Exact maximum expected differential and linear
probability for 2-round Kuznyechik
(Extended Abstract)

Vitaly Kiryukhin

JSC «InfoTeCS», Moscow, Russia
Vitaly.Kiryukhin@infotecs.ru

Abstract

This paper presents the complete description of the best differentials and lin-
ear hulls in 2-round Kuznyechik. ~We proved that 2-round MEDP = 278666
MELP = 2776739 A comparison is made with similar results for the AES cipher.

Keywords: Kuznyechik, LSX, MDS codes, differential cryptanalysis, linear cryptanalysis,
MEDP, MELP.

1 Introduction

This paper presents the results of the development of low-complexity
algorithms, that will allow to find the complete description of the best differ-
ential trails, differentials, linear characteristics, linear hulls and exact values
of maximum expected differential and linear probability (MEDP, MELP) for
2-round Kuznyechik.

We proved that 2-round MEDP = 278666« MELP = 2776:739

A comparison is made with similar cryptanalysis results for the AES
cipher [1].

The main focus will be on the differential method. The results of the
search for linear characteristics will be obtained in a similar way, due to the
existence well-known duality between differential cryptanalysis and linear
cryptanalysis [2].



2 Basic information

Kuznyechik block cipher [3| consists of a sequence of 9 rounds and a
post-whitening key addition. Each round contains three operations:

X —modulo 2 addition of an input block with an iterative key;

S — parallel application of a fixed bijective substitution to each byte of
the block:;

L — linear transformation which is defined as a LFSR over GF'(2%). It can
be represented as multiplication by the matrix L over GF(28).

The block size is 128 bits (n = 16 bytes).

A 2-round differential trail can be represented as the following scheme:

Ax

[sIs[s]|s[s[s]|s[s[s]|s[s[s][s[s[s]S]
Ay
| L |
Ay
[sIs[s|s[s[s]|s[s[s]|s[s[s]s[s[s]S]

Ay

Figure 1: 2-round differential trail

Az = (z1,...,x,) — the difference of input blocks in byte representation,

Ay = (aq, ..., ap) — the difference of blocks after the nonlinear transfor-
mation on the first round,

Ay = (B1, .., Bn) = (aq, ..., a;) L — the difference of blocks after the linear
transformation (matrix multiplication in row-by-row representation),

Ay = (y1,...,yn) — the difference of blocks after the nonlinear transfor-
mation on the second round.

Note that due to «linearity» and «invertibility» the linear transformation
on the second round can be omitted without loss of generality.

The nonlinear transformation of each S-box is characterized by a matrix
of transition probabilities (Differential Distribution Table). DDT is the set
of local difference characteristics:

P(a — B) = Pr(S(x ® @) ® S(x) = B), a, B,x € {0,1}", (1)

where y is a uniformly distributed random variable. S-box with nonzero input
difference o #£ 0 is called active.
2-round differential trail Az — Ay — Ay — Ay is a random variable,



that has a probability (EDCP [1])

P(Az — A = Ay — Ay) = (HP Ti — oy ) (ﬁ P(B; — yz)> . (2)

The best differential trail has probability

PIral — py(Ax — A — Ay — Ay) =
= max P(Ax — Ay — Ay — Ay).
(A:c A1,A2,Ay)\(0,0,0,0)
Differential is the set of all differential trails that have the same Az and
Ay.
Differential is characterized by the probability (EDP [1])

P(Az — Ay) = Z((HP:UJ%M)(HP —>y]>>, (3)

=1

where 71" is the number of the differential trails in the differential.
The best differential has probability (MEDP [1)):

Pbdelsftf Pyest(Az — Ay) = (Ax,rilg%)\{(Oﬂ)P(Ax — Ay)

Our first goal is to find the most probable differential trail — the best
differential trail.

Matrix L is part of the matrix G = E|L. G is the generator matrix of
the MDS-code (32,16,17) over GF(28). Thus, the minimum possible total
weight of vectors Ay and As is equal to the minimum code distance d = 17.
We will start searching for the most probable differential trail by finding all
minimum byte weight codewords in G.

3 Algorithm for finding codewords with the smallest
byte weight

Let (t,r) such, that t+r=n+1,t> 0,7 > 0. Fix ky, ..., k, mq,...,m,

— locations of non-zero elements in the vectors Ay = (ayq, ..., ;) and Ay =

(b1, ..., Bn) accordingly. Let’s present the transformation AL = As as a

system of equations. Select the subsystem S,_,; in the system A;L = Ay:

(Qhys oy ,) - Sp—pt = (0,...,0). Solve the subsystem S,,_,; . The set of
——

n—r



solutions is (oz,(fl), e ,oz]ii)), 1 = 1,255. Hence we have the set of A@ and the
set of A = AVL | i =T,255.
Let’s denote these sets of solutions

MO (kg kyma,omyg) = (ol e 80 80, i =T, 255,
(4)
The union of such sets is the set

M(n+1) = U M(”H)(kl,...,kt,ml,...,mr)

of all code vectors of minimum weight n + 1. The cardinality of the set

M(n+1) 18 equal to 2595 - Z(t,r):t+r:n+1 (1;) (:’L) = 255 - (n2j1)' NOte’ that the

same expression for the number of codewords of minimal weight is obtained
in [5].
Pseudocode of the algorithm is presented in Appendix E.

4 Algorithm for finding the best differential trail

In general, we consider differential trails for 2 rounds
A.T-)Al—)AQ—)Ay

We start with differential trails containing the minimum number of active
S-boxes (minimal weight of Ay and As).

To  simplify the notation we denote (A1, As) =
(Qhyy e oy Oy By o+ Bm,)y  t+ 1 > d = 17. Coordinates equal to
zero are omitted in notation.

Praz (A1, Ag) = (H mJ?XP(x — ozkj)> (H manP(ﬁmj — y))

J=1 j=1

is the maximum probability of differential trail with a fixed vector (A, Ay).
Then the most probable differential trail Az — A; — Ay — Ay has the
probability:
PIral —  max  Pae(Ar, Ay).
(A1,A2)\(0,0)
Let the vector (Ay, Ag) has a weight n + 1:

Plfggtil > max Pmax(Ala AZ)

(A1,Ap)eM (n+1)



Two sets of differential trails were found in M®™+Y). Each trail in both
sets has a maximum probability:

] 13 6 4
(A1, Ap)EM D) 256 256

The trails in the set have the same inner part (Ay, As). There are no other
trails that would have a maximum probability.
The found differential trails are presented in Appendix A.

