
Efficient Utilization of DSPs and BRAMs
Revisited: New AES-GCM Recipes on FPGAs

(Full Version)

Elif Bilge Kavun
The University of Sheffield, Sheffield, UK

e.kavun@sheffield.ac.uk

Nele Mentens
imec-COSIC and ES&S, ESAT, KU Leuven, Leuven, Belgium

nele.mentens@kuleuven.be

Jo Vliegen
imec-COSIC and ES&S, ESAT, KU Leuven, Leuven, Belgium

jo.vliegen@kuleuven.be

Tolga Yalçın
Northern Arizona University, Flagstaff, AZ, US

tolga.yalcin@nau.edu

Abstract—In 2008, Drimer et al. proposed different AES
implementations on a Xilinx Virtex-5 FPGA, making efficient
use of the DSP slices and BRAM tiles available on the device.
Inspired by their work, in this paper, we evaluate the feasibility
of extending AES with the popular GCM mode of operation, still
concentrating on the optimal use of DSP slices and BRAM tiles.
We make use of a Xilinx Zynq UltraScale+ MPSoC FPGA with
improved DSP features.

For the AES part, we implement Drimer’s round-based and
unrolled pipelined architectures differently, still using DSPs and
BRAMs efficiently based on the AES Tbox approach. On top of
AES, we append the GCM mode of operation, where we use DSP
slices to support the GCM finite field multiplication. This allows
us to implement AES-GCM with a small amount of FFs and
LUTs. We propose two implementations: a relatively compact
round-based design and a faster unrolled design.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are not what
they were when first introduced in the mid 1980s. The
main components of the first FPGAs were gates that could
be reconfigured to different logical functions. Today, almost
40 years later, industrial vendors make very heterogeneous
devices that contain dedicated cores on the silicon die, next
to the traditional reconfigurable gates. These dedicated cores,
hard cores, include memory cores, cores for Digital Signal
Processing (DSP), Analog-to-Digital Converters, and commu-
nication cores. Earlier this decade, both major vendors, Xilinx
and Intel, launched FPGAs that combine the reconfigurable
hardware with industry-standard processors. Knocking on the
door, are cores that facilitate Artificial Intelligence optimized
calculations.

Although such a versatile array of different cores makes that
for every application there is a fit, it also means that some
dedicated cores are unused, while others are intensively used.
In order to optimize the occupation of the dedicated cores, it
is a challenge for the hardware designer to use the dedicated
cores for applications that they were not originally intended
for.

This paper is inspired by the work of Drimer et al. [1],
in which the authors implemented the Advanced Encryption

Standard (AES) [2] on a Xilinx Virtex-5 device, mostly using
DSP slices and Block RAM (BRAM) cores. Since symmetric
ciphers are almost always used in combination with a mode of
operation, we extend the work of Drimer et al. by implement-
ing both AES and the Galois/Counter Mode (GCM) [3], still
concentrating on maximizing the use of DSP slices and BRAM
cores. Our implementation is targeted to a recent 16 nm Xilinx
Virtex UltraScale family member.

The main contributions of this work are:
1) The implementation of round-based and unrolled

pipelined AES architectures using BRAMs and DSP
slices in an optimal way while minimizing the use of
flip-flops (FFs) and look-up tables (LUTs) (improving
Drimer et al.’s work [1]),

2) The addition of the GCM mode of operation to the
AES core by implementing the binary multiplier on the
DSP slices of the Xilinx Virtex UltraScale FPGA [4]
efficiently, supporting both round-based and unrolled
AES architectures.

The remainder of the paper is organized as follows: Sec-
tion II summarizes related work. The implemented algorithms
are discussed in Section III. Section IV describes the imple-
mentations in more detail and Section V discusses our results.
Finally, Section VI concludes the paper.

II. RELATED WORK

Drimer et al., in [1], present a new recipe for implementing
AES on an FPGA. Their work is tailored for applications in
which the regular reconfigurable gates are scarce, yet not all
BRAM and DSP blocks are used. They focus on a Xilinx
Virtex-5 FPGA of which they use the dual-port BRAMs and
the DSP slices. Their implementation uses the T-table ap-
proach, which is an optimization technique for AES, especially
useful on 32-bit platforms, introduced by the designers of
AES [5]. Drimer et al. are able to implement AES on a Xilinx
Virtex-5 using 8 36K dual-port BRAMs and 16 DSPs for
the round-based AES implementation and 80 36K dual-port
BRAMs and 160 DSPs for the unrolled pipelined version (a
number of LUTs and FFs used as well).

