
1

Towards Privacy-Preserving and Efficient
Attribute-Based Multi-Keyword Search

Zhidan Li, Wenmin Li, Fei Gao, Wei Yin, Hua Zhang, Qiaoyan Wen, Kaitai Liang

Abstract—Searchable encryption can provide secure search over encrypted cloud-based data without infringing data confidentiality
and data searcher privacy. In this work, we focus on a secure search service providing fine-grained and expressive search functionality,
which can be seen as a general extension of searchable encryption and called attribute-based multi-keyword search (ABMKS). In most
of the existing ABMKS schemes, the ciphertext size of keyword index (encrypted index) grows linearly with the number of the keyword
associated with a file, so that the computation and communication complexity of keyword index is limited to O(m), where m is the
number of the keyword. To address this shortage, we propose the first ABMKS scheme through utilizing keyword dictionary tree and the
subset cover, in such a way that the ciphertext size of keyword index is not dependent on the number of underlying keyword in a file. In
our design, the complexity of computation and the complexity of the keyword index are at most O(2· log (n/2)) for the worst case, but
O(1) for the best case, where n is the number of keyword in a keyword dictionary. We also present the security and the performance
analysis to demonstrate that our scheme is both secure and efficient in practice.

Index Terms—Searchable encryption, keyword dictionary tree, subset cover, attribute-based multi-keyword search, encrypted index.

F

1 INTRODUCTION

B EING offered advanced cloud-based data storage [1],
[2] and the cloud computing services [3], Internet data

owners (DO) prefer to outsource the massive amount of
data and expensive data computation to remote cloud. To
rapidly occupy a piece of data outsourcing market, cloud
service providers (CSP), such as Alibaba Cloud, Google
AppEngine, and Dropbox, have prepared themselves to pro-
vide flexible and multi-functional data services for Internet
data users (DU) to meet various needs, e.g., data sharing,
retrieving, and cooperative computing [4], [5], [6]. However,
data privacy and access control over the outsourced data
must be guaranteed in practice. To this end, DO may be
recommended to encrypt their data via some encryption
techniques (such as AES, RSA) before outsourcing the data
to CSP. This approach can protect the data privacy, security
and somewhat data integrity. Nevertheless, it also brings
side effects, at the same time, to DU and CSP. For example, if
the outsourced data is encrypted, standard plaintext-based
search mechanism may be applicable no more. This paper
deals with the case where a privacy-preserving search over
encrypted data is needed.

In order to address the search problem over encrypted
data, searchable encryption (SE) has been proposed in the
literature. Combining encryption with secure search, it can
be used to protect privacy of search query but also the confi-
dentiality of outsourced data. Specifically, it enables a valid
data user to generate a trapdoor based on some specified
query “description” for cloud server, so that the server can

• Z. Li, W. Li, F. Gao, H. Zhang and Q. Wen are with State key Laboratory
of Networking and Switching Technology, Beijing University of Posts and
Telecommunications, Beijing 100876, China.

• K. Liang is with Department of Computer Science, University of Surrey,
Guildford GU2 7XH, UK

• W. Yin is with the National Computer Network Emergency Response
Technical Team/Coordination Center of China, Beijing 100020, China

• Corresponding author: wqy@bupt.edu.cn

use the trapdoor to search over the encrypted data without
violating data confidentiality and search privacy.

Song et al. [7] seminally proposed the notion of keyword
search over encrypted data, called Searchable Symmetric
Encryption (SSE), in which users have to securely share key
for data encryption. Later, SE was designed in the public-
key context [13], [14], [15], which can resolve the problem
of secret key distribution yielded by SSE. The follow-up
research works [19], [20], [21], [22], [23], [25], [26], [27]
were proposed to achieve various functionalities under the
umbrella of public key based SE, for example, these works
[19], [20], [21] focus on single keyword query, while the
papers [25], [27] consider to enable users to make multi-
keyword search.

In practice, DOs may prefer to maintain secure access
control over their outsourced data, so that the unauthorized
data user can not gain access to the data. One of the promis-
ing technologies called ciphertext-policy attribute-based en-
cryption (CP-ABE) has been used to inject access control pol-
icy into data encryption. Zheng et al. [19] proposed a new
primitive called attribute-based keyword search (CP-ABKS)
by integrating SE and ABE. In their CP-ABKS schemes, an
access policy tree is associated with ciphertext and a private
key is associated with user attributes. If the attributes satisfy
the policy tree and the trapdoor matches the keywords
ciphertext (encrypted indexes) simultaneously, then the ci-
phertext can be located and further decrypted. Some follow-
up research works [26], [27] that are proposed to achieve
multi-keyword search based on [19]. However, there is a
limitation in most of the existing attribute-based multiple
keyword search schemes (ABMKS), e.g., [26], [27]. Due to
the number of keyword increases in the multi-keyword
search, the size of encrypted index and the computational
complexity are bounded by O(m), where m is the number
of keyword embedded in a file.

In this paper, inspired by the CP-ABKS schemes, we de-

2

sign a Towards Privacy-Preserving and Efficient Attribute-
Based Multi-Keyword Search (TPPE-ABMKS) through uti-
lizing keyword dictionary tree and the subset cover. Our
TPPE-ABMKS can achieve multi-keyword search with fine-
grained access control and the number of the encrypted
index is relatively small, which is not dependent on the
number of underlying keywords in a file. The contribution
of this paper is summarized as follows.

1) We, for the first time, provide a secure multi-
keyword search service with short-size ciphertext
of keyword index. Our number of the encrypted
index is not linear with the number of keyword
embedded in a file. To the best of our knowledge,
our design is the first of its type that achieves short-
size ciphertext of keyword index in the model of
MKS. More specifically, by designing the tools of
keyword dictionary tree and the subset cover, in
our scheme, the complexity of computation and
the complexity of the encrypted index are at most
O(2· log (n/2)) for the worst case but O(1) for the
best case, where n is the number of keyword in a
keyword dictionary in system.

2) We show that our design is selectively secure a-
gainst the chosen-keyword attack via the formal
security analysis, and our performance evaluation
proves that the scheme is efficient in terms of both
the computation and communication overhead, in
particular, the time cost of the ciphertext generation
and data retrieve are more efficient than that of the
existing ABMKS schemes.

The rest of this paper is organized as follows. In Section
2, we present an overview of related work. In Section 3,
we briefly review some basic primitives which will be used
in this paper and we also define the main building blocks
for our construction. We then present the system and threat
models of our scheme, the construction, and the security
model in Section 4. In Section 5, the proposed scheme is
presented. Section 6 presents the security analysis of the
prosed scheme. Section 7 shows the experimental analysis of
the proposed scheme and the comparison with some related
works. We conclude the paper in Section 8.

2 RELATED WORK

SE was first proposed by Song et al. [7], which allows DOs
or DUs to generate a trapdoor that can be used by cloud
server to search over the outsourced encrypted data. The
existing SE schemes can be categorized into two branches:
SEs in the symmetric-key context [7], [9], [10], [11], [12]
and the ones in public-key scenario [13], [14], [15], [16],
[17], [18]. In order to quickly obtain the encrypted record,
researchers have been working on the keyword-based in-
formation retrieval to achieve various functionalities and
practical needes. The research works in [9], [11] have been
proposed SE in the multi-users setting, where DOs can
enforce an access control policy by distributing some secret
keys to authorized system users. Some SE schemes focus on
improving the level of keyword security and privacy. Chen
et al. [23] proposed a public key encryption with keyword
search in dual-server model, which can resist the keyword

guessing attack. Later on, Liu et al. [6] and Miao et al.
[27] presented the verifiable SE schemes by using public-
auditing technique, respectively. Their schemes guarantee
that DUs can prevent the semi-trusted CSP from tampering
the sharing data and returning false search results.

Attribute-based encryption (ABE) [30], [31] is a useful
data encryption tool for enforcing access control policy via
cryptographic technique. It makes sure that if a user has
a legitimate credential, then he/she can decrypt a given
ciphertext which is encrypted according to an access control
policy [30], [31]. With the special features of ABE, Zheng
et al. [19] proposed a new secure search service called
attribute-based keyword search (ABKS). After that, [26],
[27] were proposed to achieve extended functionalities (e.g.,
multi-keyword search) based on [19]. In ABKS, keywords
are encrypted according to an access control policy, and a
legitimate DU can generate trapdoors that can be used by
server to search over the encrypted data. ABKS can maintain
access control but also privacy-preserving keyword search
in practice.

