
Privacy-Preserving Search of Similar Patients

in Genomic Data

Gilad Asharov∗ Shai Halevi† Yehuda Lindell‡ Tal Rabin†

Cornell Tech IBM Research Bar-Ilan University IBM Research
asharov@cornell.edu shaih@alum.mit.edu Yehuda.Lindell@biu.ac.il talr@us.ibm.com

June 10, 2018

Abstract

The growing availability of genomic data holds great promise for advancing medicine and
research, but unlocking its full potential requires adequate methods for protecting the privacy of
individuals whose genome data we use. One example of this tension is running Similar Patient
Query on remote genomic data: In this setting a doctor that holds the genome of his/her patient
may try to find other individuals with “close” genomic data, and use the data of these individuals
to help diagnose and find effective treatment for that patient’s conditions. This is clearly a
desirable mode of operation. However, the privacy exposure implications are considerable, and
so we would like to carry out the above “closeness” computation in a privacy preserving manner.
In this work we put forward a new approach for highly efficient secure computation for computing
an approximation of the Similar Patient Query problem. We present contributions on two fronts.
First, an approximation method that is designed with the goal of achieving efficient private
computation. Second, further optimizations of the two-party protocol. Our tests indicate that
the approximation method works well, it returns the exact closest records in 98% of the queries
and very good approximation otherwise. As for speed, our protocol implementation takes just a
few seconds to run on databases with thousands of records, each of length thousands of alleles,
and it scales almost linearly with both the database size and the length of the sequences in it.
As an example, in the datasets of the recent iDASH competition, after a one-time preprocessing
of around 12 seconds, it takes around a second to find the nearest five records to a query, in
a size-500 dataset of length-3500 sequences. This is 2-3 orders of magnitude faster than using
state-of-the-art secure protocols with existing edit distance algorithms.

Keywords: Genomic privacy, cryptographic protocols, edit-distance

1 Introduction

Consider the task of a medical doctor who wants to compare a patient’s DNA against a remote
genomic database, e.g., to determine the patient’s pre-disposition to various medical conditions. The

∗Some of the work was done while the author was a post-doctoral researcher at IBM T.J. Watson Research Center.
Previously supported by NSF Grant No. 1017660. Currently supported by a Junior Fellow award from the Simons
Foundation.
†Supported in part by the Defense Advanced Research Projects Agency (DARPA) and Army Research Office(ARO)

under Contract No. W911NF-15-C-0236.
‡Supported by the European Research Council under the ERC consolidators grant agreement n. 615172 (HIPS) and

by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the Israel National
Cyber Bureau in the Prime Minister’s Office.

1

database contains a list of individual genome sequences, each labeled with the medical conditions of
that person. The doctor needs to find the few individuals in the database whose genome sequence
(in the relevant segment) most resembles that of the patient, and learn the medical conditions of
these individuals. We define resemblance (or closeness) in terms of edit distance.

This mode of operation is important for recognizing the subtype of cancer a patient might have.
As each cancer is unique, comparing the genome of a patient will help pinpoint which mutations are
behind the disease, and will also help to avoid painful treatments that would not cure the disease.
According to the Global Alliance for Genomics and Health (GA4GH) institution [GA4], this mode
of operation is expected to be used in a scale of hundreds of millions of patients within about a
decade. Genome sequencing can help patients find out which treatments to select or avoid, and a
more accurate prognosis and guidance to the most suitable clinical trial.

Sending the patient’s DNA sequence to the database has severe privacy implication, thus, we
would like to find an effective privacy preserving solution to this task. More specifically, we seek a
solution to the following k-closest-match problem: We have a server that holds a database DB of
genomic sequences (S1, . . . , Sm), whose approximate length and position inside the human genome
are known. The client (doctor) holds a sequence query Q, and wishes to find the identities of the k
sequences in the DB that have the smallest edit distance from Q (where k is a public parameter).
The goal is to perform this computation in a privacy-preserving manner (see Figure 1). We target
security in the presence of an honest-but-curious adversary. Our work was motivated by the recent
“secure genome analysis competition” run by iDASH [iDA16].

Unfortunately, the straightforward solution of computing the exact edit distance of Wagner-
Fischer [WF74] (or even the near-linear-time approximation of Andoni and Onak [AO12]) using a
secure-computation protocol would be prohibitively slow. Using state-of-the-art secure-computation
techniques, such protocols would take many minutes (maybe even hours) per query, and certainly
will not scale to large datasets and long sequences.

In this work, we develop an efficient privacy-preserving protocol for computing the k-match func-
tion from above. Our solution reduces the secure computation portion by following two principals:
(1) Off-loading computation to the parties in the clear, even at the cost of increasing their local
computation, and (2) Exploiting as much as possible the specific setting of the problem that we are
solving. While targeting a somewhat restricted case study, the techniques that we develop can also
be applied in other settings of computing k-closeness, as we will elaborate below.

These principles are demonstrated in our solution as follows. As for (1), our solution lets the
client and server preprocess their respective inputs to the protocol. This preprocessing includes
many edit-distance computations (linear in the size of the database), however, these are all carried
out in the clear, and saves significant work for the secure computation portion. Moreover, this
preprocessing is reusable and can be used by the server to answer an unlimited number of queries.
As for (2), we develop an approximation function for the k-closeness problem that utilizes the
application domain.

We show that the implementation of this approximation can handle databases with hundreds
of records and sequences of length thousands of alleles. We ran our solution on a few databases of
various sizes in regions featuring high divergence among individual genomes (variability of around
5%). Our experiments yielded excellent results both with respect to the accuracy and runtime (see
§5 for details). Furthermore, our protocol was tested by external referees as part of the participation
in the iDash competition in which we won the first place for the fastest runtime and for accuracy
and efficiency.

Similar accuracy and performance results to the values that we report were confirmed. After a
one-time preprocessing of around 12 seconds, our solution can answer many queries in about a second
each, where each query consists of finding the five closest sequences in a database of 500 sequences,

2

Figure 1: The problem statement. The client (Doctor) holds a single sequence, and it looks for the
identities of the k-closest sequences in a remote database (Hospital). Privacy should be preserved
for both the sequences in the database as well as the doctor’s query.

each of length approximately 3470 nucleotides. Our solution scales well for larger databases, as we
explain in §6. As for accuracy, our protocol returns the exact k-closest records in 98% of the queries,
and returns a very close set to the exact one otherwise.

In summary, our contributions include the following:

• Developing new approximation function for edit distance that highly utilizes the application
domain, that is, the distribution of genomic data.

• We design two-party protocol for computing this approximation function, and make further
optimizations of the two-party protocol.

Applications beyond genomics. A large part of the paper is devoted for the development of
the approximation function and understanding its properties. This approximation function heavily
relies on the specific data distribution and is tailored to the application domain of finding similar
patients in genomic data. In contrast, our secure protocol is suitable, as is, for other scenarios in
which one has to compute distance of some query from a remote database. The protocol can also
compute k-closest vectors for some query vector, where closeness is in terms of hamming distance,
as long as each coordinate is over a small alphabet. This task has many applications, such as finding
closest codeword for a given string, matching biometrics in a remote database, detecting abnormality
in network logs, finding similar patients in structural medical database, and more.

Related work. The most relevant previous work is that of Wang et al. [WHZ+15], and the
relevant concurrent works are those of Zhu and Huang [ZH17], and Al Aziz, Alhadid and Mo-
hammed [AAM17]. All works deal with a similar problem to ours—computing edit-distances while
targeting genomic applications. [WHZ+15] targets regions of the genome with smaller divergence
and is not sensitive enough to approximate well the distances in regions with higher diversity as
addressed in this paper. Both concurrent works achieve significantly slower running times. We
elaborate on these works in Appendix A.