Other work on the implementation of cryptographic algo-
rithms on FPGAs using DSP slices and BRAMs, includes the
design of architectures for Elliptic Curve Cryptography [6],
lattice-based schemes [7] and hash functions [8].

III. ALGORITHMS

A. AES

The Rijndael block cipher was selected by the National
Institute for Standard and Technology (NIST) to be the new
encryption algorithm standard after an open competition that
ended in 2000 [2].

AES has a block length of 128 bits and a variable key
length. For encryption, the plaintext is processed in 10, 12 or
14 rounds for key lengths of 128, 192 or 256 bits, respectively.
Each round consists of four operations:
• SubBytes – where 16 bytes of the 128-bit input are

updated according to a 8-bit look-up table,
• ShiftRows – where the rows of the AES state are cycli-

cally shifted by certain offsets,
• MixColumns – where the four bytes of each column of

the AES state are combined using an invertible linear
transformation, and

• AddRoundKey – where the round key is XOR-ed to the
AES state.

In the last round, the MixColumns operation is omitted, and
before the first round, the encryption starts with an additional
AddRoundKey operation.

The AES SubBytes step can be realized as a finite field
multiplication or as look-up table(s). In the look-up table
setting, it is also possible to append the MixColumns step
(even together with ShiftRows) to the look-up table and re-
define the table as 8-bit input, 32-bit output instead of the
original 8-bit input, 8-bit output table. The Sbox output is
normally defined as y → S(x), but the T-table is defined as
y → (2S(x), S(x), S(x), 3S(x)) (or as its shifted versions
due to ShiftRows) as a result of the multiplication with the
MixColumns coefficients.

In our AES core implementations, we are following the T-
table approach.

B. GCM

GCM is a recommended mode of operation for symmetric-
key block ciphers [3], capable of achieving authenticated
encryption with associated data. This is done by using the
block cipher in counter mode (CTR) and the GHASH function,
as shown in Fig. 1.

The ciphertext is generated as the bitwise XOR of the
plaintext and the output of a block cipher, which has a counter
value at its input, initialized by an initialization vector (IV).
The authentication tag in GCM is obtained from the keyed
hash function GHASH, as standardized in [3] and shown in
Fig. 2.

The modular multiplier in GHASH performs the operation
(X ⊕ I) ∗H , where X feeds back the result of the modular
multiplication.

COUNTER

"0...0"
BLOCK	CIPHER

plaintext
associated	data

length
	ciphertext

IV
tagGHASH

Fig. 1. Top-level architecture of the Galois/Counter Mode of operation, where
oplus denotes an XOR and a rectangle with a cross inside denotes a register

MULTIPLIERH

I

X

GHash()

Fig. 2. Functional representation of the operation in GHASH

The input I is generated by segmenting the concatenation
of

1) the (possibly padded) associated data,
2) the (possibly padded) ciphertext, and
3) the lengths of both the associated data and the ciphertext.
The input H is equal to the ciphertext that comes out of

the block cipher when the plaintext consists of all zeros. This
means that H stays constant as long as the key does not
change.

It is pointed out that the multiplication is done in the binary
extension field GF(2128) with x128 + x7 + x2 + x+ 1 as the
irreducible polynomial.

Finally, the tag is generated by XOR-ing the output of the
GHASH function with the ciphertext that comes out of the
block cipher when the plaintext is equal to the IV.

This work elaborates on
1) the BLOCK CIPHER (AES) in Fig. 1, and
2) the MULTIPLIER in Fig. 2.
Both components are integrated into a 128-bit AES-GCM

implementation.

IV. IMPLEMENTATION

The FPGA implementation consists of a 128-bit AES core
and a GF(2128) multiplier in combination with control logic,
multiplexers and registers. The overall AES-GCM architecture
is depicted in Fig. 3. In the following paragraphs, we explain
the implementation details of the AES core and the GF(2128)
multiplier.

