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Abstract

Almost perfect nonlinear (APN) and almost bent (AB) functions are
integral components of modern block ciphers and play a fundamental role
in symmetric cryptography. In this paper, we describe a procedure for
searching for quadratic APN functions with coefficients in F2 over the
finite fields F2n and apply this procedure to classify all such functions
over F2n with n ≤ 9. We discover two new APN functions (which are also
AB) over F29 that are CCZ-inequivalent to any known APN function over
this field. We also verify that there are no quadratic APN functions with
coefficients in F2 over F2n with 6 ≤ n ≤ 8 other than the currently known
ones.

1 Introduction

A vectorial Boolean (n,m)-function is a function between the vector spaces Fn2
and Fm2 over the finite field F2 = {0, 1} for some two positive integer m,n.
Vectorial Boolean functions play a crucial role in the design of modern block
ciphers (where they are referred to as “S-boxes” or “substitution boxes”), in
which they typically represent the only non-linear part of the encryption. For
this reason, the resistance of a block cipher to cryptanalytic attacks directly
depends on the properties of its substitution boxes. Vectorial Boolean (n, n)-
functions are of particular importance in cryptography since one typically wishes
to substitute a sequence of bits for another sequence of the same length. In this
case, the vector space Fn2 is usually identified with the finite field F2n , and
(n, n)-functions are expressed as polynomials over F2n .
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Among the most powerful cryptanalytic attacks known to date are the so-
called “differential cryptanalysis” introduced by Biham and Shamir [1] and “lin-
ear cryptanalysis” introduced by Matsui [24]. Almost perfect nonlinear (APN)
functions were introduced by Nyberg [25] as the class of (n, n)-functions of-
fering optimal resistance to differential cryptanalysis, while almost bent (AB)
functions are the ones that are optimal against linear cryptanalysis [20]. Finding
new examples and constructions of APN and AB functions is very important
not only for the purpose of constructing new block ciphers in cryptography, but
for other areas of computer science and discrete mathematics (such as combina-
torics, sequence design, coding theory, design theory) in which APN functions
correspond to some optimal objects. Furthermore, finding new APN and AB
functions is a difficult task, especially for large dimensions n: indeed, to date
only six infinite monomial APN families and twelve infinite polynomial APN
families have been discovered 1, despite ongoing research on the topic since the
early 90’s. Among these, there are four infinite families of AB monomials and
eight infinite families of AB polynomials.

The case of quadratic APN functions is more tractable than the general one,
which is evinced by the fact that all the infinite polynomial families constructed
so far are quadratic, and only one known sporadic example of a non-quadratic
(up to CCZ-equivalence) APN function (which is defined over F26) is known [22].
Nevertheless, quadratic APN functions are an important ongoing direction of
research: in 2010, Dillon et al. discovered an APN permutation in dimension
n = 6, thereby disproving the conjecture that APN functions over fields of even
dimension could never be bijective [5]. Despite Dillon’s permutation not being
a quadratic APN function per se, it was constructed by traversing the CCZ-
equivalence class of a quadratic function. The question of the existence of other
APN permutations for even n remains open, and investigating new instances of
quadratic APN functions is a promising way to approach it.

A lot of research has been done on the topic of APN functions in recent
years. An infinite construction of APN binomials inequivalent to power func-
tions is given in [12], disproving the long-standing conjecture that all infinite
APN families must be monomials. Further infinite constructions of APN and
AB functions are proposed in [7, 8, 9, 10, 11, 12, 13, 14, 2, 28, 26]. Previously, a
classification of all APN functions over F2n for n up to 5 was given in [3], with
classification for dimensions n higher than 5 remaining incomplete at the time
of writing. In the case of n = 6, classification is complete for the particular
cases of quadratic and cubic functions: in [4], 13 CCZ-inequivalent quadratic
functions over F26 are listed, and it is shown that these encompass all quadratic
CCZ-classes over F26 in [21]; as for the case of cubic APN functions, their clas-
sification is given in [23]. Furthermore, a study of the EA-equivalence classes
corresponding to all known APN functions over F26 is presented in [16, 17].
More background on APN functions and their construction can be found e.g.
in [6] or [18].