Lemma 1. Let Ax — Ay — Ay — Ay be the differential trail in 2-round
Kuznyechik. Let P(Ax — Ay — Ay — Ay) be mazimal among all trails.
Then the weight (A1, As) is equal ton + 1 = 17.

Proof. One can see that the estimate

P(Ax — Ay — Ay — Ay) <[ max Pla— . 5
Ao BBy 8 < max Plasd) )
is true for any differential trail Az — A1 — Ay — Ay, [|A1]] +[|Az]| = w =
t+r.

In the case of Kuznyechik, max P(a — ) = (g5). Then for any

(@,8)\(0,0) 256
w > 18 it holds that:

P(Ax — Ay — Ay — Ay) < (%) <

g \ 18
< | = < max Pmax(Ala AQ) = 2_86’66'".
256 (A1, Az)eM(+1)

Hence Pirail = 278666 Temma 1 is proved. O

5 Algorithm for finding the best differential

Suppose that the best differential will also be achieved on a configuration
containing the minimum number w = n + 1 = 17 of active S-boxes.

Each subset MV (ky, ... ky,,mq,...,m,) contains exactly 255 code vec-
tors. The sets ki,...,k; and mq,...,m, specify the positions of active S-
boxes. Hence the differential Ax — Ay contains trails from only one subset
MO (ky, .o ky,my, ..., m,). Consequently, in expression (3) 7' = 255.

Consider an algorithm that allows you to get rid of the exhaustive search.
It is based on the «prunings of the branches of the search tree by using the
constructed upper bounds.



In the previous paragraph, the exact value of the best differential trail
is given Pbtggt” — 278666 This probability is the lower bound for the
probability of the best differential. It is always possible to construct a differ-

ential, consisting of one best trail Pbdei Sftf > Pbtggfl. We will use the probability

pliff _

/) = Pirail a5 a threshold value.

5.1 Algorithm for calculating the upper bound of the differential

Let a subset of codewords (4) is given. Calculate the upper bound of the
differential.

Fix u < t, v <r. Select t — u coordinates a and r — v coordinates [ in
the equation (4):

part? = (oz,i?, o oz,(f) gw g% )i =T, 255,

_u) Tmy? my—y

For all 7 = 1,255 we obtain an easily computable upper bound for the
«part» of the differential trail

P(Az — part’) — Ay) <
t—u r—v
< maxP(z — oz(i_)) maxP (5 = y) | .
([ ) (e

Let’s order these estimates in descending order.
We will construct for each = (and y) the sequence of transition probabil-
ities. Let’s use the S-box transition probability matrix (DDT):

P(z — oY) > Pz = a®9) > .. > Pz — o®)) 2 =T,255, (6)

P — y) > P(BPY - y) > ... > P(B®) - y), y=T,255. ()
X = maxP(z — a'%%), Y9 = maxP(4Y) — y). (8)
y

T

Consider the differential (3). Let the summands be ordered in descending
order. Then

P(Az — Ay) < n;}vn <§5: (X(Q)>“ <Y(Q)>U (P(Ax = part@ = Ay))) .

qg=1
)
If the resulting upper bound (9) is less than the threshold Pe;gf / , then the
subset is no longer considered.

In practice, the values v and v are selected experimentally depending



on the cipher substitution. For Kuznyechik © = v = 2 are close to optimal
parameters. For such values, approximately 1% subsets are excluded from
being considered.

5.2 Algorithm for constructing the differential

Suppose that for some subset M ™D (ky, ...k, my, ..., m,) the estimate
is greater than the threshold value Pgﬁf ! Then the following estimate also
holds

255 [ t
P(Ax — Ay) < Z (H maxP(z — ozk HmaXP B(’z — y)) . (10)
i=1 \j=1

We will sequentially search through possible non-zero values xy,, . ..,
and Yy, - - - Ym, - The maximum values mgxP (x — a](g?) (and m;%xP (57(72 —

y)) will be replaced by the immediate values P(xy, — ozé?) (P(/i’%g — Ym,)
accordingly). We will also use the pruning of the branches of the search tree.
Denote

P(ay,ag,...a5) = Plag, = a1, vk, = ag, ..., T, = G5, Tj; xy, — Ay),

P(al,ag,. Lag) <

255 [ s
< Z (HP a; — O‘k H maXP(:c — Ozk HmaXP By(n) - ?J))

Jj=s+1

s+ "t

In the estimate (10), we fix the first factor with the number k;(the place
of the first nonzero element). Let zx, = 1. Then we replace maxP(z —

<)) by P(1 — ak ) After that we have the estimate P(a; = 1). If the
estimate P(a; = 1) is less than the threshold value P then we perform a

est
search among the elements xy, = 2, 3,...255. We will search until the element

Tr, = a1, P(ay) > P is found. If such x4, is not found, then the subset

est
MO+ (ky ok, my, ..., m,) is excluded from being considered.
Let such x;, = a; is found. We perform similarly search of the second
factor. Consider the bytes zx, = 1,2,...,aq,...,255. Substituting P(ay —

oz,(fz)) instead of maXP(x — oz,g)) into the estimate P(ay). Do this until as :

P(ay, as) > P%/ > is found. If such an element is not found then return to the
previous step and try to accomplish this algorithm for the remaining bytes
Tk, > Q1.

We continue the recursive search. We replace the «s+1»-th factor in

7



P(ay,as9,...as) with the value P(a — ozg) ), a = 1,2,...,255. Multipli-
ers maxP(Bm — y) are replaced by values P(ﬁm —b), b=1,2,...,255.

If the algorithm substituted all the elements aq,...,as 01,...,b, and
did not reject the subset of codewords, then we obtained an exact estimate
P(ay,...,ap — by, ..., b,) and the differential

255 [ ¢
P(Azx — Ay) = Z(HPCL]—)O(Z><HP >>Pj;ff.