Jha et al. proposed in [JKS08] some techniques for secure edit distance using garbled circuits,
and shows that the overhead is acceptable only for small strings. (For example, handling 200-
character strings takes about 2GB of bandwidth.) Using some further optimizations, they showed
that 500-character string instances can be computed in almost an hour. Computing edit distance
is also a common benchmark for analyzing improvements in general secure computation techniques
and frameworks (see [HEKM11, HSE+11, ALSZ13], to state a few). These works compute accurate
edit distance, and do not utilize the specific input distribution of genomic data.

3

Figure 2: Flow of the preprocessing of the database at the server side. (1) The database. (2) The
server compares all sequences to the reference genome, and breaks each sequence into blocks. (3)
The number of different values in each block is small. The client has to compare its query to few
values (in this contrived example, v ≤ 3). *** denotes a fake string, and is used for padding.

Recent years saw a large body of work on using secure computation protocols for genomic data,
some surveys include [NAC+15, ABOcS15].

Security implications of computing an approximation. Feigenbaum et al. [FIM+01] ob-
served that computing an approximated version of a function may have security implications,
in that the approximated version may leak information which is not revealed by the exact ver-
sion. This concern applies to our solution, as well as to other works that compute approximation
(e.g., [WHZ+15, AAM17]). For instance, when asking for the closest-5 sequences and the exact result
returns ids {6,25,88,192,994}, our approximating protocol might return {6,25,97,192,994}, re-
vealing information about patient 97 that was not supposed to be revealed by the exact computation.
We elaborate on this in §7.

2 Overview

We develop a new (approximate) edit distance algorithm with the goal of achieving efficient private
computation. In the following, we overview the ideas behind our approximation function.

The approximation function. We develop an efficient approximation algorithm that utilizes the
distribution of genomic data. We heuristically expect (and empirically verify) that our algorithm
provides an excellent approximation of the desired functionality.

We first replace the edit-distance function with a block-wise approximation of it. Using a spe-
cially tailored method (that we describe below) we break the query Q into n blocks (Q1, . . . , Qn),
and similarly break each sequence Si in the database into blocks (Si,1, . . . , Si,n), where the blocks
are very small (typically, no more than 15 letters). Denoting by ED the edit-distance function, we
first define the approximation to be:

ApproxED(Q,Si) ≈
n∑
`=1

ED(Q`, Si,`). (2.1)

This approximation alone reduces the cost significantly, from O(|Q|·|Si|) to O(|Q|+|Si|), as com-
puting the distance of ED(Q`, Si,`) when |Q`|, |Si,`| are is relatively cheap, and so the computation
of ApproxED(Q,Si) can be done in linear time. As answering the query requires computing the edit
distance between Q and many sequences S1, . . . , Sm, and given that we are dealing with genomic
data we can further optimize the run-time.

We observe that in this setting, each block position has only a few distinct values (such as
{TT, AGT, AGG}) that actually appear in that location. That is, after breaking all sequences in the

4

database into blocks, there are only few possible combinations for each location. To be more precise,
for each ` (where ` = 1, ..., n) the cardinality of the set of values T` = {Si,`}mi=1 is much smaller
than m. In our test of public genomic datasets we only had v = max`{|T`|} ≤ 10 (even for a dataset
of size 500). This means that hundreds of edit distances can be computed at the cost of computing
ED(Q`, Si,`) for only 10 values, and saves a considerable amount of the work. In addition, in almost
all cases (> 99%), the block Q` of the query is also one of the values in the set T`, and so the edit
distance values are from the set ED(u, Si,`) for all u ∈ T`. We utilize these facts in order to speedup
the computation.

Let v be a known bound on the number of distinct values in each block. We denote the elements
of the set T` as (u`,1, . . . , u`,v); if the number of elements in T` is less than v, then dummy values
are added (see Figure 2 for a demonstration). We define a bit variable χ`,j that indicates whether
or not u`,j = Q`, for u`,j ∈ T`. If the value Q` happens to be equal to one of the u`,j ’s, then for
every Si,` we have

ED(Q`, Si,`) =

v∑
j=1

χ`,j · ED(u`,j , Si,`). (2.2)

Namely, in this case we can compute the values that are needed for Eq. (2.1) as a simple linear
combination involving the (few) bits χ`,j and the values ED(u`,j , Si,`). Importantly, this means that
the actual edit distance between Q` and the Si,` never has to be computed explicitly! That is, we
approximate the edit distance between Q and Si by computing

ApproxED(Q,Si) =

n∑
`=1

v∑
j=1

χ`,j · ED(u`,j , Si,`). (2.3)

The only part of this equation that depends on Q` is χ`,j , which is a simple equality comparison and
so can be efficiently computed privately. We note that in the case where Q` /∈ T`, the expression on
the right-hand side of Eq. (2.2) is always zero, so these cases introduce more error to our approx-
imation. Nevertheless, our empirical tests on real genomic data show that the effect of this added
error is very minor (see Appendix D.2). Summing up, a query is solved by securely computing the
approximate k-closest-match function, defined as:

ApproxClosestk,m(Q, {S1, . . . , Sm}) = i1, . . . , ik, (2.4)

where Si1 , . . . , Sik have the smallest ApproxED(Q,Si) values.

Ties are broken using the indexes i themselves. We remark that the actual output returned may
be the indexes, or may be a label stating the medical conditions of the patients with the matching
sequences.

As we will see, this function can be securely computed with extremely high efficiency, as many
of the elements in this function can be computed locally in the clear by the owner of the dataset
and the query holder (details below). This leaves the question of how to partition the sequence into
blocks to yield not only run-time efficiency but also accuracy.

Partitioning into blocks. A crucial detail of our approximation is the method that we use
to partition the sequences Si and the query Q into blocks. The simplest possibility would be to
partition them into fixed-length blocks, but this simplistic partitioning yields a poor approximation.
For example, a small shift close to the beginning of the query (perhaps just inserting a single
character) can lead to many misalignments in the consecutive blocks, causing this single error to be
counted multiple times (see an example below).

To get a better partitioning method, we utilize specific features of our application domain,1

specifically the existence of a public “reference genome” R. This reference genome was created

5

Fixed-Size Partitioning Total: 7

Q TTTA ATGG TTAT

Si TTAA TAGT TAGA

ED(Q`, Si,`) 1 3 3

Our Partitioning Total: 4

R TTTA ATAG TTAG

Q TTTA ATGG TTAT

Si TTA ATAG TTAGA

ED(Q`, Si,`) 1 1 2

Example 2.1. Comparing between block-wise edit distance approximation where the sequences are
split according to fixed-size partitioning and our partitioning. In this example, Si = TTAATAGTTAGA,
Q = TTTAATGGTTAT, and the reference genome is R = TTTAATAGTTAG, where we break the blocks to
blocksize b = 4. In the exact solution, the edit distance is 4.

by the “Reference Genome Consortium” with the purpose of being a representative of the human
genome. As a result of its design principals it is somewhat close to both the query Q and the
database sequences Si. Our partitioning method begins with applying the simplistic partitioning
above to the reference genome R, using a block-size parameter b. Then, each party separately aligns
its input sequence(s) to the reference sequence (using the Wagner-Fischer algorithm [WF74]), and
we use the fact that the alignments of Q vs. R and Si vs. R are close, to induce a good alignment
between Q and Si. We stress that although R is broken into blocks of size b in a naive way, the
alignment method used for breaking Q and the Si sequences into blocks results in blocks of varying
lengths. We denote by b′ an upper bound on the size of blocks in Q,S1, . . . , Sm (i.e., all of the blocks
are of size 0, . . . , b′).