1Tables of the known infinite monomial and polynomial families can be found at
https://boolean.h.uib.no/mediawiki/
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Using a matrix construction, a large number of CCZ-inequivalent APN func-
tions were found over F27 and F28 [27], bringing the total number of known APN
functions to 490 and 8180, respectively. To the best of our knowledge, no sys-
tematic search of this kind has been performed over F2n for any dimension
n ≥ 9. The main reason for this is that the complexity of a computer search
(which increases exponentially with the dimension n) becomes too demanding
over dimensions of this magnitude. In this paper, we focus on the particular case
of quadratic APN functions over F2n with n ≤ 9 and with coefficients in F2. We
employ a specialization of the matrix method presented in [27] to conduct our
search, and obtain a complete classification (up to CCZ-equivalence) of these
functions over F29 . In particular, we discover two instances of APN functions
over F29 that are inequivalent to any known APN function over this field. For
dimensions n with 6 ≤ n ≤ 8, this proves that there are no other quadratic
APN functions with coefficients in F2 than the already known ones.

In our classification, we list the shortest possible representatives from each
CCZ-equivalence class that we have found. In dimensions n up to 6, these
shortest representatives are all monomials. In dimensions n ∈ {7, 8}, the longest
representative has 6 terms, while in dimension n = 9, the longest representative
has 9 terms. This raises the question of whether any quadratic APN function
over F2n with coefficients in F2 can be represented by a polynomial with at most
n terms.

Furthermore, although all of the functions that we find over F28 are equiva-
lent to representatives from [22], we find shorter representatives for two of these
functions, viz. x3 + x6 + x72 for x3 + Tr(x9) and x3 + x6 + x144 for x9 + Tr(x3).
Thus, to the best of our knowledge, our classification lists the shortest known
representatives for the CCZ-equivalence classes in question.

2 Preliminaries

Let n be a positive integer. We denote by F2n the finite field with 2n elements,
by F?2n its multiplicative group, and by F2n [x] the univariate polynomial ring
over F2n in indeterminate x. By Fm×k2n we denote the set of m-by-k matrices
with entries in F2n , and if M ∈ Fm×k2n , we denote by M [i, j] the entry in the
i-th row and j-th column of M , for 0 ≤ i ≤ m− 1, 0 ≤ j ≤ k− 1. Note that we
index matrix rows and columns from zero.

We will use the following conventions and notation throughout the paper:

(i) Suppose {α0, α1, . . . , αn−1} is a normal basis of F2n over F2, so that αi+1 =
α2
i for 0 ≤ i ≤ n − 1, and suppose {θ0, θ1, . . . , θn−1} is its dual basis, i.e.

Tr(αiθj) = 0 for i 6= j and Tr(αiθi) = 1 for 0 ≤ i, j ≤ n − 1. Note that
{θ0, θ1, . . . , θn−1} is also a normal basis, so that without loss generality we
can assume θi+1 = θ2i for 0 ≤ i ≤ n− 1.

Let Mα ∈ Fn×n2n and Mθ ∈ Fn×n2n be such that

Mα[i, u] = α2i

u and Mθ[i, u] = θ2
i

u (1)
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for 0 ≤ u, i ≤ n − 1. Then M t
αMθ[u, j] = Tr(αuθj) for 0 ≤ u, j ≤ n − 1,

so that M t
αMθ = In, where In is the identity matrix of order n. Thus

M−1θ = M t
α, where M t

α is the transpose of Mα.

(ii) Let B ∈ Fm2n be the vector B = (η0, η1, · · · ηm−1) where ηi ∈ F2n for
0 ≤ i ≤ m − 1. Then Span(B) = Span(η0, η1, · · · , ηm−1) is the sub-space
spanned by {η0, η1, · · · , ηm−1} over F2. The dimension of this subspace is
denoted by Rank(B) = Rank(η0, η1, · · · , ηm−1), and is referred to as the
rank of B over F2.

If ηi =
∑n−1
j=0 λi,jαj for 0 ≤ j ≤ m− 1, with λi,j ∈ F2 for 0 ≤ i, j ≤ n− 1,

and we define an m-by-n matrix Λ ∈ Fm×n2 by Λ[i, j] = λi,j , then the rank
of B is equal to the rank of Λ.