=1 \j=1
(11)
In this case, the value P REET updated. We return to the pre-

est

vious step of the algorithm and continue the search in the subset
M(n+1)(/€1, ceey kt,ml, Ce ,mr).

The last step of the algorithm: Pbd; Sj;f = Pj;if I

It was shown that if the number of active substitutions is n + 1 = 17,
then each best differential contains only one differential trail.

The best differential trails are presented in Appendix A. Pseudocodes of
algorithms are presented in Appendix E.

Lemma 2. Let Ax — Ay is the differential in 2-round Kuznyechik. Let
P(Axz — Ay) be mazimal among all differentials. Then the number of active
S-boxes in Ax — Ay is equal ton + 1 = 17.

The main idea of the proof is to construct an upper bound for the differ-
ential Az — Ay containing n + 2 = d + 1 = 18 active S-boxes. The upper
estimate is built by using: two majorants (8); the MDS code property (byte
weight of the sum of codewords is not less than n + 1); the rearrangement
inequality [6]. The proof of the Lemma is presented in Appendix D.

6 The comparison with AES

The comparison of the results given in this paper for Kuznyechik with
the results of the AES cipher analysis is of particular interest [1].

Note the following differences between 2-round versions of the ciphers
3, 4].

Kuznyechik — one MDS-matrix 16 x 16; pseudorandom, non-analytical
S-box; DDT and LAT do not have obvious patterns.

AES — byte permutation layer and four MDS-matrix 4 x 4; all nontrivial
rows and columns in DDT (and LAT) have the same distribution of values.



Differences in linear and non-linear transformations lead to different ap-
proaches for calculating differential and linear characteristics.

In the case of AES the actual work is reduced to a single MDS-matrix
4 x 4. This allows you to construct the entire set of codewords. In the case of
Kuznyechik, due to the use of the algorithm (3), only low-weight codewords
are iterated over. After that, it is analytically shown that the differential on
codewords of greater weight will be worse than the constructed one.

The best differential in AES consists of 75 differential trails. The estimate
(6) is used in the construction of the differential. The estimate (10) will be
the same for any subset of code words and is therefore not used. MEDP =
928272 \[ELP = 227287

The best differential in Kuznyechik consists of a single differential trail,
but the best linear hull consists of 37 linear characteristics. Due to the algo-
rithm 5.1 it is shown that for the majority of considered subsets of codewords
the best differential on them is not achieved. For the remaining subsets, an
attempt is made to construct the best differential (algorithm 5.2). This is

due to a sequence of transitions from the estimate (10) to the exact value
(11). We got: MEDP = 2786:06- NMELP = 2776-73%

7 Conclusion

The article presented: the algorithm for finding codewords with the small
byte weight; algorithms for finding the complete description of the best dif-
ferential trails (linear characteristics), differentials (linear hulls) in 2-round
Kuznyechik.

The best differentials (linear hulls) and their probabilities were found.
It was shown that the best differential contains one differential trail; the
best linear hull contains 37 linear characteristics (Appendix A and B). We
proved that 2-round MEDP = 2786:66.. MELP = 27767% The estimate
(5) for a differential trail (linear characteristic) is not achieved for 2-round
Kuznyechik.

For any LSX cipher, the N-round MEDP (MELP) is the upper bound for
(N + 1)-round MEDP (MELP). Therefore, the 2-round MEDP (MELP) of
Kuznyechik is the upper bound for any larger number of rounds. Obtaining
a more precise upper bounds is the subject of further research.



Acknowledgments

The author is very grateful to Igor Arbekov and Anton Naumenko for
valuable comments and suggestions on the text of the article.

References

[1] Keliher, L., Sui, J.: Ezact maximum ezpected differential and linear prob-
ability for two-round advanced encryption standard. IET Information Se-
curity 1(2), 53-57 (2007), https://doi.org/10.1049 /iet-ifs:20060161

|2] E. Biham, On Matsui’s linear cryptanalysis, Advances in Cryptology —
EUROCRYPT94, in: Lecture Notes in Comput. Sci., Vol. 950, Springer,
Berlin, 1995, pp. 341-355

[3] GOST R 34.12-2015 - National standard of the Russian Federation —
Information technology — Cryptographic data security — Block ciphers,
2015

[4] National Institute of Standards and Technology. Advanced Encryption
Standard (AES) (FIPS PUB 197), 2001

[5] F.J.MacWilliams, N.J.A.Sloane. The Theory of Error-Correcting Codes.
North Holland, Amsterdam, 1977

[6] Hardy G.H., Littlewood J.E., Pélya G. Inequalities, Cambridge Mathe-
matical Library (2. ed.), Cambridge: Cambridge University Press, 1952

10



Appendix

A The best differentials

080000808880600 8| PAxr— A)-256
0019000000002d00b8b8950072000028 Aq
2a00000d2337£74d0082a80000009d1b Ao
8008888608600068| P(Ay— Ay)-256

0886088808800808|PAr—A)-256
00a5def70085853700ec0300009c005a Aq
0068ea0d00£700d4d006d000000000090 Ao
066808060800000 8| P(Ay— Ay)-256

Table 2: Second optimal internal part(A; — Ay). It generates 24 best differentials.

B Application to Linear Cryptanalysis

There is a certain duality between differential and linear cryptanalysis
[2]. It allows us to apply the algorithms described above to calculate linear
characteristics.

We make the appropriate substitutions.

Differential probability (1), are replaced by linear probability. DDT is
replaced by Linear Approximation Table (LAT). Input/output differences «
and [ are replaced by input/output masks o’ and ' correspondingly.