In order to enable DUs to make queries over multiple
keywords at the same time, Golle et al. [28] proposed the
concept of conjunctive keyword search. Later on, Park et al.
[29] extended the notion into public key system. [26], [27]
were put forth to achieve advanced functionalities in the
multi-keyword search in public-key context. These schemes
are denoted as attribute-based multiple keyword search
(ABMKS) in this paper. However, the computation cost of
keyword index generation is relatively high in [26], [27],
which is growing linearly with the number of keyword em-
bedded in a file. Recall that the complexity of keyword index
ciphertext is O(m), where m is the number of keyword
embedded in a file.

3 PRELIMINARIES

We give a brief review of some basic primitives which will
be used in this paper in Sections 3.1 and 3.2. We also define
the main building blocks of our scheme in Sections 3.3-3.6.

3.1 Bilinear Map

Let G and GT be two multiplicative cyclic groups of prime
order p, g be a generator of the group G, a bilinear mapping
e: G×G −→ GT satisfies following properties [30]:

• Bilinearity: e(ga, gb) = e(g, g)ab , ∀g ∈ G, ∀a, b ∈ Z∗p.
• Nondegeneracy: e(g, g) 6= 1.
• Computability: there is an efficient algorithm to com-

pute e(ga, gb), ∀g ∈ G, ∀a, b ∈ Z∗p

3.2 Access Tree

Let T be an access tree [30] representing an access control
policy. In T , each non-leaf node denotes a threshold gate
and is described by its a threshold value and children notes.
Let numv represent the number of children notes for a node
v, and the children notes from left to right be labeled as
1, ..., numv . The kv (kv≤numv) represents the threshold
value for the node v, when kv=1, the note v is an OR gate;
otherwise kv=numv , it is an AND gate. Each leaf node of T
is described by an attribute and a threshold value kv=1.

3

15

13 14

9 10 11 12

1 2 3 4 7 85 6

w1 w2 w3 w4 w5 w6 w7 w8

KDT

Fig. 1: Example of a Keyword Dictionary Tree

mapping mapping

15

13 14

9 10 11 12

1 2 3 4 7 85 6

Permutation

W'={w1,w2,w3,w5,w7,w8} ={w4,w6}

L=[3,4,5,6,7,8] L*=[1,2]

w6 w4 w7 w2 w1 w5 w8 w3

=[1,6,5][2,4][3,7,8]

Fig. 2: Example of a Changed Dictionary Tree

In order to easy understand the access tree, we give some
few functions. Let parent(v) denote the parent of node v. If v
is a leaf node, att(v) represents the attribute associated with
the leaf node v. Let index(v) represent the label of the node
v, and Tv represent the subtree of T rooted at node v.
Tv(γ)=1 denotes that the attribute set γ meets the access

tree Tv . If v is a non-leaf node, we can compare Tv(γ)
recursively as follows: compute Tv′(γ) for all children v′ of
the node v, if at least kv children of the node v return 1, then
Tv(γ)=1. If v is a leaf node, and att(v) ∈γ, then Tv(γ)=1.

3.3 Keyword Dictionary Tree

In this section, we first give the definition of the Keyword
Dictionary Tree (KDT). Let W = [w1, ..., wn] be the keyword
dictionary in the system, KDT denotes a full binary tree with
n leaves, and the leaf node Li be associated with a keyword
wi as in Fig. 1 (hereafter, we set n=8 in all the examples
to easy understand). In a KDT tree, from left to right, from
bottom to top, the nodes of the tree is labeled with 1, ..., 2n−
1. We give an example as in Fig. 1. The bottom left node of
the KDT holds number 1, and the root node of KDT holds
number 15.

3.4 Changed Dictionary Tree and the Path note

We call the KDT as an original dictionary tree (ODT), if the
leaf Li of it is labeled with the keyword wi. The changed
dictionary tree (CDT) denotes that the positions of all the

15

13 14

9 10 11 12

1 2 3 4 7 85 6

w1 w2 w3 w4 w5 w6 w7 w8

=[1,6,5][2,4][3,7,8]

15

13 14

9 10 11 12

1 2 3 4 7 85 6

w6 w4 w7 w2 w1 w5 w8 w3

ODT CDT

Keyword position

permuted by

Fig. 3: The Generation of the Changed Dictionary Tree

keywords in the ODT are changed. The CDT is defined as
follows.

Let W ′ = [w′1, ..., w
′
m] be the keyword set for one

file fi, and W̃=W/W ′ denote the difference of set-
s W and W ′, e.g., as shown in Fig. 2, W=[w1, ..., w8],
W ′=[w1, w2, w3, w5, w7, w8], then W̃=[w4, w6]. DO will
choose |W ′| continuous leaf nodes of ODT, in which these
leaf nodes are denoted as L, and L∗ is the remain of leaf
nodes in ODT, e.g., as shown in Fig. 2, L=[3,4,5,6,7,8], and
L∗=[1,2].

For each leaf node in L and L∗, it will be randomly
labeled with one keyword in W ′ and W̃ , respectively, as
shown in Fig. 2, 1→w6, 2→w4, 3→w7, 4→w2, 5→w1, 6→w5,
7→w8, and 8→w3. Thus, all of the keyword labeled with
the leaf node of ODT is changed. We state that there exists
a permutation σ=[1, 6, 5][2, 4][3, 7, 8], where [1,6,5] indicates
that leaf node 1 is labeled with keyword w6, leaf node 6 is
labeled with keyword w5, and leaf node 5 is labeled with
keyword w1. The [2, 4] and [3, 7, 8] follow the same rule as
[1, 6, 5].

We note that CDT is generated by changing the keyword
order of the ODT with the permutation σ, and the σ has at
least 2 · m!·(n − m)!= 2 × [m × (m − 1) × ... × 2 × 1] ×
[(n −m) × (n −m − 1) × ... × 2 × 1] different possibilities
in total. Since n is a relatively large number, the σ will be
very hard to be guessed (considering (n − m)! or m! is a
very large number, e.g., n = 1000, m = 100). As shown in
Fig. 3, we present an example of generation of CDT by using
σ=[1, 6, 5][2, 4][3, 7, 8].

Let W ∗ = [w∗1 , ..., w
∗
m∗] be a query keyword set, for each

w∗i ∈ W ∗, let path(w∗i) = [Ωwi,1, ...,Ωwi,l] (where l =1+log
n) be the path nodes of the keyword w∗i , which starts from
the leaf node labeled with wi to the root node in CDT, e.g.,
in Fig.2, path(w4) = [2, 9, 13, 15].

3.5 Subset Cover

In this section, we give the definition of the subset cover for
a keyword set W ′. For the keyword set W ′ in the CDT, with
the subset cover technique [32], DO selects root nodes of the
minimum cover sets in the CDT tree that can cover all of
the leaf nodes in W ′, denoted as cover(W ′) = [Ω1, ...,Ωt],
where t is the number of node in cover(W ′) and t ≤ 2· log
(n/2), e.g., as in Fig 2. When W ′ = [w1, w2, w3, w5, w7, w8],
we have the cover(W ′) = [10, 14]. For each keywords W ′,
we will prove that t ≤ 2·log (n/2) as follows.

4

7

5 6

1 2 3 4

7

5 6

1 2 3 4

X=[2,3,4]

Cover(X)=[2,6]

X=[2,3]

Cover(X)=[2,3]

Fig. 4: An Example when n=22=4

...

... ...

... ...

...

... ...

1

Case 1:keyword W labeled with right(or left) half nodes of CDT

...

... ...

... ...

...

... ...

1

Case 2:keyword W labeled with right and left half nodes of

CDT

2
k

2

2
k+

- 1

2

2
k+

- 1

2
k 1

2
k+

1

2
k+

2
k
+1

2
k
+1

Fig. 5: An Example when n=2k+1

Theorem 1. In the CDT, for each keyword set W ′ for a file, we
have that t ≤ 2· log (n/2), where t is the number of node in
cover(W ′), and when t = 2· log (n/2), the half of nodes in the
subset cover(W ′) are labeled with the right half nodes of the CDT,
and the remaining half of nodes in cover(W ′) are labeled with the
left half nodes of the CDT.