An (n, n)-function, or vectorial Boolean function, is any mapping F : F2n →
F2n from the field with 2n elements to itself. Any (n, n)-function can be rep-

resented as a polynomial F (x) =
∑2n−2
i=0 aix

i over F2n with ai ∈ F2n ; this rep-
resentation is referred to as the univariate representation of F , and is unique.
The binary weight wt2(i) of a positive integer i is the number of ones in its
binary notation; equivalently, if we write i as a sum of powers of two, so that
i =

∑k
j=0 bj2

j for bj ∈ {0, 1}, then its binary weight is wt2(x) =
∑k
i=0 bj , with

the sum taken over the integers. The largest binary weight of an exponent i in
the univariate representation of an (n, n)-function F with non-zero coefficient
ai is called the algebraic degree of F and is denoted by deg(F ). A function of
algebraic degree 1, resp. 2, resp. 3 is called affine, resp. quadratic, resp. cubic.
An affine F satisfying F (0) = 0 is called linear.

In the following, we concentrate on the case of homogeneous quadratic func-
tions, which can be written as

F (x) =
∑

0≤i<j≤n−1

ai,jx
2i+2j

for ai,j ∈ F2n , i.e. quadratic functions with no linear terms in their univariate
representation.

Definition 1. A mapping F : F2n → F2n is called differentially δ(F )- uni-
form if

δ(F ) = max
a∈F?

2n
,b∈F2n

#∆F (a, b),

where ∆F (a, b) = {x ∈ F2n : F (x + a) + F (x) = b}, and #∆F (a, b) is the
cardinality of ∆F (a, b). If δ(F ) = 2, F is called almost perfect nonlinear
(APN).

Definition 2. Let F and F ′ be two functions from F2n to F2n . We say that F
and F ′ are EA-equivalent (Extended affine equivalent) if we can write F ′ as

F ′(x) = A1(F (A2(x))) +A3(x),
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where A1 and A2 are affine permutations of F2n , and A3 is an affine function
on F2n .

We say that F and F ′ are CCZ-equivalent (Carlet-Charpin-Zinoviev equiv-
alent) [19], if there exists an affine permutation which maps GF onto GF ′ , where
GF = {(x, F (x)) : x ∈ F2n} is the graph of F , and GF ′ is the graph of F ′.

EA-equivalence is a special case of CCZ-equivalence, and the latter, which
also includes taking inverses of permutations as a particular case, is known to
be strictly more general that the combination of both of the aforementioned
transformations. An important property of CCZ-equivalence is that it leaves
the differential uniformity δ(F ) invariant, i.e. if two (n, n)-functions F and
F ′ are CCZ-equivalent, then δ(F ) = δ(F ′). For this reason, APN functions
are typically classified up to CCZ-equivalence, and this makes the classification
process somewhat easier despite the large amount of (n, n)-functions.

Definition 3. Let H ∈ Fm×k2n (m, k ≤ n). We say that H is proper if every
nonzero linear combination over F2 of the m rows of H has rank at least k− 1.

Definition 4. Let H = (hu,v)n×n be an n× n matrix defined on F2n . Then H
is called a QAM (quadratic APN matrix) if:
i) H is symmetric and the elements in its main diagonal are all zeros;
ii) Every nonzero linear combination of the n rows (or, equivalently, columns
due to H being symmetric) of H has rank n− 1.

3 Construction of quadratic APN functions

3.1 Correspondence between quadratic functions with co-
efficients in F2 and a class of matrices

In our work, we search for new quadratic APN functions by constructing in-
stances of a particular class of matrices. As shown in [27], there is a one-to-one
correspondence between quadratic APN functions and QAM’s. The precise
statement is given in Theorem 1 below.

Theorem 1. [27] Let F (x) =
∑

0≤t<i≤n−1 ci,tx
2i+2t ∈ F2n [x] be a homogeneous

quadratic (n, n)-function and let CF ∈ Fn×n2n be defined by CF [i, t] = CF [t, i] =
ci,t, CF [i, i] = 0 for 0 ≤ i < t ≤ n − 1. Let H = M t

αHMα where Mα is as
defined in (1). Then δ(F ) = 2k if and only if any non-zero linear combination
of the n rows of H has rank at least n− k. In particular, F is APN if and only
if H is a QAM.