P(a/ — (') = (2Pr(d’ e x = 8" e S(x)) — 1), o/, 8, x € {0,1}",

where o is the inner product over {0, 1}.
By analogy with the differential trail a linear characteristic for 2 rounds
is introduced:
a— pup — puo — b

[ts probability (by analogy with (2)) is equal to

P(a — i — piz — b) (H ] — ul[J])) (H P(palj] — b[J’])) :

11



where [7] is j-th coordinate of the corresponding vector.
The linear hull (similar to differential) is the set of all linear characteristics
having input mask a and output mask b.

a-b) ={a—op =4 5b i=1T}

The probability of the linear hull (a — b) is equal to:

P(a%b)i«ﬂPa[J — [ )(HP J]—>b[]))>,

i=1 j=1

where T" is the number of linear characteristics.
You need to replace all formulas in the sections 4 and 5 according to the
above analogies.
The maximum probability of the local linear characteristic of Kuznyechik
is
/ !/ / /
Praz(a” = ) (a/,rﬂI}fa{}({(),O)P(& — )

(o (128428\ ' (56
N 256 -\ 256 )

The trivial estimate of the two-round linear characteristic is

217
ﬁ) _ 9-T4549...

P b) <
max (a— pup — s — b) < (256

(aaﬂl,ﬂzvb)\(ovo’ovo)
The following results are obtained by executing the algorithms.
The best linear characteristic has a probability equal to

Pla— u1 — p2 — b) =
(a,ul,uﬂoﬁop,o,m (&= — p2 )

(6N (52N AN .
256 256 256 '

The linear hull (a — b) has a nontrivial form and (unlike the differential

method) contains 37 linear characteristics a — ugi) — ,ug) — b, =1,3T7.

The exact probability of the linear hull is

max P(a — b) — 2—76.739... . (1 4 2—61.407) ]
(a,b)\(0,0)

12



00 28 00 28 28 00 00 26 00 28 00 00 00 24 00 00

\/Pla—p1)
256 - Y—5——

00 6a 00 97 55 00 00 06 00 2f 00 00 00 9a 00 00

H1

9f 23 45 ba 5a b8 00 00 00 00 41 00 4c 87 87 0d

H2

24 24 26 26 28 28 00 00 00 00 28 00 28 28 28 26

\/ P(u2—b)
256 - Y—F—

Table 3: Optimal internal part(u, — p2).

The optimal inner part (u; — u2) generates the best linear hull.

The best linear hull (a, b) consist of 37 linear characteristics a — 3

00 41 00 de 48 00 00 c6 00 5a 00 00 00 9f 00 00 | a

9a 38 e8 a2 2f 69 00 00 00 00 6a 00 a7 ab ab 4b | b

Table 4: The best linear hull (a, b)

,ugi) — b, which are listed below (Table 5 and 6).

(1)

i e ns logy P(a — p —
)
1 | 000800153d0000ef00e2000000020000 | 7e3ceaad70£7000000005£0048c2c217 -160.980. ..
2 | 00200056£40000bc008b000000080000 | £9£3abb6c1dd000000007c002209095¢e -150.676. ..
3 | 003£009b580000d7000d0000000£0000 | aea232db819600000000a8003cf1f194 -157.973. ..
4 | 0046005e0200002200b7000000110000 | 27£2f1£753e900000000cd0082adad4f -158.150...
5 | 006900ee2000002b007£0000001a0000 | 75291677329100000000db002£d8d8f4 -155.5561...
6 | 007100d06700001a00580000001c0000 | £76c2981a288000000003a00f69e9ecc -139.633...
7 | 008d00bd04000045006£000000230000 | 4eebe2eeabd2000000009b00055b5b9e -148.300. ..
8 | 00a2000d2600004c00a7000000280000 | 1c3e056ec7aa000000008d00a82e2e25 -154.032...
9 | 00bd00c08a00002700210000002£0000 | 4b6£9c0387e1000000005900b6d6d6ef -141.656. ..
10 | 00cb00e30600006700d8000000320000 | 69171319£53b00000000560087£6£6d1 -152.336. ..
11 | 000a0050720000540012000000420000 | 61b31086ac4a0000000088009a323212 -160.721...
12 | 004b00£d9b00002c000c000000520000 | 935547ea2f£1000000007000df2121af -148.862. ..
13 | 005b00d6e10000£200c9000000560000 | 6£2c92b1lcf1£f00000000ce004eabab80 -156.558. ..
14 | 006300be5200007£0065000000580000 | 149a06£f19edb000000005300b5eacaeb -140.159. ..
15 | 007b00801500004e00420000005€0000 | 96d£39070ec200000000b2006cacacde -146.218. ..
16 | 00b000631300002900920000006c0000 | ffc82alefbf900000000e400eb5ab5a0f -155.166. ..
17 | 00b70090£8000073003b0000006d0000 | 2adc8c852bab00000000d1002cededfd -150.862. ..
18 | 00e600166b0000d500e8000000790000 | 24430eb248£fe000000009700£873736f -147.574. ..
19 | 001400a1e40000a90034000000850000 | c3672004589500000000110035656524 -1562.616...
20 | 005200£ffe600008b0083000000940000 | e495d1£a0b7c00000000dc00b7c8c86b -1561.329...
21 | 006a009755000006002£0000009a0000 | 9£2345ba5ab80000000041004c87870d -76.7396. ..
22 | 007d004£fc4000082004b0000009£f0000 | b64e367a6a0400000000ca001abdbdd0 -143.772. ..
23 | 00a60087b800003b0056000000a90000 | 2320£0387£d10000000022000ccfctf2e -154.113...
24 | 00c8009a7300004a0088000000b20000 | 831d40d49d1200000000cc00e4a9a928 -164.757. ..

Table 5: Linear characteristics included in the best linear hull. ¢ = 1,24

13




i ,ugz) Mg) log, P(a = i
us’ — b)

25 | 00d800b109000094004d000000b60000 | 7£64958£7dEc000000007200752d2d07 -156.587. ..
26 | 00£700012b00009d0085000000bd0000 | 2dbf720£1c84000000006400d85858bc -161.616. ..
27 | 00££0014160000720067000000b£0000 | 538398a26c73000000003b00909a9aab -158.417. ..
28 | 003600b25£0000a0047000000cd0000 | 251b719045£500000000ba00c59cICTE -148.417...
29 | 003900548900001b0004000000ce0000 | 8e333da6e55000000000d0004ae0e09a -141.692. ..
30 | 003¢00a76200004100a5000000c£0000 | 5b279b3d35020000000065008d5e5¢68 -143.470. ..
31 | 004£00770500005b00£d000000d30000 | ac4bb2bc978a00000000d£007bc0c0as -149.774. ..
32 | 005£005c7£0000850038000000d70000 | 503267e77764000000006100e244448b -154.862. ..
33 | 00670034cc0000080094000000d90000 | 2b84£3a726a000000000£c00110b0bed -150.264. ..
34 | 006£0021£10000670076000000db0000 | 55b8190a565700000000a30059cIcofa -140.721...
35 | 007000ec5d00008c00£0000000dc0000 | 0298067161c00000000770047313130 -162.535. ..
36 | 00ac00d7ca00006£004c0000006b0000 | 4293e0bed39b00000000aa0096£dfd3c -156.627. ..
37 | 00£a00a2b20000930036000000£60000 | 9918c412609c00000000d90085d4d45c -174.676. ..