Proof. We will prove it by using mathematical induction.
First, when n=4, as shown in Fig. 4, we know that the

maximum value of t is 2≤2=2·log (4/2), Theorem 1 holds.
Second, assuming that the theorem 1 holds when n = 2k,

then

t ≤ 2· log (n/2) = 2· log (2k/2) = 2(k − 1)

It can be deduced that the Theorem 1 holds when n = 2k+1.
Now we prove that the Theorem 1 holds when n = 2k+1.
As shown in Fig. 5, in case 1, the keyword W ′ are

continuously labeled with only right (or left) half nodes of
CDT. We find that it is same as the situation that n′ = 2k

(The CDT with n′ = 2k leaf nodes in dotted rectangle), then

t ≤ 2·log (n′/2) = 2·log (2k/2) = 2(k − 1) < 2k =
2·log (2k+1/2)=2·log (2n/2).

As shown in Fig. 5, in case 2, the keyword W ′ are
continuously labeled with both right and left half of CDT,
the keywords in W ′ that are labeled with the left half
leaf nodes of CDT denoted as Wleft, and the keywords in
W ′ that are labeled with the right half leaf nodes of CDT
denoted as Wright.

Consider the keyword Wleft and cover(Wleft) (where
tleft denotes the number of nodes in cover(Wleft)). Because
W ′ are continuously labeled with the leaf nodes in CDT,
we note that tleft≤1+log(2k/2)=k (As shown in Fig. 5,
the number of cover note in the black rectangle is log
(2k/2), and the number of cover note in the red rectangle is
1). Similarly, we have tright≤1+log(2k/2)=k. Therefore, we
have t=tleft+tright≤k+k=2k=2·log (2k+1/2)=2·log (n/2).

Therefore the Theorem 1 is proved.

Theorem 2. In the CDT, for each keyword set W ′, the number
of node in the subset cover(W ′)=t ≤ m, where t is the number of
node in cover(W ′), m is the number of keyword in keyword set
W ′.

Proof. As the example shown in Fig. 2, recall that the key-
words in W ′ are continuously labeled with the leaf nodes in
CDT, then there must exist two keywords that have the same
cover node in CDT. Thus, it is easy to prove that t ≤ m.

Theorem 3. From Theorem 1 and Theorem 2, we have that t≤
Min{2·log(n/2),m}

3.6 Key Idea of Keyword Index Ciphertext Generation
and Match

In this section, we present the idea of keyword index ci-
phertext generation, and the process of whether a query
keyword setW ∗ matches the keyword setW ′ = [w′1, ..., w

′
m]

embedded in a file.
When a DO wants to share a file, and the keywords set

W ′ is the keyword set embedded in it. First, DO generates a
permutation σ with W ′ as in the Section 3.4, and obtains the
cover(W ′) as in the Section 3.5. Then DO chooses an access
policy tree T , and encrypts the permutation σ based on the
access policy tree by using ABE scheme.

cover(W ′)=[Ω1, ...,Ωt]

Note that DO will use all the elements of cover(W ′) to
build the keyword index ciphertext instead of W ′. We will
give more details of it in the Encrypt algorithm in Section
5. Thus the complexity of computation and size is reduced
from m to t. As in the Theorem 3, we have proved that
t ≤Min{2· log(n/2),m}.

Let W ∗ = [w∗1 , ..., w
∗
m∗] be the query keyword set chosen

by a data user. If the data user’s attributes set satisfies the
access policy tree T , then he/she can get the permutation
σ, which means that he/she is allowed to generate the CDT
as in the Section 3.4. Thus, for each w∗i ∈ W ∗, the data user
can get the path(w∗i) from the CDT.

path(w∗i) = [Ωw∗i ,1, ...,Ωw∗i ,l], where l =1+log n

To verify whether the query keyword set W ∗ ⊆ W ′,
we need to check that whether there is an element in both
path(w∗i) and cover(W ′), for each w∗i ∈W ∗. We present this
theorem by the following formula.

5

W ∗ ⊆W ′ ⇐⇒ path(w∗i)
⋂

cover(W ′) 6= ∅, ∀w∗i ∈W ∗.

Otherwise, if W ∗ 6⊆ W ′, then there exists one keyword
wi satisfies path(w∗i)

⋂
cover(W ′) = ∅. For example, as in

Fig. 2, if W ′=[w1, w2, w3, w5, w7, w8], W ∗=[w1, w2, w5, w8],
we see that

path(w1) = [5, 11,14, 15], path(w2) = [4,10, 13, 15],
path(w5) = [6, 11,14, 15], path(w8) = [7, 12,14, 15],
cover(W ′) = [10,14].

Note that

path(w1)
⋂

cover(W ′)=14,
path(w2)

⋂
cover(W ′)=10,

path(w5)
⋂

cover(W ′)=14,
path(w8)

⋂
cover(W ′)=14.

Remark. Using the above method to generate keyword
index ciphertext, the complexity of keyword index cipher-
text and the computation complexity is at most O(2·log
(n/2)) for the worst case, but we state that the complex
is O(1) for the best case (In this case, the number of node in
the cover(W ′) is only 1), where n is number of the keywords
in keyword dictionary W . It is to say the number of the
keyword index ciphertext can be reduced to only one.

4 PROBLEM FORMULATIONS

In this section, we present the system and threat models, the
scheme construction, and the security model.

4.1 System and Threat Models

In Fig. 6, we present the system model of our scheme, which
involves four entities: DO, DU, CSP and Authority.

The DO encrypts the data files F as well as correspond-
ing keyword index with an access policy before uploading
them to the CSP. The CSP provides the storage services and
executes keyword search operations on behalf of the DU.
When a DU wants to make a search query over the encrypt-
ed data, he will generate a trapdoor by his specified query
keywords and submit it to the CSP. The CSP will retrieve the
DO’s encrypted data according to the specified keywords by
the corresponding trapdoor, if the user’s attributes satisfy
the access policy and the trapdoor matches the keyword
index. The role of Authority is to issue credentials (PK/SK)
to data owners/users, and the credentials are sent over
secure communication channel.

The threat model of our system is defined as follows.
DO, Authority and the authorized DUs are fully trusted,
but the CSP is trusted-but-curious entity which honestly
executes the protocol but attempts to learn some sensitive
information, e.g., the query keyword information.

4.2 The Construction of TPPE-ABMKS Scheme

In this section, we present the overview of our scheme
which consists of eight algorithms.

• Setup(λ). The Setup algorithm takes as input the
security parameter λ. It initializes the global system
parameter, and outputs the master key MSK and
the public key PK.

Data Users

Cloud Service Provider

 Files

Indexes

Encrypt

Encrypt

Upload

Drapdoor

Result

Data Owners Data Users

Authority

PK SK

Fig. 6: Basic Framework of Our Scheme

• KeyGen(PK,MSK,S). The KeyGen algorithm
takes as input data user’s attribute set S, the authori-
ty uses the MSK to generate the private key SK for
the data user.

• Encrypt(PK, T ,ODT, F,W ′). The Encrypt algo-
rithm takes as input files set F and the keyword
dictionary W . For each file f ∈ F , DO generates
the permutation σ by using the keyword set W ′

corresponding to the file f , then encrypts the file f by
using the symmetric key K to get the ciphertext C ,
encrypts the σ and K by using ABE to get the cipher-
text I1, generates the encrypted index I2 according to
W ′. At last sends the ciphertext CT = {C, I1, I2} to
the CSP.

• GenTK(PK,SK). The GenTK algorithm takes as
input public key PK and the private key SK for us-
er’s attribute set S, user generates the transformation
key TK and the corresponding retrieving key RK.

• Transform(CT, TK). The Transform algorithm
takes as input the ciphertext CT and the transfor-
mation key TK, it outputs a partially decrypted
ciphertext CT ′ = {CT ′1, CT ′2}.

• Decrypt(CT ′1, RK). The Decrypt algorithm takes
as input the transformed ciphertext CT ′1 and the
retrieving key RK, it outputs the permutation σ and
the symmetric key K .