Using this method for partitioning the blocks relatively to a publicly known sequence yields very
good results: In our tests, our approximation algorithm returned exactly the k closest sequences in
more than 98% of the runs, and a very good approximation in the remaining 2%, see more details
in §5. Our experiments show similar results for all different regions of the genome that we checked.

In Example 2.1, we show the significance of breaking the sequences with alignment relative to a
reference genome R, as opposed to breaking them into fixed-length blocks. Our partitioning allows
flexibility with respect to the breaking points of the sequences, significantly improving the accuracy
of the block-wise edit-distance approximation.

Efficient secure computation. Transforming the approximation procedure above into a se-
cure protocol is not a straightforward application of generic transformations (e.g., Yao [Yao86]
or GMW [GMW87]). Rather we use the specific form of our approximation to get a faster imple-
mentation.

The protocol begins with a preprocessing phase. The server first breaks all the genomes into
blocks as described above, and then it computes the sets T` = {u`,1, . . . , u`,v} for every ` = 1, . . . , n.
Likewise, the client also breaks its query Q into blocks Q1, . . . , Q` according to the same reference
genome R. Moreover, the server computes all the intra-block edit-distance values defining a matrice
L` such that L`[j, i] = ED(u`,j , Si,`), for ` = 1, . . . , n, j = 1, . . . , v and i = 1, . . . ,m. That is, the
value L`[j, i] represents the contribution of the `th block to the approximation of ED(Q,Si), in case
where that block of the query is the jth value in the set T`, i.e., Q` = u`,j .

1We remark that using an application-specific partitioning method is the best we can hope for: Any general-purpose
partitioning that yields linear-time processing (and guarantees accuracy) will violate a conditional lower bound on the
complexity of edit-distance calculations [BI15]. We stress that the alignment of Q and the Si’s to R is done locally
and in the clear by each party. Description of this procedure and an estimate of its accuracy can be found in §4.

6

Once these matrices are precomputed and held by the server (in the clear), the problem of
computing Eq. (2.3) is reduced to securely computing matrix-vector multiplication. That is, the
parties first compute shares of the vector of bits χ`,j (recall that bit χ`,j indicates whether or not
Q` = u`,j), and the result is obtained by securely computing the product of a matrix held by the
server and the vector of bits χ`,j shared between the parties.

Since the χ`,js must be secret, and are a function of private inputs, the vector needs to be
computed using a secure protocol, and the output must be shares of the vector so that neither
party learns it. In order to carry out this computation of shares of χ`,j , the parties engage in a
standard secure computation protocol for computing a random XOR sharing of all the bits χ`,j ,
using an optimized variant of Yao’s garbled circuits. Then for each j, ` the parties execute a 1-
out-of-2 oblivious transfer protocol to get a random additive sharing of the value χ`,j · L`[j, i] =
χ`,j ·ED(u`,j , Si,`), which is of course accelerated using OT-extension [ALSZ13, KOS15]. This utilizes
a method for securely multiplying a string and a shared bit using OT.

The parties then locally sum up their shares as per Eq. (2.3), thus obtaining an additive sharing
of the approximate edit distance values ApproxED(Q,Si) for every i = 1, . . . ,m. Finally a standard
secure computation protocol, using an optimized variant of Yao’s garbled circuits, yields the indexes
of the k smallest values. In order to ensure that enough “wires” are allocated for each value, we
assume a publicly known upper-bound d on the maximum edit distance. Since this has little effect
on the efficiency of the solution, a coarse upper bound can be taken. We prove that:

Theorem 2.2 (informal). The protocol sketched above securely computes the function ApproxClosestk,m
from Eq. (2.4) in the semi-honest adversary model.

Implementation and performance. We implemented our protocol using the C++ version of the
Secure Computation API library (SCAPI) [EFLL12], and tested it on a few databases with hundreds
of real genomic sequences. Furthermore, the protocol was evaluated by external referees as part of
the iDASH competition.

In our tests, the most costly aspect was the pre-processing on the server side (which is performed
in the clear, and only needed to be done once). We did not optimize this part and it took under
12 seconds for our 500-sequence database (with the length of each sequence ≈ 3500). We expect an
optimized implementation to be much faster, as our implementation is somewhat naive.

For the online secure computation itself (which is done for every query), the overall number of
non-XOR gates is only about 1M AND gates, and we use roughly the same number of OTs. Using
efficient implementations of Yao’s garbled circuits [KS08, ZRE15] and OT extensions [ALSZ13,
KOS15], it took about 1 seconds to fully process each query and find its 5 closest sequences in the
database. As a comparison, for the same sequence length, an accurate edit-distance computation of a
query and a single sequence in the database is roughly ≈ 40 million gates, even when leveraging some
upper bounds on the maximal possible distance (reducing the circuits by 20× factor). Computing
the task of finding the closest sequence in a set of 500 sequences, would result in a circuit of ≈ 20
billion gates. Thus, our solution is faster by a factor of approximately 20, 000.

Organization. The rest of this paper is organized as follows. We start with the secure computation
protocol in §3. Followed by the description of how to break the sequences into blocks in §4. We
report the accuracy of our protocol in §5, and the implementation in §6. We conclude with some
discussions and extensions in §7 In the appendices we report on some of our experiments, as well as
some supplementary data for decisions we made in our design.

7

3 Privacy Preserving Protocol

In this section we present our semi-honest secure protocol for computing the ApproxClosest function
from Eq. (2.4): The client has a query string, the server has a database of records, and the client needs
to learn the indices (or labels) of the k closest records to its query, as specified in Functionality 3.1
below. The functionality is given the parameters b, b′, v, R (see discussion in §7). Recall that R is
the public reference genome, b is the block size for breaking up the reference genome R, b′ is an
upper bound on the size of the blocks in the query and sequences after alignment with the blocks
of R, v is the maximum number of possible different values in a block, and d is an upper bound on
the maximum edit distance.

As described in the Introduction we do not compute the exact edit distance between the query
and the sequences in the database, but rather an approximation of this value which is amenable
to an efficient secure computation. The exact function that we compute depends on our procedure
for breaking the sequences and query into blocks, which we describe in detail in §4 below. That
procedure computes the blocks Q = (Q1, . . . , Qn) and Si = (Si,1, . . . , Si,n) (where n = d|R|/be). For
each block location we define a set, T` = {S1,`, . . . , Sm,`} of values that occur in that block position
The approximate edit distance function that we compute is:

ApproxED(Q,Si) =
n∑
`=1

∆(Q`, Si,`), where ∆(Q`, Si,`) =

{
ED(Q`, Si,`) if Q` ∈ T`
0 otherwise .

(3.1)

We remark that although computing ED(Q`, Si,`) also for blocks where Q` 6∈ T` would improve
accuracy, this improvement is minor. This is due to the fact that the case of Q` 6∈ T` is rare, as
verified empirically and discussed in Appendix D.2.

Observe that the ApproxED function depends on the parameters b, b′ and v, as well as on the
reference genome R (since this determines the blocks) and on the set S = {S1, . . . , Sm}. The
dependence on S is due to the fact that this determines the values in each set T`. Thus, formally,
one should write ApproxEDS,R,b,b′,v(·, ·); for clarity, we write ApproxED only, with the understanding
that this dependence on the parameters is necessary for fully defining the function.