C Codewords with minimum binary weight

Let G = E|L is a linear binary code, codeword length — 256 bits, infoword

length — 128 bits.

L is 128 x 128 binary matrix, which defines the linear transformation of

Kuznyechik.

It is shown (algorithm of the section (3)) that in a linear binary code G

there are no codewords of binary weight 17, 18, 19, 20.
Two codewords with binary weight equal to 29 are found.

0202200002101201 w

009000a0030000000009010001090004 x

15040009010001090000000003a00090

y=zxL

3102101200002202 w

Table 7: The codeword with a binary weight equal to 29

14

Table 6: Linear characteristics included in the best linear hull. ¢ = 25, 37




2022000021012013 w
9000a003000000000901000109000415 z
040009010001090000000003a0009000 | y = zIL

1021012000022020 w

Table 8: Another codeword with a binary weight equal to 29

D The proof of Lemma 2

Lemma 2. Let Ax — Ay s the differential in 2-round Kuznyechik. Let
P(Az — Ay) is mazimal among all differentials. Then the number of active
S-bozes in Ax — Ay is equal ton + 1 = 17.

Proof Denote Pbdei SJ;f A the best differential with A active S-boxes.
It is shown that among differentials containing trails of weight n+1 = 17,
the best probability is

13 4
pdiff _ (8 6} _ o-seu00..
best 256 256 '

We will show that

dif f _ pdif f17 dif fA
Pbelst _Pbelst >Pbelst ,TL—|—2§A§2TL

Consider an arbitrary differential Ax — Ay with 18 active S-boxes. The
differential consists of trails of the form Ax — A; — Ay — Ay. The
difference Az and all the A; differences have the same set of active S-boxes.
(k1,...,kt) is the set of their positions.  Similarly for Ay and As, let’s
denote the positions of active S-boxes (mq,...,m,), t+r=18.

Using the algorithm (3), you can find all pairs (A, Ay) corresponding to
this set of active S-boxes. All differential trails Ax — ... — Ay can only pass
through these pairs. During the algorithm execution the system of equations
with 18 — n = 2 free variables will be solved. The number of solutions, and
accordingly the number of pairs (A1, Ag), will not exceed 255" = 2552,

Let’s present the set of pairs found as a table D. Table size is

equal to 2552 x 18. Each row corresponds to a pair (Ag“,Ag%
(af)..
active S-box.

By definition, the probability of a differential with 18 active S-boxes is:

- ozl(ft), 57(72)1, e ,57(,2), i < 2552, and each column corresponds to the

15



P(Ax — Ay) = Z ((H P(zy, — oz,E?)) (ﬁ P(ﬁsz — ymj)>> :

i=1 j=1
T <2552, t+1r =18,

Let the Az and Ay are fixed. Then each element of the table can be
matched with the probability P(xy, — oz,(;j) ) (or P(@% — Ym,)). Let us
denote this probability P ;, then the probability of the differential is:

T r+t

P(Ax — Ay) =Y [] P (12)

i=1 j=1

We give an upper bound of the (12).

Note that there are no more than 255 identical bytes in each column of
the table D. Otherwise, there are rows with a pair of identical bytes. This
corresponds to the existence of a codeword with a weight less than n+1 = 17.
It contradicts the MDS-code definition.

Let the input xy, or output y,,, bytes are fixed. Then the same bytes in
the table column match the same probabilities.

Denote ps = 35z, P6 = 505, P4 = 555, D2 = 355

Let’s use the majorants (8). They take the following values:

X = D8, D6y ,D6,P4s -, P4,02, -, P2,0,...,0; 13
D8 Q6 DG Pas - Dy P2 P2 (13)
5 21 87 141
Y = pg, 08,06, - - - D6, Pdy- -y P4, P2, -, 2,0, ..., 0. 14
p8p8yavp§?4vpg32vpg (14)

7 27 92 127

You can see that Y is always greater than X. To get the highest estimate
we consider the case when 2 columns of the table are estimated using X (and
16 columns — Y').

The number of nonzero elements in the majorant X is v = 114. This
allows us to refine the maximum number of differential trails in the differential
T < v? =12996. And also refine the values of majorants:

X :p87?67"'7p§7?47"'7p%7?27'-'7p%; (15)
Y X T
v;lrl4

16



Y:p87p87?67"'7p§7?47"'7p%7927"'7p%' (16>
7 27 78

A\ 4

~
v=114

We divide the columns of the table into two groups:

T r+t T 18
P = (a.&y( B)- (7
211 J;;;%rz L17
I

We multiply the elements of the group I in pairs:
Py Po=P" vi=T1T.

Arrange in each row of I all factors in non-increasing order.

Arrange the elements of each sequence Pl(I), cee P}I) ,Prj,...,Prj, Vj =
3,18 (columns in D) in a non-increasing order. Denote the elements of the
resulting sequences ]51(1), e ,]5}[), ]517j, ce ]5T7j, Vj = 3,18.

From the rearrangement inequality [6] it follows that

T 18 T 18
Z Pi1- Pz2 (H B;) < ZPZ(I) (H E;) (18)
z:l =1 I

—— ——
1T II

Let’s estimate ]51([), Ceey P}I) using X (13). Knowing that all pairs in the
first and second columns are different, we replace the elements of the sequence
by the X x X:

2
PS5 PSD6s - - - s DSP6s P6s - - > PGy PsP4s - - PSP - - - (19)
10E1es 257&168 42}€rles

Let’s estimate the group II.
We note that the following inequality holds:

- :P (HP,J> < le z—|—1 (HPZ-HJ) ) Vi = 17T_ L. (20)

Assume that the coordinates of all elements pg in I are known (Fig.2.a).