• Trapdoor(PK,SK,RK,W ∗,ODT, σ). The trap-
door algorithm takes as input the public key PK,
private key SK and corresponding key RK, queried
keyword set W ∗, original dictionary tree ODT, the
permutation σ, it outputs the trapdoor TW∗ accord-
ing to the query keyword W ∗ and the data user’s
attribute set S.

• Retrieve(PK,CT ′, TW∗). The Retrieve algorithm
takes as input the ciphertext CT ′ and the trapdoor
TW∗ . CSP checks whether TW∗ satisfies the cipher-
text I1 and the encrypted index I2. If it holds, then
returns the corresponding C to user, otherwise, out-
puts ⊥.

4.3 Security Model
In this section, we present the security model of our scheme.
As described in the threat model, only the CSP is honest-
but-curious. Intuitively, indistinguishability against chosen-
keyword attack (IND-CKA) means that the CSP (an ad-
versary A) can learn nothing information about keyword

6

TABLE 1: Notation in TPPE-ABMKS

Notation Description
S DU’s attribute set
SK DU’s private key corresponding to S
F The file set of DO
W The keyword dictionary in a system
W ′ The keyword set embedded in one file f
W ∗ The query keyword set chosen by DU
T The access policy tree for one file f
TW∗ The trapdoor corresponding to W ∗

K The symmetric key for one file f
C The ciphertext of one file f encrypted by K
I1 The ciphertext of σ and K
I2 The ciphertext of keyword index W ′

n The number of keyword in W
m The number of keyword in W ′

m∗ The number of keyword in W ∗

t The number of nodes in the cover(W ′)
Y The leaf nodes set in access tree T

set plaintext of the keywords set ciphertext except for the
search tokens and the result. We present the security model
by utilizing the indistinguishability against chosen-keyword
attack (CKA) game as follows.

Definition 1. IND-CKA Game:

• Setup: The challenger C runs the setup algorithm to gener-
ate the public parameters PK and the master key MSK,
and gives the public parameters PK to the adversary A.
Note that the master key MSK is kept by the challenger
C. The adversaryA chooses an access tree T , which is sent
to the challenger.

• Phase 1: A can adaptively query the following oracles for
polynomial time, and the challenger C initializes an empty
keyword list Lkw and an empty set D.

1) OKeyGen(S): On input a set of attributes S, the
challenger C runs the KeyGen algorithm to get
SKS and sets D=D

⋃
S. It then returns it to

adversary A.
2) OGenTK(SK): On input a set of attributes S,

if S ∈ D, the challenger C runs the GenTK
algorithm to get TKS . Otherwise, the challenge
runs the KeyGen algorithm to get SKS , and runs
GenTK to get TKS . It then returns the TKS to
adversary A.

3) OTrapdoor(SK,W ∗): On input a set of keyword
W ∗ and the SK, the challenger C runs the Trap-
door algorithm to get TW∗ and sets Lkw=Lkw

⋃
W ∗, if the attributes set S satisfies the policy tree
T . It then returns it to adversary A.

• Challenge: A randomly chooses two keyword set W ∗1 and
W ∗2 , where W ∗1 , W ∗2 /∈ Lkw, it means that W ∗1 , W ∗2
cannot be queried in OTrapdoor . Then, the challenge T
picks a random b ∈ {0, 1} and encrypts W ∗b as CT ∗ by
using Encrypt algorithm. Finally, C returns CT ∗ to the
adversary A.

• Phase 2: A continues to query the oracles as in Phase 1,
but the restriction is that (S,W ∗1) and (S,W ∗2) cannot be
the input to OTrapdoor if the attribute set S satisfies the
access policy T .

• Guess: A outputs a guess bit b′, and wins the IND-CKA
game if b′ = b; otherwise, it fails.

Let |Pr[b′ = b]− 1
2 | be the advantage of A winning the above

IND-CKA game.

Definition 2. Our scheme is IND-CKA secure if the advantage
of any PPT A winning the IND-CKA game is negligible.

Besides, our scheme is selectively IND-CKA secure if an
Int stage is added before the Setup algorithm where the
adversary A claims the two keyword sets W ∗1 , W ∗2 which
to be attacked.

5 OUR DESIGN

We present some notations used in our construction in the
TABLE 1 and our design below.

• Setup(λ)→(PK,MSK): This algorithm is execut-
ed by authority, given a security parameter λ, the
authority first chooses a bilinear group G of prime
order p with generator g. It then chooses two ran-
dom numbers α1, α2 ∈ Z∗p and two hash functions
H1:{0, 1}∗→G, H2:{0, 1}∗→Z∗p. Finally, it generates
the public key PK and master key MSK as follows:

PK = {G, g, h = gα2 , e(g, g)α1}
MSK = {α2, g

α1}

• KeyGen(PK,S,MSK)→SK: This algorithm is ex-
ecuted by authority, given a DU’s attribute set S, the
authority first chooses a random number r ∈ Z∗p, and
randomly chooses ri ∈ Z∗p for each attribute i ∈ S.
Finally, it outputs DU’s private key SK as follows:

SK = {D = g(α1+r)/α2 ,

∀i ∈ S : Di = grH1(i)ri , D′i = gri}

• Encrypt(PK, T ,ODT, F,W)→CT : This algorithm
is executed by DO. Let F = {f1, ..., fN} be the file set
to be shared, in order to easy understand, we encrypt
one file f ∈ F to explain the Encrypt algorithm, let
the W = [w1, ..., wn] be the keyword dictionary, and
the W ′ = [w′1, ..., w

′
m] be the keyword set for f .

DO will encrypt the f under the corresponding
symmetric key K to generate the ciphertext C (e.g.,
Using AES to encrypt the f , this is out of the scope
of our discusses).

After that, DO will generate the σ and cover(W ′)
for file f as follows.

1) As in Section 3.4, DO will randomly generate
a permutation σ by using W ′.

2) As in Section 3.4, DO will generate the CDT
by using σ and ODT.

CDT σ←−ODT

3) As in Section 3.5, DO will get the cover(W ′)
corresponding to W ′.

cover(W ′)=[Ω1, ...,Ωt]

As shown in the Theorem 3, we state that t ≤
Min{2·log (n/2),m}. For example, as shown in the
Fig. 2, when W ′ = [w1, w2, w3, w5, w7, w8], and σ =

7

[1, 6, 5][2, 4][3, 7, 8], then the cover(W ′) = [10, 14].
Then, DO computes the ciphertext I1 and I2 for

the file f as follows:

1) For each node v in the in the access policy
tree T , choose a polynomial qv in a top-
down manner, the degree dv of qv is kv − 1,
where kv is the threshold value of the n-
ode v. For the root node R of T , randomly
choose s ∈ Z∗p and set qR(0) = s, then
randomly choose dR other points to build the
polynomial qR. For the non-root node v, set
qv(0) = qparent(v)(index(v)) and randomly
choose dv other points to build the polynomi-
al qv .
Let Y be the set of leaf nodes in the access tree
T and compute I1 = {Iσ||K , {θ, θy, θ′y}}

Iσ||K = (σ||K) · e(g, g)α1s.

θ = hs, θy = gqy(0), θ′y = H1(att(y))
qy(0), ∀y ∈ Y.

2) Compute I2 = {cover(W ′), {IΩi}i=ti=1} with
the permutation σ and the cover(W ′) =
[Ω1, ...,Ωt]

IΩi = e(g, g)α1sH2(Ωi||σ||K), i ∈ [1, t].

Note that in order to encrypt the σ||K , the item
σ||K will be encoded into the forma of the element
in group GT , it is out of the scope of our discusses.

Finally, outputs CT = {C, I1, I2} for the file f .

• GenTK(PK,SK)→TK: This algorithm is execut-
ed by DU, it takes into the public key PK and the
user’s private key SK = {D = g(α1+r)/α2 , Di =
grH1(i)ri , D′i = gri} for a set of attributes S. It
chooses a random value u ∈ Z∗p, and computes trans-
formation key TK and the corresponding retrieving
key RK:

TK = {S,D∗ = Du, D∗i = Du
i , D

′
i
∗

= D′i
u}

RK = u

• Transform(TK,CT)→(CT ′&⊥): This algorithm is
executed by cloud service provider (CSP), after get-
ting user’s attributes set S from TK, then CSP checks
whether the S can meet T . If S can not meet T ,
it outputs ⊥; otherwise, it runs the algorithm as
follows:

1) If the node x is a leaf node in the T , we let
i=att(x) and define as follows: if i∈S, then
compute θx as follows;

θx =
e(D∗i , θx)

e(D
′∗
i , θx′)

=
e(gru ·H1(i)riu, gqx(0))

e(griu, H1(i)qx(0))

= e(g, g)ru·qx(0)

(1)

2) If the node x is a no-leaf node in the T , we
get the θx by computing θx′ in a recursive
manner, where x′ is the children nodes of x.