The BLOCK CIPHER in the architecture image contains
the AES implementations, described in Sect. IV-A while the
MULTIPLIER is discussed in Sect. IV-B. Furthermore, there
are three 128-bit registers (represented by rectangles with
crosses inside), a COUNTER, two multiplexers, and control
logic in the form of a Finite State Machine (FSM). These

BRAM
(as	FIFO)

AD

BRAM
(as	FIFO)

AE

Len
IV COUNTER BLOCK

CIPHER

ciphertext

tag

MULTI
PLIER

KEY

FSM

Fig. 3. The overall AES-GCM architecture

components, that form the core of the implementation, are
evaluated in this paper and are surrounded by a rectangle in
Fig. 3. The Associated Data (AD) and the data for Authen-
ticated Encryption (AE) are applied to the AES-GCM core
through FIFOs implemented in BRAM. The other inputs to
the core are applied directly.

A. AES

Our AES core implementation follows a very similar ap-
proach to Drimer et al.’s work: using T-tables in order to come
up with a RAM-based implementation. This way, it is possible
to use the existing BRAM resources on an FPGA efficiently
while minimizing LUT and FF utilization. Furthermore, as
in the case of Drimer et al., DSP slices are also used to
realize certain AES steps which again results in less LUT
utilization. Even though our work is inspired by Drimer et al.,
our implementation differs from theirs in many ways.

1) Differences to previous work: In Drimer et al.’s work,
the AES core takes 32-bit data as input and the key scheduling
is not covered in the design. They use 36K (18K+18K) dual-
port BRAMs to store T-tables (8 36K BRAMs used in a round-
based architecture and 80 36K BRAMs used in an unrolled
pipelined architecture). For regular rounds, they define 4
different types of T-tables (T0, T1, T2, T3 - each 8K) using
different MC multiplication coefficients (shifted versions of
2, 3, 1, 1). Out of these, they place only T0 and T2 in the
BRAMs and shift their outputs later in DSP slices to get the
T1 and T3 values. For the last round, they define T0′, T1′,
T2′, and T3′ T-tables which are basically the regular Sboxes
for skipping the MixColumns step, and these are placed in the
second half of each BRAM (18K out of 36K). As a result, the
organization of each of the 36K dual-port BRAMs looks like:

T0 T2
and

T0′ T2′

In our case, the AES core takes 128-bit data and key as
inputs. We define two types of T-tables for data substitution,
T and T ′ (8K each), where T and T ′ correspond to the

concatenation of 2S, S, S, 3S and S, 0, 0, 0, respectively.
Note that S is the original Sbox content, whereas kS is the
contents of Sbox multiplied by k over the finite field. The
organization of each 18K dual-port BRAMs then looks like:

2S S S 3S

S 0 0 0

We furthermore utilize BRAM and DSP blocks in order to
realize key scheduling in our design. Unlike Drimer et al, we
do not need decryption (thanks to GCM mode), which enables
us to implement the last round without using any additional
logic.

2) Round-based AES core: The block diagram of the AES
core can be seen in Fig. 4.

Fig. 4. Block diagram of the AES core

In our implementation, we exchange the order of SubBytes
and ShiftRows operations, which has no effect on the overall
functionality. We start by splitting the 128-bit state into 8-
bit (1-byte) chucks and then applying ShiftRows on these
bytes, which in fact is only re-ordering of bytes. In physical
terms, this corresponds to renaming the nets. Following this,
we supply each byte to its corresponding Tbox, in order to
obtain the corresponding Sbox outputs, S, and their multiplied
versions kS. Each adjacent 4 Tbox outputs correspond to a
column, and parts of each Tbox output within the column
are combined (added) to form the corresponding MixColumns
output. In the last round, the second half of the Tboxes are

read from RAM, which when combined with the bytes from
neighboring Tboxes generate just the regular Sbox output. In
other words, MixColumns operation is skipped in the last
round in conjunction with the AES specification.

Let’s see how MixColumns is realized by looking at the first
column. The inputs to the first column Tboxes are bytes 0, 5,
10 and 15 of the state. The outputs of the 4 Tboxes are then
t0, t1, t2 and t3, each being 4-byte wide with the following
expressions:

t0 = {t00, t01, t02, t03} = {2s0 , s0 , s0 , 3s0 }
t1 = {t10, t11, t12, t13} = {2s5 , s5 , s5 , 3s5 }
t2 = {t20, t21, t22, t23} = {2s10, s10, s10, 3s10}
t3 = {t30, t31, t32, t33} = {2s15, s15, s15, 3s15}