17



16

P2

—>

P4

Pe6

a) b)

Figure 2: Reordering elements in II.

We describe the procedure for reordering all elements pg, ps and p in I

1) Select the element in the first row f’l,z + ps, z = 3,18. Let z be the
smallest (left column). If in the first row all elements are equal to pg, we
consider the second row, etc.

2) Find the maximum of all elements in IT, which have not been reordered
before:

Pyjy =maxP, , Pj#ps, i,i' =1, T, j,j = 3,18,
1,]

3) We will exchange the values of the elements PLz and }51-/7]-/. Ifi =1,
then (18) does not change due to commutativity of multiplication. If i" # 1,
then due to (20) then estimate (18) does not decrease. Note that after the
exchange of elements can be broken inequalities (20).

4) Arrange the elements in columns ]51(1), cee P}[), ]ADLJ-, cee f’T’j, Vj =
3,18 by non-increasing. As a consequence of rearrangement inequality, (20)
will be true. The value ZL ]%-(I)- <H;83 1523> will not decrease. The sequence

]51(1), cee 15}]) , the coordinates of the elements pg and the value of the element
with coordinates (1, z) do not change.

The element with coordinates (1, z) has been reordered.

We choose in the first row the next element not equal to pg. We will
perform the above steps 1 — 4.

Perform steps 1 — 4 sequentially for each element of the table not equal
to pg and which has not been reordered before.

The result of the procedure will be the table D. An exemplary view of
the table D is shown in the figure 2.b. At each step of the procedure, the
estimate (18) does not decrease. Suppose that there is a table 15, which gives

18



a greater estimate. If D coincide with D within the accuracy of permutation
of the same elements, then estimates (18) are the same, too. If D does not
coincide with ﬁ, then apply the reorder procedure to the table D. Due to
the steps that do not decrease the estimate (18), the table ﬁ, will be built.

Thus it is proved that for a given arrangement of all elements ps, the
reordering procedure allows us to obtain the greatest estimate (18),

Let us now consider the possible arrangement of elements pg in the group
I.

The numbers of the elements pg in the tables D and D are the same. The
number of rows containing the same number of elements pg also coincides.

Let w; be the number of elements pg in the i-th row of the table ﬁ,
w; > Wiy, t =1,T — 1. Then

T
D wi <v-16-2 = 3648, (21)

1=1

16 — the number of columns in the group II, 2 — the number of elements pg
in (16). Hence,

{i cw;>0,i=1T} <v-16-2 = 3648. (22)

The number of rows containing exactly 2 elements pg can be estimated
as a (126) - 22 — the number of pairs multiplied by the number of variants in
the pair. Assume that the number of such pairs is greater. There are two
different rows (two different codewords) that contain the same pair of bytes.
Therefore, the sum of such codewords will give a codeword with a weight of
16 or less. It contradicts the MDS-code definition.

Let us estimate the number of rows with a greater number of elements.
The maximum number of pairs is known — (126) - 22 On the other hand, let
1-th row contains w; elements pg, then this row contains (“2’) different pairs
of elements pg. Then the number of rows containing exactly w elements pg is
limited:

(i cwi=w, i=T,T}| < (126> .22/(7“2”), 2<w<16.  (23)

And also:

1
|{i :wiZw,z':l,T}|§<26>-22/<12U>,2§w§16. (24)

In addition, there should be a limit for the total number of pairs of ele-

19



ments pg in the table D:

ZT: (7”;) < (126> .92 = 480). (25)

It is possible to show that the number of rows containing exactly w = 8
elements pg, no more than p < 5. In each column of the table IA?, no more
than two different byte values correspond to the value of pg. Any row must
have at most one intersection (the same byte in the same column) with any
other row. Initially, the number of bytes that were not selected is equal to
v=2-16 = 32.

Choose the first row that contains exactly 8 elements pg. Subtract w = 8
from v.

Choose the second row that intersects the first row. Subtract w — 1 =7
from v.

Select the third row that intersects the first row and the second row. The
minimum number that can be subtracted from v is w — 2 = 6.

And so on:
p—1
V—(w-p—Zi)ZO,
i=1
-1
u—wp+%20,
1 1
§p2—(w+§)-p—l—uzo.
Then . {
502—(8+§)-p+3220 (26)

Hence, p € {0,1,2,3,4,5}. If p = 6 then (26) less than zero.
Similarly, when w = 9 that p < 4. L.e. it is possible to show that the

number of rows containing exactly 9 elements pg, no more than 4. If w = 10
or w= 11 then p < 3. lf w € {12,13,14,15,16} then p < 2.
Also, the following inequalities are true:

[{i cw; >8, i=1,T} <5
[{i cw;>9,i=1,T} <4 (27)
[{i tw;>10,i=1,T} <3
{i cwi>12, i=1,T} <2

20



w; <min (216 —wy — (wo — 1)+ 2, w;_y), i =3,T (28)

Let w; > 216 —w; — (wy — 1) + 2. Then the ¢-th row must have at least two
identical bytes with the first row or second row. It contradicts the MDS-code
definition.

Let’s iterate all possible sets w;, i = 1,T. We will take into account the
restrictions (21), (23), (25), (27), (28).

We choose the maximum estimate among all sets w;, 2 = 1,7

T 18
Zpi(f) ) (H Ej) < 987469 ngleisj);f” _ 9—86.660... (29)
i=1 j=3

Note that it is possible to obtain more rough estimate without any ad-
ditional search. We will not use restrictions (21), (25). Take the maximum
values of the inequalities (24) and (27). The inequality (27) shows that the
greatest wy, ..., ws = (16,16,11,9,8). Upper bounds in the inequality (24):
exactly 7 elements pg — 17 rows, 6 elements — 10 rows, 5 elements — 16 rows,

4 elements — 32 rows, 3 elements — 80 rows, 2 elements — 320 rows, 1 element
— 3168 rows.