The Sx is an arbitrary kx set of children nodes
x, if there exists no such a set, set θx′=⊥;
otherwise, compute θx′ as

θx =
∏
x′∈Sx

θ
∆i,S′x(0)

x′

=
∏
x′∈Sx

(e(g, g)ru·qx′ (0))∆i,S′x(0)

=
∏
x′∈Sx

(e(g, g)ru·qparent(z)(index(z)))∆i,S′x(0)

=
∏
x′∈Sx

(e(g, g)ru·qx(i))∆i,S′x(0)

= e(g, g)ru·qx(0)

(2)
where i=index(x′), S′x={index(x′) : x′ ∈ Sx}
If the tree is satisfied by S, we can get that
A=θroot=e(g, g)ru·qR(0)=e(g, g)rus, and com-
pute the partially-decrypted ciphertext pdc as

pdc = e(θ,D∗)/A

= e(hs, g(α1+r)·u/α2)/e(g, g)rsu

= e(g, g)α1su

(3)

Then output CT ′ = {CT ′1, CT ′2}, and return CT ′1
to DU.

CT ′1 = {Iσ||K , pdc}
CT ′2 = {C, I2}

• Decrypt(RK,CT ′1)→(σ||K): This algorithm is
executed by DU, on receiving the CW ′ from CSP,
then obtain the σ and K by using retrieve key RK
as

Iσ||K/pdc
1
RK = (σ||K) · e(g, g)α1s/(e(g, g)α1su)

1
u

= σ||K

Thus, the DU gets the permutation σ and the
symmetric key K corresponding to the file F .

• Trapdoor(PK,SK,RK,W ∗,ODT, σ)→TW∗ :
When a user wants to issue a search query according
to keyword set W ∗=[w∗1 , ..., w

∗
m∗], where m is the

number of the keywords included in W ∗.
After getting the permutation σ and K , DU will

generate the CDT and {path(w∗i)}i=m∗i=1 with ODT
and σ as follows.

1) CDT σ←−ODT as in Section 3.4.
2) For each w∗i ∈ W ∗, obtain the path nodes

path(w∗i) as in Section 3.4.
path(w∗i)=[Ωw∗i ,1, ...,Ωw∗i ,l], l=1+log n.

Then, compute T1 and T2 as follows:

T1 = {S,D∗ = DRK , D∗i = DRK
i , D′i

∗
= D′i

RK}
= {S,D∗ = Du, D∗i = Du

i , D
′
i
∗

= D′i
u}

T2 = {path(w∗i), T̂Ωw∗
i
,j

=
H2(Ωw∗i ,j ||σ||K)

RK
}

= {path(w∗i), T̂Ωw∗
i
,j

=
H2(Ωw∗i ,j ||σ||K)

u
}

for i∈[1,m∗], j∈ [1, 1+log n].

8

Note that T1 = TK is computed by DU as in the
GenTK phase.

Finally, return TW∗ = {T1, T2}.
• Retrieve(PK,CT ′, TW∗)→(C&⊥): This algorithm

is executed by CSP, and it works as follow. If S does
satisfy T , the CSP will terminate the search process;
otherwise, the CSP works as follows.

For each path(w∗i) for the keyword w∗i ∈ W ∗, if
there exists one case that cover(W ′)

⋂
path(w∗i) = ∅,

CSP breaks the retrieve and outputs ⊥. It is because
that W ∗ ⊆ W ′ ⇐⇒ path(w∗i)

⋂
cover(W ′) 6= ∅,

∀wi ∈W ∗ as described in Section 3.6.
Otherwise, we let Ωi=cover(W ′)

⋂
path(w∗i), i ∈

[1,m∗]. Check

i=m∗∏
i=1

IΩi
?
=
i=m∗∏
i=1

pdcT̂Ωi (4)

If it does not hold, return ⊥; otherwise, it means that
Trapdoor TW∗ matches the keyword index ciphertext
I , then send the corresponding C to the user. Once
gaining all the search results from CSP, the user can
decrypt them by using the corresponding symmetric
key K .

Correctness analysis. If the user’s attribute set S satis-
fies the access policy tree T and the queried keyword set
satisfies W ∗ ⊆W , we have that

i=m∗∏
i=1

IΩi =
i=m∗∏
i=1

e(g, g)α1sH2(Ωi||σ||K) (5)

i=m∗∏
i=1

pdcT̂Ωi =
i=m∗∏
i=1

(e(g, g)α1su)T̂Ωi

=
i=m∗∏
i=1

(e(g, g)α1su)
H2(Ωi||σ||K)

u

=
i=m∗∏
i=1

(e(g, g)α1sH2(Ωi||σ||K)

(6)

Therefore, we can state that the Eq. (4) holds if W ∗ ⊆W .

6 SECURITY ANALYSIS

In this section, we present the security analysis of our
scheme proposed in Section 5. Our scheme is secure based
on the following theorems.

Theorem 4. Given the random oracle H1 and the one-way hash
function H2, the TPPE-ABMKS scheme is secure against IND-
CKA in the generic bilinear group model.

Proof. In the IND-CKA game, A wants to distinguish
e(g, g)α1sH2(Ωi||σ0) from e(g, g)α1sH2(Ωi||σ1). Given η∈Z∗p,
the advantage of distinguishing e(g, g)α1sH2(Ωi||σ0) from
e(g, g)η is same as the advantage of distinguishing e(g, g)η

from e(g, g)α1sH2(Ωi||σ1). Then, if A has a advantage ε to
break the IND-CKA game, then it has the advantage ε/2 in
distinguishing e(g, g)α1sH2(Ωi||σ0) from e(g, g)η . We present
the following IND-CKA game as follows.

Setup : The challenger C randomly chooses α1, α2 ←
Z∗p and outputs public key (e, g,H1, H2, h = gα2 , e(g, g)α1).

A chooses an access policy tree T ∗ and sends it to C.
H1(attj) is simulated as follows: If attj has not been

queried before, the challenger C chooses r∗j from Zp, adds
(attj , r

∗
j) to OH1

and outputs gr
∗
j ; otherwise the challenger

C returns gr
∗
j by only retrieving r∗j from OH1 .

Phase1 : A can query the following oracles:

1) OKeyGen(S): The challenger C randomly chooses r∗

from Z∗p and computes D = g(α1+r∗)/α2 . For each
attribute attj ∈ S, the challenger C randomly choos-
es r∗j ∈ Zp, then computes Dj = gr

∗ · H1(attj)
r∗j

and D′j = gr
∗
j . Finally, it returns the secret key

SKS = (D, {Dj , D
′
j}) to the adversary A.

2) OGenTK(SK): The challenger C searches the S in
the set D. If there exists the tuple, it randomly
chooses u ∈ Zp and generates the TKS and RK,

TKS = SKu
S

RK = u

otherwise, the challenger C runs the KeyGen algo-
rithm to get SKS , and runs GenTK to get TKS .

3) OTrapdoor(SK,W ∗) : The challenger C generates
the Trapdoor TW∗ = (T1, T2), where T1 = TKS =
SKRK

S , RK = u.
The T2 is generated as follows: The challenger
chooses a permutation σ and generates the CDT by
σ as in Section 3.4, for each keyword wi ∈ W ∗,
generates the path(w∗i) = [Ωw∗i ,1, ...,Ωw∗i ,l], where
path(w∗i) represents the path nodes set, which con-
sists of the nodes originate from the leaf node
associated with the keyword w∗i up to the root
node of the tree CDT, then computes T̂WΩw∗

i
,j

=

H2(Ωw∗
i
,j ||σ)

u , i ∈ [1,m], j ∈ [1,log n], and sets
T2 = {Ωw∗i , T̂WΩw∗

i
,j
}. If the attributes set S satisfies

the policy tree T ∗, the challenger adds the keyword
set W ∗ to the keyword list Lkw.

