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Abstract: The 4 4  MDS matrix over 2F  is widely used in the design of block cipher's linear diffusion layers. 
However, considering the cost of a lightweight cipher's implementation, the sum of XOR operations of a MDS 
matrix usually plays the role of measure. During the research on the construction of the lightweight 4 4  MDS 
matrices, this paper presents the concept of formalized MDS matrix: some of the entries that make up the matrix are 
known, and their positions are determined, and the criterions of the MDS matrix is satisfied. In this paper, using the 
period and minimal polynomial theory of entries over finite fields, a new construction method of formalized MDS 
matrices is proposed. A large number of MDS matrices can be obtained efficiently by this method, and their number 
distribution has significant structural features. However, the algebraic structure of the lightest MDS matrices is also 
obvious. This paper firstly investigates the construction of 4 4  lightweight MDS matrices, analyzes the 
distribution characteristics of the them, and the feasibility of the construction method. Then, for the lightest MDS 
matrices obtained from the method above, the algebraic relations in themselves and between each other are studied, 
and the important application of the alternating group 4A  and it's subgroup, the Klein four-group is found.  
Key words: block cipher; linear diffusion layer; MDS matrix; the alternating group; minimal polynomial;  
1 Introduction 

As a mainstream design method of block ciphers' linear diffusion layers[1-2], 4 4  MDS matrices have a 
wide application in many excellent cryptographic algorithms, such as AES[3]  , SQUARE[4]  . How to construct 
MDS matrices with XORs as few as possible efficiently is the focus of nowadays research. There are three main 
methods of constructing a MDS matrix. First is to extract MDS matrices via MDS codes over finite fields[3-6]. 
Considering the efficiency of implementation, the method requires the use of as many "1" and entries with as low 
Hamming weight as possible. The second way is to search MDS matrices in particular matrices, such as circulant 
matrices and Hadamard matrices[8]  . The third technique is to use iteration[9-11]. For example, Photon[12]  , 
which designed by LFSR(Linear Feedback Shift Register), is a representative.  

Unlike the methods above, this paper presents a brand new traversal scheme. Using formalized MDS matrices, 
along with the period and minimal polynomial theory of the elements in the finite field, the construction of 
lightweight MDS matrices is realized. Then the distribution of these matrices is analyzed, and the mathematical 
proof of construction feasibility is also given. Besides, we find the important applications of the alternating group 

4A , especially the Klein four-group in constructing MDS matrices with the fewest XORs. 
Table 1 Symbol Description 

Symbol Description 
( , )GL m S  set of all m m  non-degenerative matrices whose entries fall in S 
I  identity matrices over 2(4, )GL F  

#A  XORs of matrix A 
( )a  Hamming weight of vector a , 2

na F  
iL  formalized MDS matrix of i identity matrices 

( )A  period of matrix A over finite filed, that is 15A I  
( )( ) kv  k -expansions of vector v 

, , , ,a b c d e     positions of the non-zero entries in the matrix 
( )R ab   perform a row permutation ( )ab on a matrix 
( )C ab  perform a column permutation ( )ab on a matrix 

( )ab i  perform a permutation ( )ab on i 

Example 1 <4,2,<1,3>,3> is the representation of the following matrix:
0 0 0 1
0 1 0 0
1 0 1 0
0 0 1 0

   
   
   
   

       
. 