T 18
Zpi(f) ) (H Ej) < 987012 Pbcigﬂ? _ 9—86.660... (30)
i=1 j=3

The best estimate for a differential with 19 active S-boxes (Pliiséf ) cannot
be greater than the best estimate for a differential with 18 active S-boxes

dif f18
<Pbelst )
255
dif f19 ' dif f18
Bl <37 Play, — o)) - PRl =
i=1
255
i . i
- PbeZSJ;f18 ' Z P(xlﬁ — &l(le)) - Pbezsftfl8 -1 Vkla Ly Oy -
i=1
Similarly for cases of 20, ..., 32 active S-boxes.

Hence, the original lemma is proved:

diff _ pdif f17
Pbest - Pbest :

Lemma 3. Let (a — b) is the linear hull in 2-round Kuznyechik. Let P(a —
b) be mazimal among all linear hulls. Then the number of active S-bozes in

21



(a — b) is equal ton+1 = 17.

Proof The proof is analogous to the Lemma of the best differential.

. ’ . 2
ps is replaced by pyg = (%) .

. ! ) 2 ’ 2\ 2
P, pa, p2 is replaced by pyg = (%) y ooy P2 = (%) .
Majorants (13) and (14) are replaced by

! ! ! ! li I ! ! ! I i ! i !
X' = Dog, Dogs Dous P 0 0
287 P26y P24> P24, P225 P20s P20s P2os Pi1ss P1ss P1sg> P1gs -+ P2s -+ -5 P2y Ysov vy
—_—— —\—

40 13
242
and
/ i ! ! ’ ’ I ! ! ’ I ! I !
Y = pog; Dos; P24y P2sa, P22y P225P225 P20s P20s P20s P2os -+ -5 P25+ -+ 5 P2y 0,...,0
7 8
217
correspondingly.

Estimate of P(a, b) similar to (29):

P(a, b) S 2—77.310... < Pblégt — 2—76.739....

22



E

A

Pseudocode of algorithms

lgorithm for finding codewords with the smallest byte weight

Algorithm 1 Algorithm for finding codewords with the smallest byte weight

Input: k[1...t] — nonzero x coordinates, m[l...r] — nonzero y coordinates,

Ll...n,1...n],t+7r=n+1// Matrix L in row-by-row representation

Output: M) (ky, ... kymy, ..., m,)

10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

1
2
3
4
5:
6
7
8
9

: function find_codewords(k[1...t], m[1...r], L[1...n,1...n])
:m/[l.n—r]:={i: i¢m, 1 <i<n} // zeroy coordinates
:S[1...n—r1...1
: for i:=1ton—rdo
for j:=1totdo

S[i][j] := Lm[d]][k[]]
end for
: end for
. S := identity form(S)// Gauss method over GF(2%)
1 - 0 ¢
//S=1|: P
0 -+ 1 ¢,
codewords := {}

afl...t]:=10...0]
for all e in GF(2°)\0 do
aft] :==e
fori:=1tot—1do
afi] :=ex S[i][t] /) a; = ay X ¢
end for
B[l...r] :== L(«) // zero coordinates are not specified
codewords.add((«, 3))
end for

return codewords

w

a

The above algorithm could be easily generalized to finding small weight
> n + 1 codewords. In this case, the number of free variables in each sub-
system S,_,+ increases. Accordingly, the number of codewords generated by
single subsystem increases to 255“~". These codewords can include words
that weigh less than w. This requires additional verification and increases

the complexity of the algorithm.

The algorithm can be applied to an arbitrary MDS-code (2n,n,n + 1)

over any finite field F.

O

We estimate the time complexity of the algorithm: Gaussian algorithm —
(t3); substitution of values — O(ord(F)¥“~™); linear transformation — O(n?).
The total complexity of the algorithm is O(t® + ord(F)*~" + n?) = O(n? +

ord(IF)*=m).

23



One of the applications of this algorithm is the search in MDS-code code-
words with small binary weight. The results are presented in Appendix B.

Algorithm for finding the best differential trail

Algorithm 2 Algorithm for finding the best differential trail

Input: L[1...n,1...n], DDT[1...255,1...255]
// DDTay, ;] = Pla; — B;), i, j = 1,255, s, B; € {0,1}%\0
Output: best diff trails, Prei
1: function find_best_diff trails(L[1...n,1...n], DDT[1...255,1...255] )
2: best diff trails := {}
3: nggjl =0
4: for t:=1ton do

5 ri=n+1-1

6: for all k[1...t] in combinations(n,t) do

7 for all m[1...r] in combinations(n,r) do

8: codewords := find_ codewords(k[1...t], m[l...7], L)

9: // codewords]i] :(Ay), Aéi)): (al(;) . a,(ft),ﬁf,?l . 67(,2), i =1,255
10: for all a[l1...¢], B[1...7] in codewords do

11: Prax(A1,Ag) == get_ P_maz(afl...t], B[1...7], DDT)
12: if Paz(Ar, Ay) = P79 then

13: best diff trails.add((a[l...t],B[1...7]))

14: end if

15: if Pas(A1, Ag) > Pirél then

16: Plrail .= P e (A1, Ag)

17: best diff trails := {(a[l...¢],B[1...7])}

18: end if

19: end for
20: end for
21:  end for
22: end for

23: return best diff trails, Pirei

Time complexity of the algorithm 2 is

o[£ e o

=1 ~ find_codewords  get_P_max

TV
all combinations

-o(() ) = ()

24



Algorithm 3 Algorithm for calculating Ppq. (A1, Ag)

1: function get  P_maz(afl...t], [1...r], DDT[1...255,1...255])
2 /) (A1, Ag)= (g - - Wy By - - - Bimy)

3: Pmaz(AhAQ) =1

4: fori:=1tot do

5 Prar(A1,82) i= Prag(A1, Az) x max(DDTz][ali]])

6: end for '

7. for j:=1tor do

8 Prax(A1,A2) i= Praz(A1, Ag) X mgx(DDT[B[j]][y])

9: end for

10: // the values mgx(DDT[x] [y]), max(DDT|x][y]) can easily be cached
11: return P, (A, Ag) ’