Challenge phase : The A give two keyword sets W ∗0 , W ∗1
to be challenged on, where W ∗0 , W ∗1 /∈ Lkw and the length
of W ∗0 is equal to W ∗1 , the challenger randomly chooses s ∈
Zp, a symmetric key K and computes secret shares of s for
each leaves in T ∗. The challenger chooses λ ← {0, 1} and
generates a permutation σλ corresponding to W ∗λ . If λ =
0, it runs the Encrypt algorithm to generate the ciphertext
corresponding to keyword set W ∗λ and outputs

Iσλ = (σλ||K)e(g, g)α1η , θ = hη ,
{Ii = e(g, g)α1ηH2(Ωi||σλ||K)}i∈[1,t],
{θy = gqy(0), θ′y = H1(att(y))qy(0)}∀y∈Y by selecting

η∈Z∗p;
otherwise, it outputs

Iσλ = (σ λ||K)e(g, g)α1s,θ = hs,
{Ii = e(g, g)α1sH2(Ωi||σλ||K)}i∈[1,t],
{θy = gqy(0), θ′y = H1(att(y))qy(0)}∀y∈Y

Phase2 : This phase is like Phase 1, but the restriction
is that W ∗0 , W ∗1 have not been issued in Phase 1.

Guess: The adversary A outputs a guess for λ′∈{0, 1}.
If λ′ = λ, A wins the IND-CKA game; otherwise, it fails.
We can note that if A can construct e(g, g)χα1sH2(Ωi||σλ||Ki)

by using the term e(g, g)χ contained in the aforementioned
oracles, then A can use it to distinguish e(g, g)η from

9

TABLE 3: Computational Cost Comparison

Scheme PAB-MKS Ours
KeyGen (2s+2)·EG+s·H1 (2s+2)·EG+sH1

Encrypt (m+2|Y |+3)·EG+|Y |·H1+m·H2 (t+1)·EGT +(2|Y |+1)·EG+|Y |·H1+t·H2

Trapdoor (2s+3)·EG+m∗·H2 (2s+1)·EG+(m∗·log n)·H2

Retrieve (2s+4)·P+s·EGT (2s+1)·P+(s+2m∗-1)·EGT

TABLE 2: Notation used in performance evaluation

Notation Description
P The bilinear pairing operation
EG The exponentiation operation in group G
EGT The exponentiation operation in group GT
H1 Map a bit-string to an element of G
H2 Map a bit-string to an element of Zp
|G| The element length in G
|GT | The element length in GT
|Zp| The element length in Zp
s The number of a DU’s attributes
n The number of keyword in W
m The number of keyword in W ′

m∗ The number of keyword in W ∗

t The number of nodes in the cover(W ′)
|Y | The number of leaf nodes in access tree T

TABLE 4: Storage Cost Comparison

Scheme PAB-MKS Ours
KeyGen (2s+1)·|G| (2s+1)·|G|
Encrypt (m+2|Y |+3)·|G| (t+1)·|GT |+(2|Y |+1)·|G|
Trapdoor (2s+3)·|G| (2s+1)·|G|+(m∗·log n)·|Zp|

e(g, g)α1sH2(Ωi||σ0). Therefore, we need to prove that the
adversary A can rebuilt e(g, g)δα1sH2(Ωi||σλ) by using the
term e(g, g)δ with a negligible probability. It means that
A cannot gain non-negligible advantage in the IND-CKA
game. As α1s can be rebuilt by using (α1 + r∗)/α2, qy(0),
α2s due to ((α1 + r∗)/α2)(α2s) = α1s + r∗s, A needs to
cancel r∗s, which needs to use the terms r∗j , r∗ + r∗j , qy(0),
r∗j qy(0). Because of qy(0) is the secret share of s according
to the access tree T ∗. But the adversaryA cannot rebuilt r∗s
for that the terms outlined above can only be rebuilt only if
the attribute set S can meet T ∗.

Therefore, we prove that A gains a negligible advantage
in the IND-CKA game. It is to say that our scheme is secure
against IND-CKA. This completes the proof.

7 PERFORMANCE EVALUATION

In this section, we present the efficiency analysis for our
scheme in terms of both complexity and actual execution
time, and further compare our scheme with the state-of-the-
art PAB-MKS [27]. TABLE 2 defines the notation used in
comparison.

In the theoretical analysis, we mainly show the computa-
tional and storage cost complexity in TABLE 3 and TABLE 4,
respectively. We mainly consider the time-consuming oper-
ations, namely, bilinear pairing operation P , exponentiation
operation EG in group G, exponentiation operation EGT in

group GT , hash operation H1 and H2. We do not consider
the multiplication operations because they are much more
lightweight than the above operations.

7.1 Theoretical Comparison
In TABLE 3, we present the comparison of computation cost
under the same access control policy tree T . We observe that
the complexity of KeyGen in our scheme is the same as that
of the PAB-MKS [27].

In the PAB-MKS scheme, the encryption cost is more
expensive than that of our scheme. Specifically, the former
scheme computation cost is (m + 2|Y | + 3) · EG + |Y | ·
H1 + m · H2, while in our scheme the computation cost
is (t+ 1) ·EGT + (2|Y |+ 1) ·EG + |Y | ·H1 + t ·H2. We note
that t ≤ 2· log (n/2), where n is the number of keyword in
the keyword dictionary W , m is the number of keyword in
W ′ embedded in one file, then t� m, e.g., when n = 1000,
t ≤ 2· log 1000/2 ≤ 18, and the minimum keyword number
in a file is about m = 100.

We state that the computation cost of Trapdoor and
Retrieve in our scheme is also less than that of PAB-MKS.

The computation cost of Trapdoor generation in PAB-
MKS and our scheme are (2s+ 3) ·EG +m∗ ·H2 and (2s+
1) · EG + (m∗·log n) ·H2, respectively.

The computation cost of retrieve in PAB-MKS and our
scheme are (2s + 4) · P + s · EGT and (2s + 1) · P + (s +
2m∗ − 1) · EGT , respectively.

In TABLE 4, we present the comparison of storage cost.
With the same reason shown as in TABLE 3, the storage
cost of keyword index ciphertext (the output of Encrypt
algorithm) in our scheme is less than that in PAB-MKS
scheme, while the storage cost of KeyGen in our scheme
is same as that of PAB-MKS. Our scheme has higher storage
in Trapdoor, but it is acceptable and it is only one-time
operation.

7.2 Experimental Performance
To present the practicability of our scheme in practice, we
implement the scheme and PAB-MKS [27] with real-world
dataset using Python language, and further run the experi-
ment tests for 100 times, in which the dataset includes 1000
distinct keywords extracted from 500 PDF files (academic
papers) provided by the Google Scholar. The maximum
number of the keywords in a file is 200 while the minimum
is 100. Our experimental platform is on Ubuntu 16.04 LTS
with Intel Core i3 Processor 4170 CPU @3.70GHZ with 10.0
GB of RAM. Since these two schemes are highly depen-
dent on the basic cryptographic operations in the pairing
computation, we implement PBA-MKS and our scheme in
software based on the libfenc library [33], using a 224-bit
(|G|=|GT |=224 bits, Zp=224 bits) MNT elliptic curve from
the Stanford Pairing-Based Crypto library.