The following theorem addresses the specific case when all coefficients of the
function (and hence all entries of the matrix) are in F2.

Theorem 2. Let F (x) =
∑

0≤t<i≤n−1
ci,tx

2i+2t be a quadratic homogeneous (n, n)-

function. Define an n × n matrix CF by CF [t, i] = CF [i, t] = ci,t for 0 ≤ t <
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i ≤ n− 1 and CF [i, i] = 0 for 0 ≤ i ≤ n− 1. Finally, take

H = M t
αCFMα.

Then H[u+ 1, v + 1] = H[u, v]2 for 0 ≤ v, u ≤ n− 1 if and only if ci,t ∈ F2 for
0 ≤ t < i ≤ n− 1.

Proof. (⇐) Suppose ci,t ∈ F2 for 0 ≤ t < i ≤ n− 1.
From H = M t

αCFMα we have

H[u, v] =
∑

0≤t<i≤n−1

cit(α
2i

u α
2t

v + α2t

u α
2i

v )(0 ≤ v, u ≤ n− 1).

It is easy to see that H[u + 1, v + 1] = H[u, v]2 for 0 ≤ v, u ≤ n − 1, since
{α0, α1, . . . , αn−1} is a normal basis such that αi+1 = α2

i for 0 ≤ i ≤ n− 1.
(⇒) From H = M t

αCFMα, we have CF = (M t
α)−1HM−1α = MθHM

t
θ, which

means that

ci,t = CF [i, t] =
∑

0≤u,v≤n−1

(θ2
i

u θ
2t

v )H[u, v](0 ≤ v, u ≤ n− 1).

Since θi+1 = θ2i for 0 ≤ i ≤ n−1, if H[u+1, v+1] = H[u, v]2 for 0 ≤ v, u ≤ n−1,
then we have

ci,t =
∑

0≤k≤n−1

Tr(θ2
i

0 θ
2t

0+kH[0, 0 + k]) ∈ F2.

By the above theorem, if we want to construct quadratic APN functions with
coefficients in F2, we only need to construct QAM’s such that H[u+ 1, v+ 1] =
H[u, v]2 for 0 ≤ v, u ≤ n − 1. This greatly simplifies the search procedure and
makes it possible to search for functions in higher dimensions.

3.2 Conditions on QAM’s

Suppose H ∈ Fn×n2n , H[u, u] = 0, H[u, v] = H[v, u] for 0 ≤ u, v ≤ n − 1, and
H[u + 1, v + 1] = H[u, v]2 for 0 ≤ v, u ≤ n − 1. In this section we investigate
conditions under which H is a QAM.

Example 1. To better understand the complexity of the search, we look at the
concrete example of a QAM for dimension n = 6. By Theorem 2, such a matrix
must necessarily take the form

H =



0 a b c b2
4

a2
5

a 0 a2 b2 c2 b2
5

b a2 0 a2
2

b2
2

c2
2

c b2 a2
2

0 a2
3

b2
3

b2
4

c2 b2
2

a2
3

0 a2
4

a2
5

b2
5

c2
2

b2
3

a2
4

0


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for some a, b, c,∈ F26 . Thus, it suffices to go over all triples (a, b, c) ∈ F26 in
order to exhaust all possible QAM’s corresponding to quadratic polynomials over
F2n with coefficients in F2. Note that the condition H[u + 1, v + 1] = H[u, v]2

implies that c = c2
3

, which further reduces the complexity of the search.

Based on the computational results for dimensions n ≤ 9, we can observe
that any quadratic APN function F1 with coefficients in F2 appears to be CCZ-
equivalent to a quadratic APN function F2 with at most n non-zero coefficients
in F2n . It would be interesting to establish whether this is true in general; if so,
it would indicate the existence of a simple polynomial form for functions of this
type, as well as significantly simplify the complexity of searching for them.

This is closely related to the problem of finding a “simplest” possible poly-
nomial representation for a given (n, n)-function F . A simple representation
not only results in a polynomial representation that can be evaluated more effi-
ciently in practice, but facilitates the mathematical analysis of the function in
question and its properties.