See Functionality 3.1 for a formal description of the ideal functionality computing the k closest
records, based on our approximate edit distance function defined in Eq. (3.1). Observe that the
functionality returns the indexes in lexicographic order; this ensures that which sequence is closest,
second closest and so on, is not revealed.

Functionality 3.1: (Approximate) Closest k Records Functionality

• Public parameters: The database size m, output size k < m and the parameters b, b′, v
and R.

• Private inputs: The client holds a sequence query Q. The server holds a database DB of
m sequences (S1, . . . , Sm).

• The functionality:

1. Let ẽi = ApproxED(Q,Si) be the approximate edit distance between Q and Si, as
defined in Eq. (3.1) for the parameters b, b′, v, R and set {S1, . . . , Sm}.

2. Let Ik be the set of indexes of the k-smallest values in ẽ1, . . . , ẽm, breaking ties
according to the lexicographic order.

• Output: The client outputs Ik (ordered lexicographically), the server has no output.

Securely computing the ideal functionality. Our protocol for realizing Functionality 3.1 con-
sists of a local preprocessing stage, followed by two main protocol stages:

8

Preprocessing: In this stage the parties break their sequences into blocks, and the server computes
several tables. We describe this stage in §3.1.
Stage I: computing additive sharing of the approximations. This stage is the crux of our
protocol, and is described in §3.2. The client and the server interactively compute a secret sharing
of the vector of approximated edit distances. Specifically, the parties compute an additive sharing
(inside Zd) of the following vector L:

L
∆
= (ApproxED(Q,S1), . . . ,ApproxED(Q,Sm)). (3.2)

Stage II: computing the k-minimal values. In the second stage of the interaction, the client
and the server compute the k minimal values of the secret-shared vector L, and learn the indices of
these values. This stage is described in §3.3.

3.1 The One-Time Preprocessing Stage

The preprocessing stage relies on a procedure BreakToBlocks that the two parties use to break each
of their respective sequences into blocks. That procedure is described in §4, and it has the property
that for each block location there are only a few distinct values that occur there, and moreover
that the two parties know a bound v on the number of values in each block. The (Q1, . . . , Qn) =
BreakToBlocksR,b(Q) procedure receives a sequence Q and returns its partitioning to blocks, based
on the public reference sequence R and blocksize parameter b.

The client. On input the query Q, the client sets (Q1, ..., Qn) := BreakToBlocksR,b(Q).

The server. On input the database, S1, ..., Sm, the server proceeds as follows:

1. Set (Si,1, ..., Si,n) := BreakToBlocksR,b(Si) for i = 1, . . . ,m.

2. For each block location ` = 1, ..., n, compute the set

T` = {Si,` : i = 1, . . . ,m} = {u`,1, . . . , u`,v} (3.3)

of all the values in the `th block. The server pads all sets T` to be of the same size v using
some dummy values.2

3. For every block location ` = 1, . . . , n, every sequence Si (i = 1, . . . , n), and every value
u`,j ∈ T` (j = 1, . . . , v), the server computes the edit distance between u`,j and Si,`, setting
L`[j, i] := ED(u`,j , Si,`). Below we denote the row L`[j, ·] by L`,j , namely

L`,j := (ED(u`,j , S1,`), . . . , (ED(u`,j , Sm,`)) . (3.4)

(Jumping ahead, each vector L`,j represents the contribution of the `’th block to the final edit
distances approximations, for the case where Q` = u`,j .)

The preprocessing of the server is done only once, and then multiple queries can be computed.

Computing Eq. (3.1). We observe that for each i, `, the value ∆(Q`, Si,`) from Eq. (3.1) can be
expressed as

∆(Q`, Si,`) =
v∑
j=1

χ`,j · ED(u`,j , Si,`)︸ ︷︷ ︸
=L`[j,i]

, (3.5)

2This is achieved by introducing also one more character to the alphabet and therefore each DNA character is
represented using 3 bits, and not 2. This also increases the size of the circuits.

9

where χ`,j is 1 if Q` = u`,j , and 0 otherwise. Therefore we have for all i

ApproxED(Q,Si) =

n∑
`=1

∆(Q`, Si,`) =

n∑
`=1

v∑
j=1

χ`,j · L`[j, i].

Thus, the vector of approximations (ApproxED(Q,Si))i can be computed as

L = (ApproxED(Q,S1), . . . ,ApproxED(Q,Sm)) =
n∑
`=1

v∑
j=1

χ`,j · L`,j . (3.6)

3.2 Stage I: Computing Additive Sharing of the Vector L

After preprocessing, the client holds a vector of blocks (Q1, ..., Qn), and the server holds all the
(ordered) sets T1, . . . , Tn and the edit-distance vectors L`,j for ` = 1, . . . , n and j = 1, . . . , v. Our
goal in the first stage of interaction is to compute an additive sharing of the approximate-distance
vector L. We use additive sharing (rather than XOR sharing), since this enables the parties to locally
add their shares from all blocks in order to obtain additive sharing of the overall approximate edit
distance. Formally, we need to realize the functionality described in Functionality 3.2.

Functionality 3.2: Additive Sharing of Approximate Edit-Distances, Lc − Ls = L

• Parameters: Let d be a public upper bound on maxi∈m ApproxED(Q,Si).

• Input: The client inputs the blocks (Q1, . . . , Qn). The server inputs the tables T` =
{u`,1, . . . , u`,v}`∈[n] and vectors {L`,j}`∈[n],j∈[v].

• The functionality:

1. Let L =
∑n

`=1

∑v
j=1 χ`,j · L`,j ∈ Zm

d

(L`,j , χ`,j are defined in Eq. (3.4), Eq. (3.5), respectively);

2. Choose a random vector Ls ∈ Zm
d and set Lc := L+ Ls mod d.

• Output: The client outputs Lc while the server outputs Ls.

The protocol for realizing Functionality 3.2 consists of two main steps:

• First, the parties compute XOR shares of the indicator bits χ`,j . That is, for every ` ∈ [n], j ∈
[v], the client and server receive random bits χc`,j , χ

s
`,j , respectively, s.t. χc`,j ⊕ χs`,j = χ`,j .

• Next they use oblivious transfer to convert their shares of χ`,j (and the value L`,j held by the
server) into additive shares of χ`,j · L`,j . That is, they interactively compute random vectors
Lc`,j , L

s
`,j such that Lc`,j − Ls`,j = χ`,j · L`,j (mod d).

Then the client and server locally sum their shares: The client computes Lc =
∑n

`=1

∑v
j=1 L

c
`,j mod

d, and the server computes Ls =
∑n

`=1

∑v
j=1 L

s
`,j mod d. Hence

Lc − Ls =
n∑
`=1

v∑
j=1

Lc`,j − Ls`,j =
n∑
`=1

v∑
j=1

χ`,j · L`,j = L (mod d).

Step 1: Indicator bits. This step realizes the Functionality 3.3: We realize Functionality 3.3
using a direct application of Yao’s protocol. Let Q` = σ1, . . . , σt and u`,j = τ1, . . . , τt, represent the
inputs Q`, u`,j (each padded to some bound b′ and converted to binary using suffix-free encoding.3

The server chooses a random bit χs`,j (which will also be its output of the protocol), and we use

3In our case the original strings were over a 4-ary alphabet, so to get suffix-free encoding we need to set at least
t = 2b′ + 1.