10

20 30 40 50 60 70 80 90 100
Number of leaf nodes in the policy tree

(a)

32

64

128

256

512

1024
Ti
m
e
co
st
 o
f C

ip
he
rte

xt
 g
en
er
at
io
n(
m
s)

Our,m=100
PAB-MKS,m=100

10 20 30 40 50
Numbers of data user's attribute

(b)

200

300

400

500

600

700

800

900

1000

1100

1200

Ti
m

e
co

st
 o

f T
ra

pd
oo

r g
en

er
at

io
n(

m
s)

Our,m*=2
Our,m*=10
PAB-MKS,m*=2
PAB-MKS,m*=10

2 4 6 8 10
Numbers of the query keyword

(c)

365

370

375

380

385

Ti
m
e
co

st
 o
f R

et
rie

ve
(m

s)

Our, s=60
PAB-MKS, s=60

10 15 20 25 30 35 40 45 50
Numbers of User's Attributes

(d)

1

2

3

4

5

Le
ng

th
 o
f K

ey
(K

B)

Our
PAB-MKS

20 40 60 80 100
Number of leaf nodes in the policy tree

(e)

6

8

10

12

14

16

Le
ng
th
 o
f C
ip
he
rte
xt
(K
B)

PAB-MKS, m=100
Our, m=100

10 20 30 40 50
Numbers of data user's attribute

(f)

3
4
5
6
7
8
9

10
11
12
13
14
15

Le
ng

th
 o

f T
ra

pd
oo

r(K
B)

Our,m*=2
Our,m*=10
PAB-MKS,m*=2
PAB-MKS,m*=10

100 120 140 160 180 200
Number of keyword in a file

(g)

8

10

12

Le
ng

th
 o

f C
ip

he
rte

xt
(K

B)

PAB-MKS,|Y|=20
Our, |Y|=20

Fig. 7: The performance of the PABE-MKS and our scheme

To bring convenience in comparison, in PAB-MKS and
our scheme, we encrypt the keyword sets of each file by us-
ing the same access control policy T . For example, the policy
tree T is “AND” access tree: (A1 AND A2 AND,...,AND
A|Y |), where Ai is an attribute. We set the number of DU’s
attribute s∈[10, 20, 30, 40, 50], the number of leaf node in
the access policy tree |Y |∈[20, 40, 60, 80, 100], the number of
keyword in each files m=100, and the number of keyword
in the query m∗∈[2, 4, 6, 8, 10].

Fig. 7a presents the computation time cost of ciphertext
generation which is executed by DO. As described in TABLE
3, the ciphertext generation time cost of the scheme PAB-
MKS is affected by two factors, the number of keyword
embedded in a file (m) and the number of leaf nodes (|Y |)
in policy tree T , while the ciphertext generation time is
affected by t and |Y | in our scheme. We further set m = 100
and n = 1000 in the Encrypt phase. Because t ≤ 2·log
(n/2) ≤ 18, and then t � m, thus, we have that the cost
time of ciphertext generation in our scheme is efficient than
PAB-MKS. When |Y | = 60, the computation cost time is
131ms for us, while the PAB-MKS scheme needs 946ms to
generate a ciphertext.

Fig. 7b presents the computation time cost of gener-
ating a trapdoor which is executed by DU. As described
in TABLE 3, the trapdoor generation time cost of the
scheme PAB-MKS and our scheme is affected by two factors:
m∗ and s. The PAB-MKS scheme and our scheme need
(2s+3)·EG+m∗·H2, (2s+1)·EG+(m∗·log n)·H2 in trapdoor
generation phase, respectively. Because the hash operation
H1 is much more efficient than the exponentiation opera-
tions [19], then the hash operation almost can be ignored.
Thus, the trapdoor generation cost in our scheme is efficient
than that of PAB-MKS. As Fig. 7(b), we can see that when
m∗ = 2 and m∗ = 10, the our cost of generating trapdoor
is efficient than that in PAB-MKS scheme, respectively. For
example, when s = 50, m∗ = 10, our scheme (requiring 809
ms) outperforms the PAB-MKS scheme (1186 ms) by around
300 ms.

Fig. 7c presents the computation time cost of retrieving
the ciphertext. As described in TABLE 3, the time cost of
retrieve algorithm in PAB-MKS and our scheme are (2s +
4) ·P +s ·EGT , (2s+1) ·P +(s+1) ·EGT , respectively. Since
one time exponentiation computation is efficient than one
time pairing operation under the same security condition,

11

we can state that our scheme is efficient than PAB-MKS in
retrieving process. For example, when s = 50, m∗ = 6, our
scheme only takes 74.636748 ms.

As described in TABLE 4, the storage cost of KeyGen
algorithm in PAB-MKS and our scheme are (2s + 1) · |G|,
(2s+ 1) · |G|, respectively. As shown in Fig. 7d, the storage
cost of KeyGen algorithm in our scheme is the same as that
in PAB-MKS.

Fig. 7e and Fig. 7g present the ciphertext size of PAB-
MKS and our scheme. As the analysis in TABLE 4, the
number of keyword index ciphertext of PAB-MKS is affected
by m and |Y |, while ours is affected by t and |Y |. Due to
t ≤ 2· log (n/2), as shown in Fig. 7e, when setting m = 100,
as the number |Y | decreases, our scheme outperforms the
PAB-MKS in terms of storage cost in Encrypt algorithm. For
instance, when setting n = 1000, m = 100, |Y | = 60, the
ciphertext length of PAB-MKS is 12.19 KB, while ours is
8.42 KB. As shown in Fig. 7g, when setting |Y | = 20, with
the increase of keyword number m, the number of keyword
index ciphertext in our scheme is constant, while that of
PAB-MKS is linearly growing with m.

Fig. 7f presents the trapdoor size of the two schemes.
As the analysis in TABLE 4, compared with PAB-MKS, the
trapdoor size in our scheme is slightly more than PAB-MKS
due to the extra item (m∗· log n)|Zp|. For example, when
setting s = 50, m∗ = 10, the trapdoor size of PAB-MKS
and ours are 12.875 KB and 14.578 KB, respectively. Then
our scheme is still acceptable in practice since the Trapdoor
algorithm is a one-time cost.

8 CONCLUSION

In this paper, we’ve proposed an efficient ABMKS with
short-size ciphertext of keyword index which provides se-
cure multi-keyword search service with fine-grained access
control. Its number of search index is very small, being
independent on the number of underlying keyword in a
file. The formal security analysis shows that our scheme is
secure. Moreover, the performance evaluation demonstrates
that the scheme is efficient in terms of both the computation
and communication overhead in practice.

ACKNOWLEDGMENTS

This work is supported by NSFC (Grant Nos. 61672110,
61671082, 61976024, 61972048)

REFERENCES

[1] Kamara, S., & Lauter, K. (2010, January). Cryptographic cloud
storage. In International Conference on Financial Cryptography
and Data Security (pp. 136-149). Springer, Berlin, Heidelberg.

[2] Yu, Y., Li, Y., Au, M. H., Susilo, W., Choo, K. K. R., & Zhang, X.
(2016, July). Public cloud data auditing with practical key update
and zero knowledge privacy. In Australasian Conference on Infor-
mation Security and Privacy (pp. 389-405). Springer, Cham.

[3] JoSEP, A. D., KAtz, R., KonWinSKi, A., Gunho, L. E. E., PAttERSon,
D., & RABKin, A. (2010). A view of cloud computing. Communica-
tions of the ACM, 53(4).

[4] Quick, D., & Choo, K. K. R. (2013). Dropbox analysis: Data rem-
nants on user machines. Digital Investigation, 10(1), 3-18.

[5] Quick, D., & Choo, K. K. R. (2016). Big forensic data reduction:
digital forensic images and electronic evidence. Cluster Computing,
19(2), 723-740.

[6] Liu, Z., Li, T., Li, P., Jia, C., & Li, J. (2018). Verifiable searchable
encryption with aggregate keys for data sharing system. Future
Generation Computer Systems, 78, 778-788.

[7] Song, D. X., Wagner, D., & Perrig, A. (2000, May). Practical tech-
niques for searches on encrypted data. In Proceeding 2000 IEEE
Symposium on Security and Privacy. S&P 2000 (pp. 44-55). IEEE.

[8] Bellare, M., Boldyreva, A., & O’Neill, A. (2007, August). Determin-
istic and efficiently searchable encryption. In Annual International
Cryptology Conference (pp. 535-552). Springer, Berlin, Heidelberg

[9] Bao, F., Deng, R. H., Ding, X., & Yang, Y. (2008, April). Private
query on encrypted data in multi-user settings. In International
Conference on Information Security Practice and Experience (pp.
71-85). Springer, Berlin, Heidelberg.

[10] Chai, Q., & Gong, G. (2012, June). Verifiable symmetric searchable
encryption for semi-honest-but-curious cloud servers. In 2012 IEEE
International Conference on Communications (ICC) (pp. 917-922).
IEEE.