 

 

2 Preliminaries 
Definition 1 ([7]  , XOR) For 2( , )A GL m F , 2

nx F . Then #A  is the direct counting of XORs of A x , 

which represented as 
1
( ( [ ] 1))m

i
#A A i


  , and ( [ ])A i  is the count of non-zero entries in the i-th row of matrix 

A. 
Theorem 1 ([13]  , determinant conditions of a MDS matrix)  Let ,( )i jL= L , 1 ,i j n  . The entries in L  

are all m m  matrices over 2F , then L  can be represented as follows: 
1,1 1,2 1,
2,1 2,2 2,

,1 ,2 ,

n
n

n n n n

L  L   L
L  L   LL            
L  L   L

        




   


.           (1) 

Then L  is a MDS matrix if and only if every sub-matrix of order (1 )t t n   in L  is full rank. 
Definition 2 ([7]  ) For MDS matrix as (1), its XORs is defined as ,

1, 1
# #n

i j
i j

L L
 

  . 
Theorem 2([14]  ) In a 4 4  MDS matrix over finite fields, the highest possible number of "1" is 9 and the 

lowest possible number of different entries is 3. 
Based on the theorems above, this paper presents the concept of formalized MDS matrix. 
Definition 3 A matrix L is called as a formalized MDS matrix if it satisfies the following two conditions: 
1) some entries which make up L are known and their positions in L are determined; 
2) L satisfies the determinant conditions of Theorem 1. 
For Example 2, 3 and 4, please see Appendix I. 
Definition 4  Matrices A  and B  are equivalent if A  can be obtained from B  through a series of 

elementary transformations. 
Definition 5 ([15]  ) Let G be a group and let S be a set. Given a mapping G S S  , denoted by ( , )x s xs . 

If for any ,x y G , s S ,  
1) ( ) ( )x ys xy s , 
2) es s , e is the unit element of G. 
Then we call G has an operation on S, also call S a G-set. 

3 Construction of Formalized MDS Matrices 
Let [ , , ]iL I A B denote a formalized MDS matrix in which i represents the number of elementary matrices, and 

2, ( , )A B GL m F  represent formal elements in the matrix. In this paper, the value of i limited to 7, 8, 9, thus the 
specific process of construction is shown in Figure 1. 

 
Figure 1 Construction Process of Formalized MDS Matrix 

First, the number of identity matrices should be determined. Algorithm 1, Construct_Li (i) constructs a 4 4  
matrix containing i I, and entries of other remaining positions are unknown. The matrix in this step satisfies any sub 
matrix of order 2 formed entirely by I would not appear. Next, Algorithm 2 assigns the unknown positions of the 



 

 

matrix, and completes the construction.  
Algorithm 1: Construct_Li(int i), to construct a 4 4  MDS matrix with i I 
Input: number of identity matrices, i (i=7,8,9) 
Output: a file with a decimal 4-dimensional vector ( , , , )iL a b c d //when ( , , , )a b c d  is converted to binary   
number, they represents the positions of I in the first row to the last row respectively 
1: int 42 1N=  ;  
2: int A[4]; // an inter array which stores the results 
3: fill [0, 1]N   into A[4] in dictionary order 
4: for each A[4], , [0,3],p q p q   do 
5: (2) (2) (3)( [ ]) ( [ ]) ( ', ', ', ')A p A q a b c d   
6:  If at least two numbers in ', ', ', 'a b c d  equal to 2, then 
7:  return 4; // There is at least a matrix formed entirely by I 
8: else 
9:  Save (A[0], A[1], A[2], A[3]) to text;//make it, save the result 
10: end if;  
11: end for 
12: end; 

For example of Algorithm 1, Example 5, Example 6 and Example 7 , please see Appendix II. 
Algorithm 2: Construct_ProbMDS(int [4]iL ), to construct a 4×4 formalized MDS matrix 
Input: output of Algorithm 1, [4] ( , , , )iL a b c d  
Output: formalized MDS matrices [4][4]iL  saved in file 
1: [4][4] [4]i iL L ; //fill I into the matrix 
2: Find a position of an unknown entry and record the space's coordinates ( , ), , 0,1,2,3w k t k t   
3: if(w==(3, 3)) then 
4:  go to step 21;  // The space has been filled, save the result 
5: else  
6: Fill_In( [4][4],iL w ); // Fill the formalized entry A in this space 
7:  If there is a 2 2  singular sub-matrix then 
8:   A B ; 
9:  end if; 
8:  Find an unknown entry's position w' which is in the same row or column with w 
9:  if w'==(3, 3) then 
10:   'w w ; // There is no entry in the same row or column with w, return to the last saved w 
11:   if 0w w  then  // when return to the starting position, still can not find a w', replace the  
       starting position and then re-search  
12:   go to step 2;  
13:   end if; 
14: else 
15:  There is at least one vacancy in the same row or column with w, fill in the formalized entry A 
16:  If there is a 2 2  singular sub-matrix then 
17:    A B ; 
18:   end if; 
19:  go to step 8; 
20:  end if; 
21. Save ( [4][4]iL ) to text;   //Save the result to a file 
22: end if; 
23: end; 