10

Functionality 3.3:
Computing XOR sharing for the indicator bit (χc

`,j ⊕ χs
`,j = χ`,j)

• Input: The client inputs the block Q`.
The server inputs u`,j , which is the jth value in the set T`.

• The functionality: Let χ`,j = 1 if Q` = u`,j , and χ`,j = 0 otherwise.
Choose a random bit χs

`,j and set χc
`,j = χs

`,j ⊕ χ`,j .

• Output: The client outputs χc
`,j while the server outputs χs

`,j .

a standard secure protocol (e.g., Yao’s protocol) in which the client learns the output bit χc`,j =

χs`,j ⊕
∧t
k=1(σk ⊕ τk ⊕ 1). Note that if Q` = u`,j then σk = τk for every k and so χc`,j = χs`,j ⊕ 1,

resulting in χc`,j ⊕ χs`,j = 1. In contrast, if Q` 6= u`,j then there exists a k for which σk ⊕ τk ⊕ 1 = 0
and so χc`,j = χs`,j , resulting in χc`,j ⊕ χs`,j = 0. At the end of this stage, the client and the server
hold the appropriate bits χc`,j , χ

s
`,j (resp.) for every ` = 1, . . . , n and j = 1, . . . , v.

Step 2: Additive sharing. This step realizes Functionality 3.4.

Functionality 3.4: Computing additive sharing for χ`,j · L`,j

• Parameters: The edit-distance bound d.

• Input: the client has χc
`,j , and the server has χs

`,j and the vector L`,j .

• The functionality: Set χ`,j = χc
`,j ⊕ χs

`,j . Choose a random vector Ls
`,j ∈ Zm

d and set
Lc
`,j = Ls

`,j + χ`,j · L`,j .

• Output: The client outputs Lc
`,j and the server outputs Ls

`,j .

We realize Functionality 3.4 using 1-out-of-2 oblivious transfer, as described in Protocol 3.5. We
recall the definition of 1-out-of-2 oblivious transfer functionality, denoted as (λ, Lσ) = FOT((L0, L1), σ).
The sender holds two strings L0, L1 ∈ Zmd and the receiver holds a bit σ ∈ {0, 1}. The receiver re-
ceives Lσ while the sender outputs the empty string λ.

In order to realize Functionality 3.4, the server chooses a random vector L0
`,j , and its output

share would always be Lc`,j = L0
`,j . In addition, it sets L1

`,j = L`,j + L0
`,j . The output of the client

would be Lc`,j = L0
`,j in case χ`,j = 0 (and thus Lc`,j − Ls`,j = 0) or Lc`,j = L1

`,j in case χ`,j = 1 (and
thus Lc`,j − Ls`,j = L`,j). Determining which one of the outputs the client receives is done using an
oblivious transfer. We prove the security of the protocol in Theorem C.2.

Protocol 3.5: Realizing Functionality 3.4 (in the FOT-hybrid model)

• Parameters: The edit-distance bound d.

• Input: Client inputs is χc
`,j , server inputs is χs

`,j and the vector L`,j .

• The protocol: (all additions are done (mod d))

1. The server chooses a random vector L0
`,j and sets L1

`,j = L0
`,j + L`,j .

2. The server and the client engage in a 1-out-of-2 oblivious transfer. The client as the
receiver with the choice bit χc

`,j , and the server as the sender with inputs:

– (L0
`,j , L

1
`,j) = (L0

`,j , L
0
`,j) + (0, L`,j) if χs

`,j = 0,

– (L1
`,j , L

0
`,j) = (L0

`,j , L
0
`,j) + (L`,j , 0) if χs

`,j = 1.

Let Lc
`,j denote the output that the client receives from the OT protocol.

• Output: The server outputs Ls
`,j = L0

`,j and the client outputs Lc
`,j .

Putting it all together – realizing Functionality. 3.2. We realize functionality 3.2 in Proto-
col 3.6 using Functionalities 3.3 and 3.4. The overview of the protocol was already presented in the
beginning of this section (i.e., §3.2), and its security is proven in Theorem C.3.

11

Protocol 3.6: Realizing Functionality 3.2 (Using Functionalities 3.3 and 3.4)

• Parameters: Let d be a public upper bound on maxi∈m ApproxED(Q,Si).

• Input: The client inputs the blocks (Q1, . . . , Qn). The server inputs the tables T` =
{u`,1, . . . , u`,v}`∈[n] and vectors {L`,j}`∈[n],j∈[v].

• The protocol: (all additions are done mod d)

1. For every ` = 1, . . . , n and j = 1, . . . , v:
(a) Invoke Functionality 3.3, with client input Q` and server input u`,j . Let χc

`,j ,
χs
`,j be the outputs of the client and server, respectively.

(b) Invoke Functionality 3.4 with client input χc
`,j and server input the bit χs

`,j and
the vector L`,j . Let Lc

`,j , L
s
`,j be the output of the client and server, respectively.

2. The client computes Lc =
∑n

`=1

∑v
j=1 L

c
`,j ,

the server computes Ls =
∑n

`=1

∑v
j=1 L

s
`,j .

• Output: The client outputs Lc, the server outputs Ls.

3.3 Stage II: Finding k Minimal Values

After computing an additive sharing of the approximate edit distances between Q and the m records
S1, . . . , Sm, the parties engage in a protocol to find the k smallest distances. The full specification
is found in Functionality 3.7.

The protocol to realize Functionality 3.7 is just a direct application of Yao’s protocol, applied
to the following circuit. The circuit outputs m bits, where the ith bit denotes whether Si is in the
k minimum set, and works as follows:

• Compute L = (L1, . . . , Lm) = Lc − Ls mod d.

• Repeat the following for k times:

– Find the minimum in the list.

– Compare the found minimum with each one of the elements in the list; When found, set
the bit for that output array to 1.

– OR each value with its set bit in the output array. Note that this makes the minimum
value all-ones and therefore it will not be the minimum in the next iteration.

This requires about 5 non-XOR gates per input bit per layer (where k is the number of layers).

Functionality 3.7: Find the k-Minimal Values

• Parameters: number of records m, output size k, distance bound d.

• Input: Client and server hold Lc, Ls ∈ Zm
d , respectively.

• The functionality:

1. Let L = Lc − Ls mod d, and denote L = (L1, . . . , Lm)

2. Find the k smallest values in the sequence L, using the indexes 1, . . . ,m to break ties.

Output: The client gets m bits (σ1, . . . , σm), where σj = 1 if L[j] is one of the k smallest
values. The server has no output.

Realizing Functionality 3.1 is now a straightforward application of the components above, as
summarized in Protocol 3.8 below. We prove that the protocol securely realizes Functionality 3.1
in Theorem C.4.

3.4 Security Analysis

Below we sketch the security analysis of our protocol. We follow the standard definition of static
semi-honest security in the standalone model (cf. [Gol04]; see also §C.2). We argue the security in

12

Protocol 3.8: Realizing Functionality 3.1 (using Functionalities 3.2 and 3.7)

• Parameters: Database size m, output size k < m, distance bound d. Moreover, reference
genome R, v, block size b and a bound b′.

• Input: The client holds a sequence query Q. The server holds a database DB of m
sequences (S1, . . . , Sm).

• The protocol:

1. The clients and the server perform the preprocessing stage. The client holds the blocks
Q1, . . . , Qn, and the server holds the tables T1, . . . , Tn and the vector {L`,j}`∈[n],j∈[v].