The first 4 MixColumns outputs are then generated using

m0 = t00 + t11 + t22 + t33 = 2s0 + s5 + s10 + 3s15

m1 = t10 + t21 + t32 + t03 = 2s5 + s10 + s15 + 3s0

m2 = t20 + t31 + t02 + t13 = 2s10 + s15 + s0 + 3s5

m3 = t30 + t01 + t12 + t23 = 2s15 + s0 + s5 + 3s10

In practice, prior to addition, the first bytes of all Tbox
outputs are combined to form the 128-bit “first-byte” vector,
the second bytes to form the 128-bit “second-byte” vector,
and so on. These vectors are then added using 128-bit XOR
blocks to generate all MixColumns outputs at once. Each 128-
bit XOR block is formed of two 40-bit XOR blocks and 48-bit
XOR block, each of which is implemented using the DSP48
modules in “combinational” function mode.

For the key scheduling part, additional BRAMs are required
due to 4 Sbox calls in the last 32-bit word of the round
key. The rc values for the 8-bit round constant addition is
also stored in BRAM. We furthermore use BRAMs instead of
registers by storing a one-to-one mapping lookup table, which
we call “Bbox”, i.e. B(x) = x. The block diagram describing
AES key scheduling can be seen in Fig. 5.

The output of each round is sent to the input of next round
together with the generated round key.

The round operation is repeated for 10 rounds; at the end
of 10 rounds, “done” flag is generated and the ciphertext is
read at the round output.

In our implementation, only LUTs and FFs are used by the
control logic.

It should also be noted that dual-port nature of BRAMs
allows us to utilize each BRAM as a dual T/S/Bbox, where the
two address ports are the box inputs and their corresponding
output ports are the box outputs.

3) Unrolled pipelined AES core: The flow of the pipelined
unrolled AES core is the same as the round-based, only
difference is that all rounds are implemented in an unrolled

Bbox Bbox Bbox Bbox Bbox Bbox Bbox Bbox Sbox Sbox

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

XOR32

XOR32

XOR32

XOR32

key_in

key_out

RC

Fig. 5. AES key scheduling

pipelined fashion for faster execution with more area utiliza-
tion. Since all round constants are fixed in the unrolled version,
there is no need for the control logic. As a result, this is a
“zero-LUT/FF” design, where only BRAM and DSP blocks
are utilized.

4) Resource utilization: In the round-based design, mostly
BRAMs, DSPs, and some number of LUTs and FFs are
utilized. 8 36K dual-port BRAMs are required for the data
processing part (as in Drimer et al.’ work) and 10 18K BRAMs
(5 36K BRAM tiles) are required for the key scheduling.
In addition, as round constants are also defined in BRAM,
we need an additional 18K BRAM (0.5 36K BRAM tile).
In detail, the contents of the BRAMs are as follows: Data
BRAM – 512 addresses x 32-bit width = 16K (8K+8K) bits,
Key BRAM – 512 addresses x 8-bit width = 4K (2K+2K) bits,
RC BRAM – 10 addresses x 8-bit width = 80 bits.

3 DSPs are used for 1 128-bit XOR operation and there are
4 128-bit XOR operations per round, which results in 15 DSPs
together with the initial 128-bit key addition. For 4 32-bit XOR
operations in key scheduling, 5 DSPs are used. Additionally,
4 FFs for the round counter and LUTs for multiplexing logic
are used.

The resource utilization for unrolled pipelined version is
exactly 10 times of round-based cost, 135 BRAMs and 173
DSPs (3+12x10+5x10). No FFs or LUTs are necessary as there
is no control logic for unrolled design.

B. GF(2128) Multiplier

The implementation of the GF(2128) multiplier follows
Algorithm 1, which processes one of the operands in a serial
way, starting with the most significant bit (MSB), similar to
the architecture proposed by Sakiyama et al. in [9]. Our aim
is to implement Algorithm 1 making optimal use of the DSP
slices in the targeted FPGA. This comes down to mapping the
computation in the for-loop in the algorithm (except for the
multiplication with x, which is a shift operation) onto the DSP
slices.