It should be noted that in a formalized MDS matrix, the positions of A, B are interchangeable. 
Example 8 Assume the input 

I I
I I

I I
I I

      
, 

then the construction process is shown in Figure 2 below: 



 

 

 
Figure 2 Example of Constructing a Formalized MDS Matrix  

The number of formalized MDS matrices constructed by this paper is summed up as Table 2. 
Table 2 Categories of Formalized MDS Matrices 

i Formalized MDS matrices Actual MDS matrices 
9 384 192 
8 1296 720 
7 3456 576 

4 Filtration of MDS Matrices 
Not all the formalized MDS matrices in Table 2 are assigned to be MDS matrices, this is because elements over 

a finite field always have the minimal polynomial. For a particular form matrix, it can not be a MDS matrix when 
the determinant of its sub-matrices contain an annihilation polynomial of A. See Section 4.1 for details. 

After obtaining a formalized MDS matrix, then the assignments of A and B are completed. Without 
loss of generality, when 7,8,9i   respectively, three formalized MDS matrices [ , , ]iL I A B  of the lightest XORs 
are chosen as the traversing objects. Let A traverse all the 2688 matrices whose period is 15. Let dB A , dB A , 

2,3, ,14d   . Then Theorem 1 is used to filtrate the MDS matrices. 

 
Figure 3 Filtration of MDS Matrices 

4.1 Filtration of MDS matrices with 9 I 
Might as well select the MDS matrix form in [7]  : 



 

 

9

A I  I  I
I  I  B AL I  A I  B
I  B A I

        
, 

where 2, ( , )A B GL m F . When 4m  , [7]   has obtained 24 MDS matrices with the fewest XORs 13 for 4m  ,  
and 40320 MDS matrices with 10 XORs for 8m  , where 2B A . 

In fact, if L is an MDS matrix, then the period of these A is 15, that is 2 13B A =A . Using the traversal method 
proposed in this paper, the results is shown in Table 3: 

Table 3 Filtration of MDS Matrices with 9 I 
Relation between A、B Number of MDS matrices 

2B A  0 
3B A  0 
4B A  1344 
5B A  2688 
6B A  2688 
7B A  0 
8B A  0 
9B A  1344 
10B A  1344 
11B A  2688 
12B A  0 
13B A  1344 
14B A  0 

When 13d= , there is a MDS matrix with 13 XORs of 24 values, which is consistent with [7]  . 
Analysis 

The annihilation polynomial of A is 15 1x  , to factorize it over 2F ,  
15 2 4 4 3 4 3 21 ( 1)( 1)( 1)( 1)( 1)x x x x x x x x x x x x             . 

For 2688 A of period 15, the results show that these A can be divided into two groups of the same number, half of 
them take 4 3 1x x   as minimal polynomial, and the other take 4 1x x  . 

1. Apparently, in the premise of 15A  , when d equals to 2, 8, 14 respectively, their corresponding 

sub-matrices I A
A B
    , B A

I B
    , A I

I B
     

are singular. 
2. When d equals to 3, 7, 12 respectively, the following 3 3  sub-matrices are singular for A: 

when 3d  , 3
3

A I I
I A A
I I A

     
, 3

3

I I I
I A A
A I A

     
; 

when 7d  , 
7

A I I
I I A
I A A

     
, 7

7

I I I
I A A
A I A

     
; 

when 12d  , 12
12

A I I
I A A
I I A

     
, 

12
12

12

I A A
A I A

A A I

     
. 