2. The parties invoke Functionality 3.2, where the client inputs Q1, . . . , Qn and the server
inputs the vector {L`,j}`∈[n],j∈[v] and the tables {T`}n`=1.
The client receives vector Lc and the server receives the vector Ls.

3. The parties invoke Functionality 3.7, where the client inputs Lc and the server inputs
Ls. The client receives the m bits (σ1, . . . , σm).

• Output: The client outputs (σ1, . . . , σm).

a bottom-up fashion:

• We first instantiate the building blocks that we use. For Functionalities 3.3 and 3.7 we use
Yao’s protocol, and refer to [LP09] for deriving security in the presence of semi-honest security.
As for FOT, we refer to [Gol04] for semi-honest protocols that realize this functionality.

• Next, in Theorem C.2 we prove the security of Protocol 3.5 that realizes Functionality 3.4
(sharing of χ`,j ·L`,j). In Theorem C.3 we prove that Protocol 3.6 privately realizes Function-
ality 3.2 (sharing of L).

• Finally, in Theorem C.4 we put everything together and prove security of the entire protocol
(Protocol 3.8).

Note that only the last two bullets require new proofs, everything else holds by assumption on
the components that we use. Moreover, we derive the security of the protocol using the standard
stand-alone composition theorem [Can00, Gol04]. In Appendix C.2, we prove the following theorem:

Theorem 3.9 (Overall protocol). Protocol 3.8 realizes Functionality 3.1 against static corruptions
in the semi-honest adversary model.

4 Breaking Sequences into Blocks

As stated in the Introduction the main idea underlying our solution is to approximate the edit
distance between two sequences S and Q by partitioning both sequences into n blocks each, then
summing up the edit distances across all blocks, returning

∑n
`=1 ED(Q`, S`). In this section we

describe the method that we use to partition the sequences into blocks.
The idea of approximating the edit distance by computing the edit distance on small blocks is

appealing as it yields an extremely efficient secure computation. However, the simplest manner of
breaking the sequence/query into equal size blocks did not yield a good approximation of the edit
distance over the full sequence. Thus, the question arose whether we can enable both parties to
break their sequences into blocks that would also yield a good approximation of the edit distance.

4.1 Utilizing a Public Reference Genome

In order to refine the method of breaking the query and sequences into blocks, we utilize a publicly
known reference genome R and have both the server and the client break their sequences in relation

13

to R. Utilizing the fact that we work on genomic data, the sequences are somewhat close to each
other and also to the reference genome R. Thus, this enables us to break the sequences and query
into blocks in a manner that yields a better “alignment” between the blocks of the query and the
blocks of the sequences in the database, giving a better approximation of the exact edit distance.
We use the public reference genome of [GRC].

The sequences and query are broken into blocks by computing an edit distance between the
sequence/query and the reference genome. These are local edit distance computations on known
data, and are thus much more efficient than any secure computation. Moreover, as we have seen,
the preprocessing is re-usable, and for a large amount of queries this overhead becomes minor.

In our solutions we rely on a reference genome R of roughly the same length as the sequences that
we want to break. To break a sequence S (or a query Q) into blocks, we run the Wagner-Fischer edit
distance algorithm (for full details see Appendix B) to compute the edit distance between R and S.
The algorithm also returns the PTR matrix that keeps the alignment between R and S. From
the upper-left corner of the PTR to the lower-right corner it traces the path of how the minimum
edit-distance can be obtained.

Let b be a parameter representing our desired block size (on the selection of b see §6; concretely,
b is arbitrarily small, e.g., b = 5). With S being recorded at the top of the matrix we break it as
follows. We traverse the minimum edit distance path in PTR and whenever we have moved down b
rows we break the sequence in that position into a block. Note, that the sizes of the blocks in this
partition will vary. Most blocks are of size b, but some are shorter or longer. A full specification of
the partitioning algorithm can be found in Algorithm 4.1.

Algorithm 4.1: BreakToBlocksR,b(S) – Partition a Sequence into Blocks

• Parameters: A reference sequence R = (ρ1, . . . , ρr), block-size parameter b.

• Input: A sequence S = (σ1, . . . , σs)

1. Invoke ED(R,S), and store the table PTR.

2. Start at the top-left corner of PTR for each multiple of b, i.e. b, 2b, ... find the index j1, j2, . . .
such that (ib, ji) is on the minimum edit-distance path. (If there is more than one pair for
the same value i · b, store the index j that is closest to i · b.)

3. Denote n = dr/be (observe that the previous steps defines exactly n − 1 indexes). Let
j1, . . . , jn−1 be the stored indexes, set j0 = 0 and jn = s. Define the blocks S` =
(σ1+j`−1

, . . . , σj`) for every 1 ≤ ` ≤ n.

• Output: Output the blocks S1, . . . , Sn.

In §5.1 we provide intuition for why this breaking into blocks algorithm yields a good approxima-
tion. In a nutshell, computing the full edit-distance between a sequence S and the reference genome
R allows us to find the optimal alignment (and the minimal number of ways) of transforming S into
R. Thus, this allows us to find the optimal partitioning of S into the blocks of R.

5 Accuracy of Our Approximation

We examine the accuracy of our approximation both theoretically and empirically. In §5.1 we
provide a theoretical analysis of our approximation algorithm. While the bounds in this analysis
are somewhat coarse, the analysis still shows that the algorithm is accurate if the reference genome
is “close” to the database, or when all sequences in the database are equally-far from the reference
genome. In §5.2, we show an empirical evaluation of our algorithm on real genomic datasets,

14

validating that in practice this assumption does hold on various datasets and various different
regions of the genome.

5.1 Theoretical Analysis

Intuition for accuracy. The following disregards the case of a “block miss”, which we discuss in
Appendix D. That is, we focus now on the quality of approximating the edit-distance between two
sequences X and Y by computing block-wise distances, where partitioning into block is performed
with respect to a common reference genome as described in Algorithm 4.1.

In more detail, suppose we have two sequences X and Y and we wish to compute their edit-
distance ED(X,Y). Our approximation algorithm first breaks each one of the sequences into blocks
X1, . . . , Xn and Y1, . . . , Yn. Then, it computes ApproxED(X,Y) =

∑n
`=1 ED(X`, Y`). First, it is clear

that

ED(X,Y) ≤ ApproxED(X,Y) =

n∑
`=1

ED(X`, Y`) .

This is because there are many ways one can “transform” sequence X into sequence Y . In our case,
we transform each block of X into the corresponding block of Y , and sum the number of operations
these block-wise transformation consumes. The term ED(X,Y) minimizes over all possible ways to
transforms X into Y , including that specific aforementioned possibility.

Let R = (R1, . . . , Rn) be the strings of the reference genome, after breaking it into b-size blocks.
For every ` ∈ {1, . . . , n}, it holds that

ED(X`, Y`) ≤ ED(X`, R`) + ED(R`, Y`) .

This holds from a similar reasoning as before: There are many ways to transform X` into Y`. The
optimal way consumes ED(X`, Y`) operations, whereas the right hand-side is just one possible way
– transforming X` into R`, and then transforming R` into Y`.

Moreover, we claim that ED(X,R) =
∑n

`=1 ED(X`, R`). In order to see that, first note that the
term ED(X,R) is the number of minimal operations that are required for transforming X to R.
Moreover, the term

∑n
`=1 ED(X`, R`) is a specific way to make this transformation, by taking the

optimal transformation for transforming X1 into R1, then the optimal transformation of X2 into
R2, etc. While other partitions of X into blocks could have added restrictions when considering
block-by-block alignments, the specific partitioning of X that we are considering does not add such
restrictions as it was constructed from the optimal alignment path of ED(X,R). From a similar
reason, it also holds that ED(Y,R) =

∑n
`=1 ED(Y`, R`).

