
3. Let πut+1 ← {0, 1}τ ;
4. For each class ui, for i = t, . . . , 1, let

(a) rui ← {0, 1}τ ;
(b) πui ← KD(pp,πui+1 ||rui) = H1(πui+1 ||rui ||1)⊕ . . .⊕H1(πui+1 ||rui ||t+ 1)
(c) kui ← F(πui , rui);
(d) sui = (pp, rui ,πui , kui);

5. Let s and k be the sequences of private information su1 , su1 , . . . , sut and keys
ku1 , ku1 , . . . , kut , respectively, computed in the previous step;

6. For each i = 1, . . . , t, compute the public information

p(ui,ui+1) ← Enc(pp,πui ,πui+1 ||rui ||wui+1)

where wui+1 = H2(πui+1 ||rui ||1)⊕ . . .⊕H2(πui+1 ||rui ||t+ 1);

Algorithm Der(1τ , G, u, v, su, pub)

1. Let u = ui and v = uj , for some j ≥ i, j = 1, . . . , t;
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(b) πui ← KD(pp,πui+1 ||rui);
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(d) kui ← F(πui , rui).

4. Let s, k, and pub be the new sequences of private information, keys and public values,
respectively;

5. Output(s, k, pub).

Fig. 8: An instance of the MLE-based Construction.
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