For example, when 3d  , the determinant of the singular sub-matrices are  



 

 

3 7 2 3 4 3
3

| | | | | |
A I I
I A A A A A I = A I A A I
I I A

       (1) ,

3 6 4 3 2 2 4
3

| | | | | |
I I I
I A A A A A A A I A I A A I
A I A

           (2); 

In (1), polynomial 4 3 1x x   can annihilate 1344 A whose period is 15; in (2), polynomial 4 1x x   can 
annihilate the remaining 1344 A . Thus when 3d  , for all the A of period 15, a matrix like L could not be a MDS 
matrix. The same reason goes for 7,12d  . 

3. When d equals to 4, 9, 10, 13 respectively, these 3 3  sub-matrices below are singular: 

when 4d  , 
4

4
4

I A A
A I A
A A I

     
; when 9d  , 9

9

I I I
I A A
A I A

     
; 

when 10d  , 10
10

A I I
I A A
I I A

     
; when 13d  , 13

13

I I I
I A A
A I A

     
. 

Take as 4d   an example, the determinant of the singular 3 3  sub-matrices are 
12 5 3 2 4 6 4 3| | | | || |A A A I =|A I A A I A A A A I          , it contains polynomial 4 1x x   which can 

annihilate 1344 A. Therefore when 4d  , there is only 1344 MDS matrices. Same goes for 9,10,13d  . 
Further, let B be a linear combination of some power of A. It is the form 1 2d dB A A   that only need to be 

considered, where 1 2 1 2,1 , 14d d d d   . When 4m , let A traverse all the 2688 matrices whose period is 15. We 
also get 24 MDS matrices with 13 XORs, they are exactly the same as these MDS matrices obtained when 2B A , 
and when 

12B A A  , 2 14B A A  , 3 8B A A  , 
4 11B A A  , 5 7B A A  , 9 10B A A  , 

we get them. 
4.2 Filtration of MDS matrices with 8, 7 I  

When 8,7i  , consider the following two matrices: 

8 ( , , , )
I  I  A B
B I  I  AL =Circ I I A B A B I  I
I  A B I

        
, 7

A I  A B
I A B IL A B I  I
B I  I  A

        
, 

when # 1, 2A #B  , 13B A , they each have 24 MDS matrix with fewest XORs, and their values of ( , )A B  are 
exactly the same. For details of the traversal, please refer to Appendix III. 
4.3 Feasibility Proof  

From the above analysis it can be seen that as long as the determinant of the sub-matrices of a formalized MDS 
matrix does not contain the minimal polynomial of A, then the matrix must be an MDS matrix. And the number of 
these matrices is closely related to d.  

Theorem 3 2, ( , )A B GL m F , ( ) 15A  , 1 2 kdd dB A A A    , 1 2, , , kd d d  are pairwise different, 
1,2, ,14k   , 1 2, , , 1,2, ,14kd d d   . Using the construction method in chapter 4, MDS can be obtained, and the 

number of them is related to the values of 1 2, , , kd d d . For each group 1 2( , , , )kd d d , their number can only be 
classified into three different cases: 

1) for all A, all the matrices are MDS matrices; 
2) for all A, half of the matrices are MDS matrices; 
3) for all A, none of the matrices are MDS matrices. 