Putting it all together, since
∑n

`=1 ED(X`, Y`) ≤
∑n

`=1 (ED(X`, R`) + ED(R`, Y`)) = ED(X,R) +
ED(Y,R), we conclude the following upper bound:

ED(X,Y) ≤ ApproxED(X,Y) ≤ ED(X,R) + ED(Y,R) .

While this bound is coarse, still it provides some meaningful insights:

• First, if the reference genome has relatively the same distance from X and Y as any other
sequence in the database (i.e., all values ED(X,Y), ED(X,R) and ED(Y,R) are similar), this
is a 2-approximation.

• Second, if the two sequences X and Y are obtained by adding random mutations to the
reference genome in different distinct locations, then this approximation is in fact, exact. Our
experiments show that in practice, this is more likely to be the case.

15

Dataset # Samples Length Avg. ∆ (stdev) Max-∆ Pair Max-∆ Ref Variability

ZNF717 501 3470 91.33 (94.24) 175 184 ≤ 5.04%
TEKT4P2 51 2087 27.49 (28.55) 54 57 ≤ 2.58%
CDC27P1 101 714 12.41 (13.42) 33 50 ≤ 4.62%
CDC27P2 101 1950 29.31 (30.46) 65 68 ≤ 3.33%

ABHD17AP5 15 1570 3.01 (3.51) 6 18 ≤ 0.38%

Table 1: Our datasets. Avg. ∆ is the average of all edit distances between pairs in the datasets. Max-∆
Pair – is the maximal edit distance among all pairs in the dataset. Max ∆-Ref – is the maximal distance

between a sequence and the reference genome. Variability is the maximal distance divided by the size of the
region.

5.2 Empirical Evaluation

We empirically evaluate the accuracy of our approximation protocol. We specifically target “high-
divergence” regions of the genome, since we seek to verify that we still get good results even for
such regions. We tested our approach on various datasets and on different chromosomes:

Our main dataset: ZNF717. Our main dataset was provided by the organizers of the iDash
competition [iDA16]. It contains relatively many (501) gene sequences extracted from the publicly
available 1000 Genomes Project [Int18]. It was extracted from human chromosome 3 (75785026-
75788496), of length just under 3500, within the coding region of gene ZNF717. The iDASH orga-
nizers explained the choice of this particular gene by its high divergence among individual genomes.

Other datasets. From a set of 170 complete sequences, and with the help of the iDash organizers,
we extracted several other regions with high-divergence. For each region we chose only a subset of
the samples to make the task more challenging. That is, we excluded samples that were identical
to each other within that region (since the approximation is exact in such a case). The following
datasets were extracted:

• TEKT4P2: Chromosome 21 (9907190–9909277) of size under 2100.

• CDC27P1: Chromosome 2 (133019901–133020615) of size under 750.

• CDC27P2: Chromosome Y (10027986-10029907) of size under 1950.

• ABHD17AP5: Chromosome 22 (22720578–22722138) of size under 1570, within the coding
region of gene ABHD17AP5. Here the region has very low variability. We therefore extracted
only 15 samples, testing our algorithm also for a “toy” database.

The datasets, including some basic properties, are given in Table 1. We remark that looking the
datasets have a nice variety in the type of queries we examined, where there are queries in which
the set of k closest sequences is easily recognizable (as the distance between the k + 1’th closest
element and the query is significantly greater than the distance between the query and the k’th
closest element), and in most cases the set is much harder to be recognized (these two distances are
very small or even identical).

Accuracy. The main results of our accuracy test are summarized in Table 2. Our algorithm
performs remarkably well on all tested datasets: It returned the exact result in almost all tests,
and very close results otherwise (most of the cases, a result with the same edit distance as the edit
distance of the k’th element, or one farther).

We ran the following experiment for each one of the datasets: We chose ≈ 10% random sequences
from the dataset as queries and the rest of the dataset was set to be the database. We ran the

16

preprocessing phase of our protocol, and compared the set of sequences that the protocol returned
to the correct values, for different threshold parameters – k = 1, 3, 5 and 10 (that is, finding the
closest sequence, the set of three closest sequences, etc.). We repeated the experiments 10 times,
for independent random choice of queries. The block size was set to b = 3, while similar results are
obtained to other choices of this parameter.

Table 2 summarizes the accuracy results of our approximation algorithm in the different datasets
for different k. The table consists of the following columns:

• Dataset.

• k is the threshold parameter – how many sequences to return.

• Average ED is the (true) average edit distance between the query and the set of the kth closest
sequence in the database.

• Average-∆ is the average of how much farther the farthest record returned by the algorithm
was than the k’th-closest record. As the numbers are so low this represents that when the
algorithm returns a record that it should have not returned, it returns a record that is very
close to the one it should have returned.

• Precision: Among the set of the true k closest elements, how many (correct) elements did the
approximation algorithm return. This is the standard notion of precision: number of true
positives (records that are supposed to be returned) over the sum of true positives and false
positive (wrong records that were returned). We break ties according to the lexicographically
order. This implies that in case of a tie in which the approximation algorithm returned a
sequence with the right edit distance but greater id than the lexicographically smallest one,
we count it as an error.

It is important to note that our approximation algorithm returns fairly accurate results even
for relatively small databases. For instance for both datasets ABHD17AP5 (15 sequences) and
TEKT4P2 (51 sequences) the algorithm always succeeds to identify the closest record in the database,
and in case it is wrong for larger k’s it always returns records that are very close to those it should
have returned. This is an important property, as for several rare diseases the sample set that a real
hospital holds can be rather small (couple of dozens patients).

The ZNF717 dataset. The dataset in which we had the most number of samples, as well as the
most varied types of queries is the dataset ZNF717. This was the database chosen by the iDash
organizers [iDA16], who are domain experts for this task. We report some more detailed results for
that dataset.

We observe that the block-size parameter does not effect much the accuracy of the algorithm.
Nevertheless, it does effect the performance of the protocol, as larger block size means less blocks
to process, and therefore overall less workload. Table 3 summarizes the performance and accuracy
results of our approximation algorithm as a function of the blocksize parameter b, when returning
the closest 5 (approximate) distances. The table consists of the following columns:

• b′ is the largest actual blocksize obtained for any of the sequences (i.e., after breaking the
sequences into blocks, some blocks can be larger than b.)

• # Values is the largest number of distinct values found in any block (i.e., the parameter v
should upper bound this value).

• Average-∆ is how much farther is the farthest record returned by the algorithm than the true
k’th-closest record.

In this experiment, we chose ≈ 1% ≈ 5 sequences as query sequences, and the other records were
chosen to be the database. We repeated this choice 100 times, and the “Average-∆” values are
computed over these 100 runs, together with the standard deviation (in parenthesis).

17

Dataset k Ave. ED Ave. -∆ Precision

ZNF717

1 2.07 0 100%
3 2.96 0 100%
5 4.68 0.01 98.85%
10 28.98 0.25 97.48%

TEKT4P2

1 13.14 0 100%
3 16.29 0.80 96.66%
5 18.5 0.73 96.66%
10 21.39 0.60 97.33%

CDC27P1

1 2.81 0.02 95.91%
3 4.39 0.18 94.56%
5 5.47 0.33 94.28%
10 6.87 0.57 96.94%

CDC27P2

1 13.08 0 100%
3 16.75 0 100%
5 18.27 0.03 99.67%
10 20.55 0 99.67%

ABHD17AP5

1 0.92 0 100%
3 2.75 0.6 86.67%
5 3.17 0.2 92%
10 4.92 0 98%

Table 2: Accuracy of our algorithm, for the various datasets and various choices of k.