The complexity of the algorithm is trivial — O(t + ) = O(n)

Algorithm for calculating the upper bound of the differential

Algorithm 4 Algorithm for calculating the upper bound of the differential

Input: M" ) (ky, ... k,my,...,m,), DDT[1...255,1...255]
Output: Py > P(Ax — Ay)

1. function get_upper bound(codewords|1...255], DDT[1...255,1...255])

2: P_parts|[1...255] := {}

3: for i:=1to 255 do

4 afl...t], B[1...7] := codewords]i|

5. P _parts|i] := get P_maz(a[l...t —u], B[1...r —v], DDT)// Let u=v =2
6: end for

7. P_parts[1...255] := non_ increasing sort(P_parts|1...255|)

8: X[1...255] := get_majorant(DDT[1...255,1...255], input)

9: Y[1...255] := get_majorant(DDT[1...255,1...255], output)

10: Py =0

11: for i:=1 to 255 do

12:  Poy := Poy +X[1]* x Y[i]" x P_parts][i]
13: end for

14: return P,y

The values returned by the function get majorant can be cached. There-
fore, the complexity of the algorithm 4 is equal to O(ord(F) - n).

25



Algorithm 5 Algorithm for calculating X and Y

Input: DDT[1...255,1...255], input (X) or output (V)
Output: X|[1...255] or Y[1...255], 8

11:
12:
13:

. function get majorant(DDT[1...255,1...255], input/output)
. if output then

DDT := transpose(DDT)

1
2
3
4: end if
5:
6
7
8
9

for + :=1 to 255 do
DDTYi][1...255] := non_increasing sort(DDT[i][1...255]) // sort rows

. end for

: majorant[l...255] := [0,...,0]
: for ¢ :=1 to 255 do

10:

majorant[i] := max(DDT[j][i]) // select the maximum in the column
J

end for
// zero values can be removed
return majorant

Time complexity of the algorithm 5 is O(ord(IF)?).

Algorithm for constructing the differential

Algorithm 6 Algorithm for constructing the differential

Input: M+ (ky, ... ky,my,...,m,), DDT[1...255,1...255], P%/f
Output: best differentials, P/ f

1:

— =
= O

: return best differentials,

function  construct dzﬁer@ntmls(codewords[ ..255],  DDTJ[1...255,1...255],
P

row index := {1,...,255}

row_est[l...255] :=[0,...,0]

for 7:=1 to 255 do

afl...t], B[1...r] := codewords]i]
row_est[i] := get P_maz(afl...t], B[1...r], DDT)
end for

best differentials := {}
external bytes[l...t+ 7] :=[0,...,0] // Az and Ay

recursive_ search(1, row _index, row est)
paft

est

The complexity of the algorithm 6 is determined by the complexity of

algorithm 7.

Denote the complexity of the algorithm for constructing the differential as

Caifr. In general case, algorithm 7 performs an exhaustive search of all inputs
Az and outputs Ay. In this case Cyirr = O(ord(F)™). But in our practice, the
average number of operations performed by the algorithm for constructing

26



the differential is approximately equal to ord(IF)?. A more accurate estimate
of the complexity is the subject of further research.

Algorithm 7 Recursive search of the differential

1:
2
3:
4:
)
6

variables from Algorithm 6:

codewords|1 ...255] // codewords|i]=codeword[l...t+ 7], i = 1,255
DDTI[1...255,1...255]

external bytes[l...t+ 7]

best differentials = {}

7. procedure recursive_ search(column, row index, row est)

8:

9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

if column > t + r then

Az := external bytes[l...t], Ay := external bytes[t + 1...t + r]

P(Ax — Ay) := sum(row _est)

if P(Az — Ay) = P%// then
best_ differentials.add((Az, Ay))

end if

if P(Az — Ay) > P%// then
best_differentials = {(Ax, Ay)}

end if

return

end if

19: for ¢ :=1 to 255 do

20:  external bytes|column]| := a

21:  new_row_index := {}, new_row_est[l...255] :=[0,...,0], Pogy := 0
22:  for all 7 in row_index do

23: codeword[l ...t + r] := codewords]i]

24: Pirgit := row_est][i]

25: internal byte := codeword|column|

26: if column < ¢ then

27: Pirait *= Piai X DDTJa][internal byte|/max(DDT|[z|[internal byte])
28: else :

29: Pyrait = Pirai X DDT[internal _bytel[a]/ m;tx(DDT[internal_byte] [y])
30: end if

31: if P, > 0 then

32: Pest = Pest + Pt'rail

33: new_row_index.add(7)

34: new_row_est[i] := Pyqq

35: end if

36: end for

37:  if Py > PY/Y then

38: recursive_ search(column+1, new row index, new row est)

39:  end if

40: end for

27



Algorithm for finding the best differential

Algorithm 8 Algorithm for finding the best differential

Input: L[1...n,1...n], DDT[L...255,1...255] , Pirail
Output: best differentials, Plf;;f
1. function find_best differentials(L[1...n,1...n], DDT[1...255,1...255])
2: best differentials := {}
3: best diff trails, P% .= find_best_ diff trails(IL, DDT)
1 PLlT = Pl

5. for t ;=1 ton do

6: r:=n+1-—t

7. for all k[1...¢] in combinations(n,t) do

8: for all m[1...r] in combinations(n,r) do

9: codewords := find_ codewords(k[1...t], m[l...7], L)

10: P.y == get_upper bound(codewords, DDT)

11: if P, < P%// then

12: continue

13: end if

14: differentials, P,y := construct_ differentials(codewords, DDT, paifs )
15: if P, = P%// then

16: best_differentials := best differentials U differentials
17: end if

18: if Py > P%/7 then

19: piir.—p.,
20: best _differentials := differentials
21: end if
22: end for
23:  end for
24: end for
o5. pUff . pdiff

best est di
26: return best differentials, Pbelsftf

Time complexity of the algorithm 8 is

o zn:(”)( " ) nd +ord(F) + ord(F)-n + Casy

= t n+1-—t

-
all combinations

2n 22n
=0((31) - Cusr) =0 (G- can)

~ \find_codewords  get_ upper_bound  construct differentials

28