Problem 1. Given an (n, n)-function F , find a function G, such that G is
CCZ-equivalent to F and has the least possible number of non-zero coefficients.

The contribution of the following proposition is to reduce the search com-
plexity by discarding QAM’s which a priori correspond to equivalent functions.
Proposition 1 follows from Theorem 3 of [27], which asserts that if H ∈ Fn×n2n is
a symmetric matrix, and H ′ ∈ Fn×n2n is defined by applying a linear permutation
L : F2n → F2n to all elements of H, then the quadratic functions defined by H
and H ′ are EA-equivalent. As the mapping x 7→ x2 is a linear permutation on
account of gcd(2, 2n − 1) = 1, the proposition is an immediate consequence of
this theorem.

Proposition 1. Suppose F1 ∈ F2n [x] is a homogeneous quadratic APN function
with coefficients in F2, and H is its corresponding QAM. Let H ′ be the matrix
defined by H ′[i, j] = H[i, j]2 for 0 ≤ i, j < n. Then H ′ is also a QAM, and its
corresponding function F2 ∈ F2[x] is EA-equivalent to F1.

The results from Theorems 1, 2 and Proposition 1 are combined into an
efficient procedure for searching for quadratic APN functions over F2n with
coefficients in F2n in Algorithm 1.

Tables 1, 2, 3, 4 list representatives from all CCZ-equivalence classes found
by our method. Note that the search is complete, i.e. the CCZ-equivalence
classes containing these representatives cover all possible homogeneous quadratic
APN functions with coefficients in F2 over F2n with 4 ≤ n ≤ 9.

In dimensions n ≤ 6, we only find power functions as expected. In dimension
n = 7, besides three power functions, we find 12 polynomials, among which are
two binomials, six quadrinomials, three pentanomials, and three hexanomials.
In dimension n = 8, we find two power functions and 5 polynomials, which
consist of two trinomials, two pentanomials, and one hexanomial. In dimension
n = 9, we find three power functions, along with 5 polynomials: two of them
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have 7 terms, one has 8 terms, and two have 9 terms. All the representatives
given in the tables are in shortest possible presentation.

In the case of dimension n ≤ 8, all of the representatives that we have dis-
covered are identical or equivalent to switching class representatives from [22].
Despite this, in dimension n = 8, we discover very “short” and previously un-
documented representatives (namely, trinomials) for two of the switching classes
from [22]: x3 + x6 + x72 is CCZ-equivalent to x3 + Tr(x9), and x3 + x6 + x144 is
CCZ-equivalent to x9 + Tr(x3). Both of these trinomials consist of monomials
from the cyclotomic cosets of x3 and x9, and despite their nearly identical struc-
ture, they belong to distinct CCZ-equivalence classes. Note that the x3+Tr(x9)
belongs to the infinite family of APN functions from [13], while the second has
not be generalized into any infinite family so far.

Furthermore, in dimension n = 9, we discover two representatives, viz.

s1(x) = x136 + x132 + x96 + x80 + x36 + x34 + x18 + x17 + x12

and
s2(x) = x288 + x272 + x264 + x160 + x144 + x130 + x48 + x34

which are CCZ-inequivalent to any currently known APN function over F29 .

4 Conclusion

We have described a procedure for searching for quadratic APN functions with
coefficients in F2 over F2n by constructing matrices of a particular type, and have
used this procedure to classify all such functions over the finite fields F2n with
n ≤ 9. We have discovered two previously unknown APN functions over F29 ,
and a representation of two of the switching class representatives over F28 in the
form of trinomials, which is simpler than their currently known representations.
In the case of 6 ≤ n ≤ 8, we have experimentally verified that there are no
quadratic APN functions with coefficients in F2 other than the previously known
ones.
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1 Suppose n = 2m− 1(m > 2);
2 NF = {x : x ∈ F?2n};
3 For any index i, j,

i+ j =

{
1, if i+ j mod n = 0,
i+ j mod n, others.

GetNoneSquare(n): Return a set without a = b2
k

for any a, b ∈ NF
and 1 ≤ k ≤ n− 1. Exclude some equivalent situation based on
Proposition 1.