 

 

Proof  It’s known that there are 2688 matrices A of period 15 over 2F , and their minimal polynomials are 
4

1 1f x x    and 4 3
2 1f x x   , which can annihilate distinct 1344 matrices A respectively. For matrices L with 

only three entries, , , dI A A , its determinants of each sub-matrices are a polynomial about A, denote  f A . We 
uniquely factorize  f x  over 2F  and get 1 21 2 ktt t

kf p p p  , where 1 2 , , kp ,p p  are irreducible polynomials 
and 1 2 , , kt ,t t N . Then either there exists m  to make 1mp f  or 2mp f , or for all m  there exists no 

1mp f  or 2mp f , where 1 2 , , km=t ,t t . When f  has 1f  and 2f  as its factors, all L are not MDS matrices; 
when f  has only 1f  or 2f  as its factor, half of L are MDS matrices; when f  has neither 1f  nor 2f  as its 
factor, all L are MDS matrices. # 
4.4 Numeration 

For the following three formalized MDS matrices over 2(4, )GL F  discussed in this chapter: 

9

A I  I  I
I  I  B AL I  A I  B
I  B A I

        
,

 
8

I  I  A B
B I  I  AL A B I  I
I  A B I

        
, 7

A I  A B
I A B IL A B I  I
B I  I  A

        
,

 the results are summarized in Table 4 below: 
Table 4 Construction results of MDS matrices 9L , 8L , 7L  

i Least XORs Number of the lightest MDS matrices Total number of MDS matrices in this form 
9 13 24 2688 3 1344 4 13440     
8 12 24 2688 5 1344 4 18816     
7 13 24 1344 5 6720   
Note: Table 4 shows the traversal results of some particular formalized MDS matrices, and it is feasible to 

apply the above method to other formalized MDS matrices. Thus it can be seen that a large number of MDS 
matrices can be obtained through this paper's method. Next, we carry out a further research and analysis for the 
lightest MDS matrices. 
5 Algebraic Structure of the Lightest MDS matrices 

This chapter discusses the relation between 9L , 8L , 7L  and also their algebraic structures when they reach the 
fewest XORs. Because in these matrices, 13B A , we only need to consider A. 
5.1 Internal Algebraic Relations 

When 7,8i  , A in [ , , ]iL I A B  are exactly the same, and these A can be numbered in 4 rows and 6 columns as 
the following Table 5: 

Table 5 when 7,8i  , groups of A in the lightest MDS matrix 

Generic system 1A  2A  3A  4A  
Row1 1. <<1,4>,3,1,2> 

2. <<1,2>,4,1,3> 
3. <<1,2>,3,4,1> 
4. <<1,3>,4,2,1> 
5. <<1,3>,1,4,2> 
6. <<1,4>,1,2,3> 

7. <4,<2,3>,1,2> 
8. <3,<1,2>,4,2> 
9. <4,<1,2>,2,3> 

10. <3,<2,4>,2,1> 
11. <2,<2,4>,1,3> 
12. <2,<2,3>,4,1> 

13. <3,4,<2,3>,1> 
14. <3,1,<3,4>,2> 
15. <2,3,<3,4>,1> 
16. <4,3,<1,3>,2> 
17. <2,4,<1,3>,3> 
18. <4,1,<2,3>,3> 

19. <3,4,2,<1,4>> 
20. <2,4,1,<3,4>> 
21. <4,1,2,<3,4>> 
22. <4,3,1,<2,4>> 
23. <3,1,4,<2,4>> 
24. <2,3,4,<1,4>> 

Row2 
Row3 
Row4 
Row5 
Row6 
Using R( ) to represent the row permutation of a matrix, C( ) to represent the column permutation of a matrix. 

Considering the columns in Table 5, the algebraic relation in 1 2 3 4, , ,A A A A  can be obtained, as it shown in Figure 4. 