Require: P (x) = xm +
∑m−1

i=0 pix
i,

A(x) =
∑m−1

i=0 aix
i, B(x) =

∑m−1
i=0 bix

i

Ensure : T (x) = A(x) ·B(x) mod P (x)

T (x) =
∑m

i=0 tix
i ← 0

for i = m− 1 to 0 do
T (x)← (T (x) + ai ·B(x) + tm · P (x)) · x

end
T (x)← T (x)/x

Algorithm 1: MSB-first bit-serial modular multiplication
over GF(2m)

Fig. 6 shows a simplified version of the DSP48E2 slice in
a Xilinx UltraScale+ FPGA. Note that many multiplexers and
registers have been omitted from the figure for clarity reasons.
The DSP slice consists of two stages. First, there is a dedicated
multiplier (denoted with X) of which one of the operands
comes from a pre-adder/subtracter (denoted with +/-). In
the second stage, there is an addition/subtraction/logic block
(denoted with +/-/l), which can perform different arithmetic
and logic operations. Whereas the first stage uses the inputs
of the DSP slices (DSP1 , DSP2 , DSP3 and DSP4 , indicated
with black triangles), the second stage gets its inputs from
three multiplexers (MUXX , MUXY and MUXZ). Note that each
multiplexer can also be configured to pass through a value that
consists of all zeros. The output of the +/-/l block is stored
in a register and connected to the output of the DSP slice,
DSPP (indicated with a black triangle). Direct connections are
made with neighboring DSP slices on the top and bottom of
the slice (represented by white triangles). These connections
cannot be reached through regular routing.

The DSP slices on an UltraScale+ FPGA can have the +/-
/l operator in the second stage perform a three-input XOR.
This new feature, which is not available in the 7-series
FPGAs, is utilized to perform the 3-input addition in the
for-loop in Algorithm 1. The other operations in the for-
loop are a multiplication with x, i.e. a shift operation that
is handled through the routing outside of the DSP slice, and
multiplications of a GF(2) element with a GF(2128) element,
namely ai · B(x) and tm · P (x). We explore two different
options to implement these multiplications. The first option is
to use a multiplexer that has the GF(2) element at its selection
input and the GF(2128) element at one of its data inputs,
while the second data input is fed with zeros. This leads to
the representation in Fig. 7, showing the two multiplications

Fig. 6. Functional representation of a Xilinx DSP48E2 slice

through two multiplexers and the addition through a three-
input XOR. The second option is to use the multiplier in stage
1 of the DSP slice. Although this is an integer multiplier and
we need to perform a multiplication in GF(2128), the product
is correct, since one of the operands consists of only one bit.
This bit is padded with zeros. We explore the feasibility of
both multiplier options in the following paragraphs.

0	

P

B

ai

Tcur

Tnxt

tm

arrowed lines: 48-bit width
narrow lines: 1-bit width

0	

Fig. 7. A functional representation of the multiply and add approach using
DSP slices

1) GF(2128) multiplication using an XOR and multiplexers:
In order to map the 128-bit operations in the for-loop of
Algorithm 1 on the 48-bit DSP slices, we need at least three
slices (3 ∗ 48 > 128). For the first option described above,
shown in Fig. 7, each three-input XOR is mapped on the +/-
/l operator in a DSP slice, as depicted in Fig. 8 on the left
side. The left input of the XOR comes from MUXX and the top
input is mapped to MUXY . That means that the value B in
Algorithm 1 is connected to the concatenation of the inputs
DSP1 and DSP2 , and the value T is connected to input DSP4 .
The bit ai is used as the selection signal for MUXX , choosing
between B and zero. Because input DSP4 is already routed
to MUXY , it cannot be used for MUXZ . Therefore, the only
option that is left to connect P to MUXZ , is to route P through
the neighboring DSP slice. As a result, the number of DSP
slices is doubled, leading to three pairs of DSP slices, i.e.
six DSP slices in total, for the computation of the for-loop in

Algorithm 1. This is shown below the architectural DSP slice
mapping on the left side of Fig. 8.

0	

P

B
ai
Tcur

Tnxt

mi

0	

0	

P

B
ai
Tcur

Tnxt

mi

0	

arrowed lines: 48-bit width
narrow lines: 1-bit width

DSPslice

DSPslice

DSPslice

DSPslice

arrowed lines: 48-bit width
narrow lines: 1-bit width

Fig. 8. The construction of Cells

Because P is a fixed value (P is the irreducible polynomial
that is fixed in the GCM specification), we use the output
registers of the three additional DSP slices to store P , as
indicated with a rectangle with a cross inside in Fig. 8 on the
left side. This way, the connection of P does not introduce a
routing delay.

On the right side of Fig. 8, an optimized version is shown,
that takes into account that only the least significant bits of
P contain values different from zero, which means the two
DSP slices dealing with the 96 most significant bits of P are
not needed. As opposed to the architecture on the left side
of Fig. 8, which works for any irreducible polynomial P , the
architecture on the right side only works with P = x128 +
x7 + x2 + x+ 1, as specified in the GCM standard.