[11] Curtmola, R., Garay, J., Kamara, S., & Ostrovsky, R. (2011). Search-
able symmetric encryption: improved definitions and efficient con-
structions. Journal of Computer Security, 19(5), 895-934.

[12] Kamara, S., Papamanthou, C., & Roeder, T. (2012, October). Dy-
namic searchable symmetric encryption. In Proceedings of the 2012
ACM conference on Computer and communications security (pp.
965-976). ACM.

[13] Boneh, D., Di Crescenzo, G., Ostrovsky, R., & Persiano, G. (2004,
May). Public key encryption with keyword search. In International
conference on the theory and applications of cryptographic tech-
niques (pp. 506-522). Springer, Berlin, Heidelberg.

[14] Hwang, Y. H., & Lee, P. J. (2007, July). Public key encryption
with conjunctive keyword search and its extension to a multi-user
system. In International conference on pairing-based cryptography
(pp. 2-22). Springer, Berlin, Heidelberg.

[15] Li, J., Wang, Q., Wang, C., Cao, N., Ren, K., & Lou, W. (2010,
March). Fuzzy keyword search over encrypted data in cloud com-
puting. In 2010 Proceedings IEEE INFOCOM (pp. 1-5). IEEE.

[16] Bellare, M., Boldyreva, A., & O’Neill, A. (2007, August). Determin-
istic and efficiently searchable encryption. In Annual International
Cryptology Conference (pp. 535-552). Springer, Berlin, Heidelberg.

[17] Baek, J., Safavi-Naini, R., & Susilo, W. (2008, June). Public key en-
cryption with keyword search revisited. In International conference
on Computational Science and Its Applications (pp. 1249-1259).
Springer, Berlin, Heidelberg.

[18] Cui, B., Liu, Z., & Wang, L. (2015). Key-aggregate searchable
encryption (KASE) for group data sharing via cloud storage. IEEE
Transactions on computers, 65(8), 2374-2385.

[19] Zheng, Q., Xu, S., & Ateniese, G. (2014, April). VABKS: verifiable
attribute-based keyword search over outsourced encrypted data. In
IEEE INFOCOM 2014-IEEE Conference on Computer Communica-
tions (pp. 522-530). IEEE.

[20] Zhang, R., Xue, R., Yu, T., & Liu, L. (2016, June). PVSAE: A public
verifiable searchable encryption service framework for outsourced
encrypted data. In 2016 IEEE International Conference on Web
Services (ICWS) (pp. 428-435). IEEE.

[21] Sun, W., Yu, S., Lou, W., Hou, Y. T., & Li, H. (2014). Protecting
your right: Verifiable attribute-based keyword search with fine-
grained owner-enforced search authorization in the cloud. IEEE
Transactions on Parallel and Distributed Systems, 27(4), 1187-1198.

[22] Huang, Q., & Li, H. (2017). An efficient public-key searchable
encryption scheme secure against inside keyword guessing attacks.
Information Sciences, 403, 1-14.

[23] Chen, R., Mu, Y., Yang, G., Guo, F., & Wang, X. (2015). Dual-
server public-key encryption with keyword search for secure cloud
storage. IEEE transactions on information forensics and security,
11(4), 789-798.

[24] Miao, Y., Ma, J., & Liu, Z. (2016). Revocable and anonymous
searchable encryption in multi-user setting. Concurrency and Com-
putation: Practice and Experience, 28(4), 1204-1218.

[25] Miao, Y., Ma, J., Liu, X., Jiang, Q., Zhang, J., Shen, L., & Liu,
Z. (2017). VCKSM: Verifiable conjunctive keyword search over
mobile e-health cloud in shared multi-owner settings. Pervasive
and Mobile Computing, 40, 205-219.

[26] Miao, Y., Ma, J., Liu, X., Li, X., Jiang, Q., & Zhang, J. (2017).
Attribute-based keyword search over hierarchical data in cloud
computing. IEEE Transactions on Services Computing.

[27] Miao, Y., Ma, J., Liu, X., Li, X., Liu, Z., & Li, H. (2017). Practical
attribute-based multi-keyword search scheme in mobile crowd-
sourcing. IEEE Internet of Things Journal, 5(4), 3008-3018.

12

[28] Golle, P., Staddon, J., & Waters, B. (2004, June). Secure conjunc-
tive keyword search over encrypted data. In International Confer-
ence on Applied Cryptography and Network Security (pp. 31-45).
Springer, Berlin, Heidelberg.

[29] Park, D. J., Kim, K., & Lee, P. J. (2004, August). Public key encryp-
tion with conjunctive field keyword search. In International Work-
shop on Information Security Applications (pp. 73-86). Springer,
Berlin, Heidelberg.

[30] Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006, October).
Attribute-based encryption for fine-grained access control of en-
crypted data. In Proceedings of the 13th ACM conference on
Computer and communications security (pp. 89-98). Acm.

[31] Bethencourt, J., Sahai, A., & Waters, B. (2007, May). Ciphertext-
policy attribute-based encryption. In 2007 IEEE symposium on
security and privacy (SP’07) (pp. 321-334). IEEE.

[32] Naor, D., Naor, M., & Lotspiech, J. (2001, August). Revocation
and tracing schemes for stateless receivers. In Annual International
Cryptology Conference (pp. 41-62). Springer, Berlin, Heidelberg.

[33] Green, M., Akinyele, A., & Rushanan, M. (2004). libfenc: The
functional encryption library. Avaiable from http://code. google.
com/p/libfenc. Baodong Qin received the B. Sc. degree.

Zhidan Li received his bachelor’s degree at
ZhengZhou university in 2013. Now he is doing
research in the Institute of Network and Tech-
nology at BUPT and his interests are focused on
the network security and cryptography protocols.
E-mail: zhidanli@bupt.edu.cn

Wenmin Li received the B.S. and M.S. degrees
in Mathematics and Applied Mathematics from
Shaanxi Normal University, Xi’an, Shaanxi, Chi-
na, in 2004 and 2007, respectively, and the Ph.D.
degree in Cryptology from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2012. Her research interests include cryp-
tography and information security. E-mail: liwen-
min02@outlook.com

Fei Gao received the B.S. degrees and the Ph.D.
degree in Cryptology from Beijing University of
Posts and Telecommunications, Beijing, China,
in 2002 and in 2007, respectively. Now he is
a Professor, doctoral supervisor of Beijing Uni-
versity of Posts and Telecommunications. Her
research interests include Quantum cryptogra-
phy protocol and its security analysis, Quantum
Private Query, Quantum key distribution. E-mail:
gaof@bupt.edu.cn

Wei Yin Wei Yin, received the B.S. degree
in Mathematics and Applied Mathematics from
Huaibei Normal University, Huaibei, Anhui, Chi-
na, in 2012, and the Ph.D degree in cryptog-
raphy from Beijing University of Posts and T-
elecommunications, Beijing, China, in 2019. His
research interests include public key cryptogra-
phy, lattice cryptography, and provable security.

Hua Zhang received the BS degree in telecom-
munications engineering from the Xidian Univer-
sity in 1998, the MS degree in cryptology from X-
idian University in 2005, and the Ph.D degree in
cryptology from Beijing University of Posts and T-
elecommunications in 2008. Now she is a lectur-
er of Beijing University of Posts and Telecommu-
nications. Her research interests include cryp-
tography, information security and network secu-
rity. E-mail: zhanghua 288@bupt.edu.cn

Qiaoyan Wen received the B.S. and M.S. de-
grees in Mathematics from Shaanxi normal U-
niversity, Xi’an, China, in 1981 and 1984, re-
spectively, and the Ph.D degree in cryptography
from Xidian University, Xi’an, China, in 1997.
She is a professor of Beijing University of Posts
and Telecommunications. Her present research
interests include coding theory, cryptography, in-
formation security, internet security and applied
mathematics. E-mail: wqy@bupt.edu.cn

Kaitai Liang received the Ph.D. degree from
the Department of Computer Science, City U-
niversity of Hong Kong, in 2014. He is current-
ly an Assistant Professor with the Department
of Computer Science, University of Surrey, U.K.
His research interests are applied cryptography
and information security, in particular, encryp-
tion, network security, big data security, privacy
enhancing technology, blockchain, lattice-based
crypto and security in cloud computing. E-mail:
k.liang@surrey.ac.uk