 

 

 
Figure 4 when 7,8i  , generation relations of A in the MDS matrix with the least XORs 

From Figure 4, we can derive some criteria for constructing an MDS matrix of the fewest XORs. 
1. Each ( 1,2,3,4)iA i   has a group permutation as it shown above, and the principle of choosing a group 
permutation is to ensure that after transformation, the period of A is still 15, as well as its minimal polynomial would 
not change. 
2. From any position, row permutation and column permutation appear alternately. 
3. Select a matrix from each 1 2 3 4, , ,A A A A ,  such as  

{<<1,4>,3,1,2>,<4,<2,3>,1,2>,<3,4,<2,3>,1>,<3,4,2,<1,4>>}, 
it is a generic system of these 24 A and it can generate all A by using the permutation {(123), (124), (132), (134), 
(142), (143), (234), (243)}, which is a subset of 4A . 
4.For each row of Table 5, it is a generic system of A. Then for the compound operation of R and C, *R C  (R, C 
are interchangeable), Klein four-group has an operation on this generic system. 

Example 9 Select the first row in Table 5, let  
 1 2 3 41,4 ,3,1,2 , 4, 2,3 ,1,2 , 3,4, 2,3 ,1 , 3,4,2, 1,4M m m m m               .  

Then according to Definition 5, there exists a mapping 4k M M  , denoted by 
((1), ) (1)*i i im  m m , 

(12)(34)((12)(34), ) (12)(34)*i i im  m m  , 
(13)(24)((13)(24), ) (13)(24)*i i im  m m  , 
(14)(23)((14)(23), ) (14)(23)*i i im  m m  . 

So that 4k  has an operation on M and M is a 4k -set, where 1,2,3,4i  . ( )( )  i  represents a permutation of the 
footnote, for example, (12)(34) 1 2 , (12)(34) 3 4 . 

When 9i  , the same algebraic relation is also found in these A of the lightest MDS matrices. In summary, 
the following propositions are true for the lightest 4 4  MDS matrices [ , , ]iL I A B , 7,8,9i  . 

Proposition 1 There are 24 A in total which make a certain form of [ , , ]iL I A B  reach the fewest XORs, 
denote them 1 2 24, , ,A A A . Using row and column permutations of a matrix, along with permutations in 4A , 

                           4 1 , 123 , 124 , 132 , 134 , 142 , 143 , 234 , 243 , 12 34 , 13 24: , 14 23           A  
then from any ( 1,2, ,24)jA j   , it can generate all 24 A. 

Proposition 2 For each row which is a generic system denote as M, it is a 4k -set, that is the Klein four-group 
has an operation on M, of which the operation multiplication is the compound operation of R and C. 



 

 

5.2 Algebraic Relation between Each Other 
In fact, to replace the A in the first row first column with I in 7L , the new matrix with 8 I is the equivalent 

form of the circulant matrix 8L , see Figure 5. Therefore, these A which make 7L  reach the fewest XORs also 
make 8L  reach it. 

 
Figure 5 construct 8L  from 7L  

When 9i  , assume A' are entries which make 9L  reach the fewest XORs in section 4.1, then there are also 
24 A'. Considering row permutation and column permutation respectively, and there is a Klein four-group mapping 
between these A' and A. Table 6 shows the permutation of rows. 

Table 6 Algebraic relation in the generic system between A' and A 
A in 7I/8I  A' in 9I Row permutation: 'A A   

<<1,4>,3,1,2> 
<4,<2,3>,1,2> 
<3,4,<2,3>,1> 
<3,4,2,<1,4>> 
<<1,3>,4,2,1> 
<3,<2,4>,2,1> 
<4,3,<1,3>,2> 
<4,3,1,<2,4>> 

<3,<1,4>,2,1> 
<<2,3>,4,2,1> 
<4,3,1,<2,3>> 
<4,3,<1,4>,2> 
<4,<1,3>,1,2> 
<<2,4>,3,1,2> 
<3,4,2,<1,3>> 
<3,4,<2,4>,1> 

(12)(34) 

<<1,2>,4,1,3> 
<3,<1,2>,4,2> 
<3,1,<3,4>,2> 
<2,4,1,<3,4>> 
<<1,3>,1,4,2> 
<2,<2,4>,1,3> 
<2,4,<1,3>,3> 
<3,1,4,<2,4>> 