2) GF(2128) multiplication using an XOR and multipliers:
The maximum input width of the multiplier block in the DSP
slice is 27 ∗ 18, which means we need five DSP slices to
perform the multiplication B · ai with input width 128 ∗ 1.
When the multiplier block is used in the first stage of the DSP
slice, the +/-/l operator can only be configured as an adder or
a subtracter, which means the multiplier cannot be combined
with a three-input XOR in the same DSP slice. Therefore,
we need five DSP slices for the multiplier and five more
DSP slices for the 128-bit three-input XOR. Assuming that
the multiplication P · tm is implemented using a multiplexer,
we would need 10 DSP slices to execute the for-loop in
Algorithm 1 using this construction. That is a lot more than
the four DSP slices required for the GF(2128) multiplication
using an XOR and multiplexers. Therefore, we only use the
option shown in Fig. 8 on the right side.

In order to extend the implementation in Fig. 8, the for-
loop needs to be executed 128 times. In an AES-GCM
implementation where the AES core generates a new 128-bit
ciphertext block every cycle (which is the case for the unrolled
pipelined AES core), the GF(2128) multiplication needs to
be done in one clock cycle. In an AES-GCM implementa-

tion where the AES core is round-based, i.e. a new 128-bit
ciphertext block is generated every 10 cycles, the GF(2128)
multiplication needs to be completed within 10 clock cycles.
We implement a 1-cycle as well as a 10-cycle architecture
of the GF(2128) multiplier. In the 1-cycle architecture, the
for-loop in Algorithm 1 is fully unrolled without pipelining.
In the 10-cycle architecture, the for-loop in Algorithm 1 is
partially unrolled, i.e. 13 instances of the loop computation
are instantiated, followed by a register and a feedback signal.
This way, after 10 iterations, all 128 ai bits are processed.

In summary, to construct a stack of cells that can perform
a single 128-bit wide modular multiplication in a single clock
cycle, 512 (128 × 4) DSP slices are required. Analogously,
when performing one operation in 10 clock cycles, 52 (13×
4) DSP slices are required.

V. RESULTS

We evaluate the implementation properties of our AES-
GCM architectures using Xilinx Vivado 2017.3 suite after
placement and routing. The target platform is ZCU102 eval-
uation kit which contains a Zynq UltraScale+ FPGA. As
explained in Section IV, we implement two different architec-
tures, namely a round-based architecture and a fully unrolled
architecture. The results for both AES-GCM implementations
are shown in Table I, as well as the individual results for
the AES cipher and the GF(2128) multiplier. The glue logic
represents the additional registers, multiplexers and FSM.

TABLE I
IMPLEMENTATION RESULTS OF AES-GCM ON ZCU102

LUT FF BRAM DSP Tmin(ns)
unrolled PL 899 1036 139 685 172

AES 192 0 135 173
MULTIPLIER 325 401 0 512
glue 682 635 4 0

round based 785 1043 17.5 72 20
AES 196 4 13.5 20
MULTIPLIER 156 398 0 52
glue 433 641 4 0

With respect to LUT and FF utilization, our design dras-
tically outperforms the smallest AES-GCM implementation
on FPGA, presented by Zhou et al. in [10]. The architecture
in [10] reports 4628 slices on a Virtex-5 FPGA. Knowing that
each slice contains 4 LUTs and 4 FFs, our implementation
reduces the occupation of the LUTs and FFs by a factor
20 thanks to the optimal utilization of DSP slices and RAM
blocks.

The timing of the round-based architecture is shown in
Fig. 9. After the calculation of H, the associated data are
processed in chunks of 128 bits. Then, the AES core encrypts
the plaintext blocks, and the multiplier uses the ciphertext to
generate the tag. The last step in the generation of the tag,
is the use of the length field and the addition of the initial
encryption of the IV. In total, this leads to a latency of:
• 12 clock cycles to calculate H (10 cycles for AES plus 2

cycles overhead)

• 12 clock cycles per 128-bit block of associated data
• 12 clock cycles per 128-bit block of plaintext data
• 12 clock cycles to synchronize the pipeline
• 12 clock cycles to process the length field
• 1 clock cycle to finalize the generation of the tag