Input: A zero matrix H ∈ Fn×n2n ; An index j(2 ≤ j ≤ m).
Output: Quadratic APN polynomials in F2[x];

4 procedure TranFirRow(j,H); W = GetElemC(j,H);
5 if j = m then
6 for each w ∈W do
7 H[1, j] = w; H[j, 1] = w;
8 for each t ∈ [1..n− 1] do
9 H[1 + t, j + t] = H[t, j + t− 1]2;

10 H[j + t, t+ 1] = H[1 + t, j + t];

11 end
12 if H is QAM then
13 Output the corresponding function of H;
14 end

15 end

16 else
17 for each w ∈W do
18 H[1, j] = w; H[j, 1] = w;
19 for each t ∈ [1..n− 1] do
20 H[1 + t, j + t] = H[t, j + t− 1]2;
21 H[j + t, t+ 1] = H[1 + t, j + t];

22 end
23 TranFirRow(j + 1, H);

24 end

25 end
26 end procedure
27 function GetElemC(j,H);
28 resu = NF ;
29 if j = 2 then
30 resu=GetNoneSquare(n);
31 else
32 S=Span({H[1, i], H[1, n+ 2− i] : i ∈ [2..j − 1]});
33 if #S < 22j−4 then
34 return { };
35 end
36 resu=resu diff S;
37 for each r ∈ resu do
38 H[1, j] = r;
39 A=Submatrix(H, 1, 1, j − 1, j);
40 if A is not proper then
41 resu=resu diff {r};
42 end

43 end

44 end
45 return resu;
46 end function

Algorithm 1: Output quadratic APN polynomials with 0,1 coefficients.
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Table 1: n=4,5,6
n Functions
4 x3

5 x3, x5

6 x3

Table 2: n=7
x3

x9

x5

x3 + x9 + x18 + x66

x5 + x18 + x34

x3 + x6 + x20

x3 + x17 + x20 + x34 + x66

x3 + x17 + x33 + x34

x3 + x5 + x10 + x33 + x34

x3 + x9 + x18 + x66

x3 + x12 + x17 + x33

x3 + x20 + x34 + x66

x3 + x12 + x40 + x72

x3 + x6 + x34 + x40 + x72

x3 + x5 + x6 + x12 + x33 + x34

Table 3: n=8
x3

x9

x3 + x6 + x72

x3 + x6 + x144

x3 + x6 + x68 + x80 + x132 + x160

x3 + x5 + x18 + x40 + x66

x3 + x12 + x40 + x66 + x130

Table 4: n=9
x3

x5

x17

x136 + x132 + x96 + x80 + x36 + x34 + x18 + x17 + x12

x257 + x144 + x130 + x72 + x65 + x18 + x9

x144 + x130 + x72 + x65 + x18 + x9 + x3

x264 + x160 + x144 + x132 + x80 + x72 + x66 + x40 + x17

x288 + x272 + x264 + x160 + x144 + x130 + x48 + x34

10



References

[1] Biham E., Shamir A.: Differential cryptanalysis of DES-like cryptosystems.,
Journal of Cryptology, vol. 4, no. 1, pp. 3-72, 1991.

[2] Bracken C, Byrne E, Markin N, McGuire G.: A few more quadratic APN
functions, Cryptogr. Commun., vol. 3, no. 3, pp. 43-53, 2011.

[3] Brinkmann M., Leander G.: On the classification of APN functions up to
dimension five, Designs, Codes and Cryptography,vol. 49, no.1-3, pp. 273 -
288, 2008.

[4] Browning K., Dillon J F., McQuistan M.: APN polynomials and related
codes, Special volume of Journal of Combinatorics, Information and System
Sciences, honoring the 75-th birthday of Prof. D.K.Ray-Chaudhuri, vol. 34,
no. 1-4, pp. 135-159, 2009.

[5] Browning K, Dillon J. F., McQuistan M., Wolfe A. J.: An APN permutation
in dimension six, Contemporary Mathematics, vol. 58, pp. 33-42, 2010.

[6] Budaghyan L.: Construction and Analysis of Cryptographic Functions.
Springer Verlag, 2014.

[7] Budaghyan L., Carlet C., Pott A.: New classes of almost bent and almost
perfect nonlinear polynomials, IEEE Trans. Inf. Theory, vol. 52, no. 3, pp.
1141-1152, 2006.