<3,1,4,<1,2>> 
<2,4,<1,2>,3> 
<2,<3,4>,1,3> 
<<3,4>,1,4,2> 
<2,4,1,<1,3>> 
<3,1,<2,4>,2> 
<3,<1,3>,4,2> 
<<2,4>,4,1,3> 

(14)(23) 

<<1,2>,3,4,1> 
<4,<1,2>,2,3> 
<2,3,<3,4>,1> 
<4,1,2,<3,4>> 
<<1,4>,1,2,3> 
<2,<2,3>,4,1> 
<4,1,<2,3>,3> 
<2,3,4,<1,4>> 

<4,1,<1,2>,3> 
<2,3,4,<1,2>> 
<<3,4>,1,2,3> 
<2,<3,4>,4,1> 
<2,3,<1,4>,1> 
<4,1,2,<2,3>> 
<<2,3>,3,4,1> 
<4,<1,4>,2,3> 

(13)(24) 

For example, in 7L  let 1,3 ,1,4,2A   . After performing once row permutation (14)(23) on A, we get 
its corresponding A' in 9L , <2,4,1,<1,3>>. Furthermore, the group permutation of <<1,3>,1,4,2> is (234), and 
after applying permutation (14)(23) on it, the group permutation of <2,4,1,<1,3>> can be obtained, that is 
(234) (14)(23) (124) . While applying column permutation (14)(23) on <<1,3>,1,4,2>, matrix <<2,4>,4,1,3> can 
be obtained. 

It is verified that for the other 191 kinds of formalized MDS matrices with 9 I, it is always these 24 A' in 
Table 6 that make them reach the fewest XORs. To some extent, they are equivalent matrices. 

Proposition 3 Using the Klein four-group, we can derive A' in a group of [ , , ]jL I A B  from another A in 
[ , , ]iL I A B , , 7,8,9i j  , i j , and the permutation relation is fixed, independent of the matrix form. 



 

 

5.3 Numeration of the Lightest MDS Matrices 
For other formalized MDS matrices constructed in this paper, the numeration of them is shown in Figure 6. 

Figure 6 Numeration of the Lightest MDS Matrices 

i Categories of MDS 
matrices 

 Number of (A,B) in a lightest 
MDS matrix 

Total number of the lightest 
MDS matrices 

9 192 24 192 24 4608   
8 720 24 720 24 17280   
7 576 24 576 24 13824   

6 Conclusions 
This paper studies the construction of 4 4  lightweight MDS matrices over 2F . Firstly, the concept and 

construction algorithm of formalized MDS matrix are given. Secondly, a large number of MDS matrices are 
obtained by using matrices of period 15 and their power matrices. Then the number distribution of these MDS 
matrices is analyzed, and the feasibility of the construction is proved mathematically. Finally, the important 
application of the permutation group, especially the Klein four-group, in the construction of the lightest MDS 
matrix is revealed. 

In this paper, the proposed method is general, and it can be further extended by flexible transformation of the 
parameters in the algorithms. Such as adding more entries, taking four or more different entries to construct 
matrices, etc. Otherwise, the algebraic relationship of the basic entries is changeable, for example, take AB I . In 
addition, using the Klein four-group, we can get another lightest MDS matrix from a known lightest MDS, which 
greatly reduces the search space. 

For more general cases, considering formalized MDS matrix [ , , ]iL I A B  over 2( , )GL m F , this paper presents 
the following conjectures. 

Conjecture 1 If A and B are entries that make [ , , ]iL I A B  reach the fewest XORs, then there are !m  pairs 
(A, B) making this matrix reach the fewest XORs. 

Conjecture 2 When i is a constant, regardless of the form of the matrix [ , , ]iL I A B , the A which make it 
reaches the fewest XORs are fixed. 