Fig. 9. Round-based timing

For the unrolled pipelined architecture, we need:
• 1 clock cycle to calculate H
• 1 clock cycle per 128-bit block of associated data
• 1 clock cycle per 128-bit block of plaintext data
• 1 clock cycle to synchronize the pipeline
• 1 clock cycle to process the length field
• 1 clock cycle to finalize the generation of the tag
• 5 clock cycles control overhead
With respect to performance, Table I shows that both de-

signs have a very large critical path, leading to a large minimal
clock period and thus a performance degradation in compar-
ison to [10]. The authors in [10] report a maximum clock
frequency of 324 MHz, while our design reaches 50 MHz for
the round-based version and 6 MHz for the unrolled pipelined
version. The critical path occurs in the connection of the
consecutive cells that are responsible for the loop computations
in Algorithm 1.

VI. CONCLUSION

This work proposes the optimal use of DSP slices and
BRAM tiles in UltraScale+ FPGAs for the construction of
AES-GCM architectures. While similar work has already been
done for the AES core, this work also optimizes the GF(2128)
multiplier in the GCM operation. Further, it improves on previ-
ous efforts of mapping AES on DSP logic and BRAMs. Two
architectures are implemented and evaluated: a round-based
architecture, performing both AES and the multiplication in 10
cycles, and a fully unrolled pipelined architecture, executing
AES as well as the multiplication in 1 cycle.

The implementation results show that we manage to reduce
the occupied LUTs and FFs by a factor 20 in comparison
to the smallest known AES-GCM implementation on FPGA
(to our knowledge). This is thanks to the optimal use of the
DSP slices and the BRAM tiles. However, the use of the DSP
slices results in a relatively long critical path in the GF(2128)
multiplier, leading to a significant performance degradation in
comparison to related work. We can therefore conclude that
the architectures proposed in this work are mainly interesting
to be added as IP cores to FPGA applications that already
occupy many LUTs and FFs, but have a lot of free DSP slices
and BRAM tiles.

VII. ACKNOWLEDGEMENT

This work was partially funded by the DRASTIC project
(CELSA/17/033).

REFERENCES

[1] S. Drimer, T. Güneysu, and C. Paar, “DSPs, BRAMs and a Pinch of
Logic: New Recipes for AES on FPGAs,” in FCCM, pp. 99–108, IEEE,
2008.

[2] (NIST), “Advanced Encryption Standard (AES) ,” Tech. Rep. FIPS-197,
U.S. Department of Commerce, 2001.

[3] (NIST), “Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC,” Tech. Rep. SP800-38D, U.S.
Department of Commerce, 2007.

[4] Xilinx, “UltraScale Architecture DSP Slice User Guide UG473,” 2019.
[5] J. Daemen and V. Rijmen, The Design of Rijndael. Berlin, Heidelberg:

Springer-Verlag, 2002.
[6] T. Güneysu and C. Paar, “Ultra High Performance ECC over NIST

Primes on Commercial FPGAs,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems, pp. 62–78, Springer, 2008.

[7] D. D. Chen, N. Mentens, F. Vercauteren, S. S. Roy, R. C. Cheung,
D. Pao, and I. Verbauwhede, “High-speed Polynomial Multiplication Ar-
chitecture for Ring-LWE and SHE Cryptosystems,” IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 157–166,
2014.

[8] R. Shahid, M. U. Sharif, M. Rogawski, and K. Gaj, “Use of Embedded
FPGA Resources in Implementations of 14 Round 2 SHA-3 Candidates,”
in 2011 International Conference on Field-Programmable Technology,
pp. 1–9, IEEE, 2011.

[9] K. Sakiyama, L. Batina, N. Mentens, B. Preneel, and I. Verbauwhede,
“Small-footprint ALU for Public-key Processors for Pervasive Security,”
in Workshop on RFID Security, vol. 12, 2006.

[10] G. Zhou, H. Michalik, and L. Hinsenkamp, “Improving Throughput of
AES-GCM with Pipelined Karatsuba Multipliers on FPGAs,” in ARC,
pp. 193–203, Springer, 2009.

	Introduction
	Related Work
	Algorithms
	AES
	GCM

	Implementation
	AES
	Differences to previous work
	Round-based AES core
	Unrolled pipelined AES core
	Resource utilization

	GF(2128) Multiplier
	GF(2128) multiplication using an XOR and multiplexers
	GF(2128) multiplication using an XOR and multipliers

	Results
	Conclusion
	Acknowledgement
	References