[8] Budaghyan L., Carlet C.: Classes of quadratic APN trinomials and hex-
anomials and related structures, IEEE Trans. Inf. Theory, vol. 54, no. 5, pp.
2354-2357, 2008.

[9] Budaghyan L., Calderini C., Carlet C., Coulter R., Villa I.: Constructing
APN functions through isotopic shifts, https://eprint.iacr.org/2018/769.

[10] Budaghyan L., Carlet C., Felke P., Leander G.: An infinite class of
quadratic APN functions which are not equivalent to power mappings, IEEE
International Symposium on Information Theory, pp. 2637-2641, 2006.

[11] Budaghyan L., Helleseth T., Kaleyski N.: A new family of APN quadrino-
mials, Cryptology ePrint Archive, Report 2019/994, 2019.

[12] Budaghyan L., Carlet C., Leander G.: Two classes of quadratic APN bi-
nomials inequivalent to power functions, IEEE Transactions on Information
Theory, vol. 54, no. 9, pp. 4218-4229, 2008.

[13] Budaghyan L., Carlet C., G. Leander, Constructing new APN functions
from known ones, Finite Fields and Their Appl., vol. 15, no. 2, pp. 150-159,
2009.

[14] Budaghyan L., Carlet C., Leander G.: On a construction of quadratic APN
functions, 2009 IEEE Information Theory Workshop, 2009.

11



[15] Budaghyan L, Helleseth T, Li N, Sun B. Some results on the known classes
of quadratic APN functions. InInternational Conference on Codes, Cryptol-
ogy, and Information Security 2017 Apr 10 (pp. 3-16). Springer, Cham.

[16] Budaghyan L., Calderini M., Villa I.: On equivalence between known fam-
ilies of quadratic APN functions, https://eprint.iacr.org/2019/793.

[17] Calderini M. On the EA-classes of known APN functions in small dimen-
sions, https://eprint.iacr.org/2019/369.

[18] Carlet C.: Vectorial Boolean functions for cryptography. Boolean models
and methods in mathematics, computer science, and engineering, Encyclo-
pedia of Mathematics and its Applications, vol. 134, pp. 398-469, 2010.

[19] Carlet C., Charpin P., Zinoviev V.: Codes, bent functions and permuta-
tions suitable for DES-like cryptosystems, Designs, Codes and Cryptogra-
phy, 15(2):125-156, 1998.

[20] Chabaud F, Vaudenay S. Links between differential and linear cryptanal-
ysis. InWorkshop on the Theory and Application of of Cryptographic Tech-
niques 1994 May 9 (pp. 356-365). Springer, Berlin, Heidelberg.

[21] Edel Y.: Quadratic APN functions as subspaces of alternating bilinear
forms. Proceedings of the Contact Forum Coding Theory and Cryptography
III, Belgium 2011 (Vol. 2009, pp. 11-24).

[22] Yves Edel, Alexander Pott. A new almost perfect nonlinear function which
is not quadratic. Advances in Mathematics of Communications, 2009, 3 (1)
: 59-81

[23] Langevin P.: Classification of APN cubics in dimension 6 over GF(2).
http://langevin.univ-tln.fr/project/apn-6/apn-6.html.

[24] Matsui, M.: Linear cryptanalysis method for DES cipher. Workshop on
the Theory and Application of Cryptographic Techniques, Springer, Berlin,
Heidelberg, 1993.

[25] Nyberg, K.: Differentially uniform mappings for cryptography. Workshop
on the Theory and Application of of Cryptographic Techniques, Springer,
Berlin, Heidelberg, 1993.

[26] Taniguchi H.: On some quadratic APN functions, Designs, Codes and
Cryptography, vol. 87, no. 9, pp 1973–1983, 2019.

[27] Yu Y., Wang M., Li Y.: A matrix approach for constructing quadratic
APN functions.Designs, Codes and Cryptography, vol. 73, no. 2, pp. 587-
600, 2014.

[28] Zhou Y., Pott A.: A new family of semifields with 2 parameters. Advances
in Mathematics, vol. 234, pp. 43-60, 2013.

12