Conjecture 3 When 4m , under some certain conditions, permutations in Klein four-group can preserve 
the property of the lightest MDS matrix. That is, form a known lightest MDS matrix, another lightest MDS matrix 
can be obtained. 
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Appendix 
Appendix I 

Example 2 Given a matrix 
1 2

1
2
1 2

I     X  X  I
I     I    I   XA X  I    I    I
X  I    I   X

        
,  

where I is a identity matrix, 1 2,X X  represent some unknown entries. Then A satisfies condition 1) in Definition 

3. However, there is a 2 2  sub-matrix I I
I I
     

in A, which does not meet the determinant conditions in 
Theorem 1, thus A is not a formalized MDS matrix. 

Example 3 Given a matrix 
1

2 1
2 1
2 1

X   I    I     I
I     I   X   XB I    X   I    X
I    X   X   I

        
,  

then B satisfies condition 1) in Definition 3. But there is a 2 2  sub-matrix 1
1

I X
I X
     

in B, which does not meet 
the determinant conditions in Theorem 1, thus B is not a formalized MDS matrix. 

Example 4 Given a matrix 
1

2 1
1 2
2 1

X   I     I    I
I     I    X  XL I    X    I   X
I    X   X  I

        
, 

then L satisfies the condition 1) and 2) in Definition 3 simultaneously, so L is the formalized MDS matrix, denote 
it 9 1 2[ , , ]L I X X , which indicates that L is composed of I and 1 2,X X , and the number of I is 9. 
Appendix II 

Example 5 Suppose the output 9(7,9,19,12)L , then the formalized MDS matrix constructed by our method is 
(X for unknown entries)  

i

X   I   I   I
I    I   X  XL I   X  I   X
I  X  X   I

        
. 

Note that the elementary row transformation of the matrix does not change the full rank of its second order 
sub-matrices, so the stored 4-dimensional array is disordered and it is easy to know that if a singular matrix 
appears in this step, it must be a matrix composed entirely of I.  

Examples 6 and 7 give an example of the Algorithm 1 to determine whether there is a second order 
sub-matrix consisting entirely of identity matrices. 

Example 6 Suppose there is an intermediate result in the construction process, [4] (9,14,7,10)TA  , convert 
it into a binary number and get the matrix 

1 0 0 1
1 1 1 0[4] 0 1 1 1
0 1 1 0

   
   A =    
   

       
, 

(3)[1] [2] (1,2,2,1)A A  , there are two 2 appearing, indicating that there is a 2-order sub-matrix consisting 
entirely of I, which is not feasible. 



 

 

Example 7 Suppose the output of Algorithm 1 is (3,4,5,6) , convert it into a binary number and get the 
matrix 

0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0

   
   
   
   

       
, 

there is no two or more sum that equal to 2 after adding corresponding elements in any two rows. So we make it 
and the MDS matrix we obtained is  

7

X  X  I   I
X  I  X  XL X  I  X  I
X  I  I  X

        
. 

Appendix III 
When 8i  , details for traversal is shown in Table 7, 

Table 7 Filtration of MDS Matrices with 8 I 
Relation between A、B Number of MDS matrices 

2B A  0 
3B A  1344 
4B A  2688 
5B A  2688 
6B A  2688 
7B A  2688 
8B A  0 
9B A  1344 
10B A  1344 
11B A  0 
12B A  1344 
13B A  2688 
14B A  0 

When 13B A , the lightest MDS matrices has 12 XORs, # 1, 2A #B  , and there are 24 of them. 
When 7i  , details for traversal is shown in Table 8, 

Table 8 Filtration of MDS Matrices with 7 I 
Relation between A、B Number of MDS matrices 

2B A  0 
3B A  1344 
4B A  0 
5B A  0 
6B A  1344 
7B A  1344 
8B A  0 
9B A  1344 
10B A  0 
11B A  0 
12B A  0 
13B A  1344 
14B A  0 

When 13B A , the lightest MDS matrices has 13 XORs, # 1, 2A #B  , and there are 24 of them. 
 