Block Size (b) b′ # Values Average-∆ (stdev)

3 10 6 0 (0)
5 12 8 0.01 (0.1)
8 15 10 0 (0)
12 19 10 0.01 (0.1)

Table 3: Algorithm accuracy as function of block size b. Average(stdev) edit-distance between query and
5’th closest sequence is 4.15(8.37).

b = 5 b = 8

Dataset Max-b′ Max-v Max-b′ Max-v

ZNF717 12 8 15 10
TEKT4P2 5 7 8 10
CDC27P1 7 4 12 4
CDC27P2 8 4 12 4

ABHD17AP5 5 2 8 2

Table 4: The maximum number of block size and number of different values in each table observed in the
various datasets.

18

Dataset DB Size Length
Server CPU Time Query CPU Time #AND gates #AND gates
Preprocessing (s) Server (s) Client (s) Compare k-min Naive

ZNF717 500 3470 11.86 1.22 0.48 1000800 505825 ≈ 20 · 109

TEKT4P2 50 2087 0.69 0.45 0.23 603360 44948 ≈ 400 · 106

CDC27P1 100 714 0.46 0.17 0.09 207360 95618 ≈ 230 · 106

CDC27P2 100 1950 0.91 0.45 0.23 554400 95618 ≈ 875 · 106

ABHD17AP5 15 1570 0.37 0.32 0.19 450720 11080 ≈ 30 · 106

Table 5: Running times for the various datasets. In all runs k = 5, b = 5, b′ = 12, v = 15, and bandwidth
is smaller than 80MB.

DB Size
v = Preprocessing Query Server CPU Bandwidth

AND-gates
values (s) Compare (s) OTs (s) k-min (s) (MB)

1000 25 30 1.51 4.36 0.16 180 1399480
2000 30 61.8 2.1 11.7 0.31 340 2035415
4000 35 119 2.8 28.2 0.6 660 3149350

Table 6: Running times for varying DB sizes with fake data for k = 5, b = 4 and b′ = 16.

On the parameters b′ and v. Our overall aim is to compute edit-distance in genomic setting
with higher efficiency. Besides exploring the accuracy of our algorithm, we also wish to explore the
values of b′ and v as these two parameters are important also for the efficiency of our protocol.
The parameter b′ is important for realizing Functionality 3.3 using Yao’s circuit. The parameter v
reflects the amount of times we will invoke the underlying subprotocols. In Table 4, we show how
these two parameters appear in the datasets. The experiment is the same as in Table 2. The column
Max-v reflects the number of different values in each block as was seen in the experiment, whereas
the Column Max-b′ represent the largest block size appeared after breaking all sequences into block.
We intentionally do not call these parameters as v and b′, in order to distinguish between the values
that were observed in the experiments and the parameters of the protocol, where the latter should
upper bound these values.

6 Evaluation and Performance

We implemented our protocol over the C++ version of the Secure Computation API library (SCAPI) [EFLL12].
We use the state-of-the-art improvements, include Yao with free-XOR technique [KS08] and half-
gates [ZRE15], and the recent improvements in OT-extension [ALSZ13, KOS15]. Table 6 presents
the performance results for varying database size, these numbers were obtained by running the
protocol on a single x86 64 machine using the loopback device for client-server communication.

In our implementation, the most costly aspect was the pre-processing on the server side (which
only needs to be done once per database). This part requires many edit distance computations (in
the clear), and we did not attempt to optimize it.

Table 5 shows the running times for all datasets, with distance bound d = 512 (while the
maximal edit distance between pair never exceeded 190), b = 5, b′ = 12 and v = 15. We chose
these parameters somewhat arbitrarily, such that they satisfy the conditions of Table 4. For each
dataset, we exclude one sequence and took it as the query, while all other sequences were set to
be the database. We repeated this process for every sequence in the dataset. As a result, e.g., the
ZNF717 (which contains 501 total sequences) reflects the average of 501 different executions, where
in each execution the DB size is 500. The bandwidth never exceeded 80 MB in all executions. We
also consider the expected number of gates using the naive solution (with the optimization that
considers the bound of maximal edit-distance between a pair in the DB). We expect roughly 10
minutes per 1 billion gates using GMW [KOS15].

19

Simulated dataset. We wanted to test the scalability of our secure protocol when processing
databases with many more records. As there is a lack of availability of such a large genomic dataset,
we used fake data. Due to the fact that the data was simulated we ran the protocol just to test the
runtime and not the accuracy.

We checked 100 queries with databases of size m = 1000, 2000 and 4000 records. Each record
is of size roughly 3470 nucleotides. In all these cases, we ran with k = 5, b = 4, b′ = 16 and we
allowed v to increase with the size of the database. We chose these parameters quite arbitrarily and
conservatively as in the case of real genomic data. In Table 6, we report the maximal allowed size
of the tables (# values, i.e., v in the protocol), the times needed for the preprocessing, answering a
query, the bandwidth and the number of AND-gates.

The reference genome and accuracy. Our theoretical analysis shows that the reference genome
must be somewhat “close” to the two sequences that are being compared, and this is necessary
for achieving high accuracy. The analysis also suggests that with a random reference genome, our
algorithm will be completely inaccurate. We emphasize that the reference genome is never chosen
by the protocol, and there is a consortium that is devoted for that [GRC]. Our empirical results
show that this reference genome yields great approximation results on all tested databases.

To demonstrate the decline in accuracy with a “bad” reference genome, we give here some
experimental result: We consider dataset CDC27P1, and its associated reference genome. We
synthetically add noise to its reference genome by iterating over its letters, and at each position
leave the letter unchanged with probability 83%, and otherwise randomly adding 1− 3 characters,
substitute the current character or remove it. This increases the distance between the sequences in
the database and the reference genome to around 150 (instead of 50), and decreases the accuracy
from around ≈ 95% to ≈ 90%. When increasing the noise even further and leaving the letter
unchanged with probability 50%, the distance from the reference genome is increased to 330 and
the accuracy is degraded to 62%.

7 Extensions and Discussions

Extending the protocol for other settings. We described Protocol 3.8 in the context of genomic
data. This protocol can be used also in more general settings. As for example, consider the following
problem: A client holds a vector x ∈ {0, 1}n, and the server holds m vectors S1, . . . , Sm ∈ {0, 1}n,
and assume that m � 2n. The client should receive the identities of the k-closest vectors in the
database, where closeness is measured in terms of hamming distance. As here we are working
over a small alphabet (bits) which is also public (i.e., Ti is always {0, 1}, for every “block”), the
client can simply share the indicator bits and there is no need for secure computation for that.
This protocol results in 2n OTs (of vectors of length m), which can be fast using OT extensions.
Garbled circuit is then needed only for computing the k-min values out of the m results. Moreover,
this protocol is accurate, and can also easily be adjusted to weighted hamming distance, in which
different coordinates have different weights, or also be generalized for larger alphabets.

Leakage from approximated results. We prove the security of our protocol according to the
ideal-real simulation paradigm in the semi-honest settings, where the simulator receives the output
of the approximation function. This follows the same spirit as the liberal definition for security of
approximation in [FIM+01]. A stronger security notion called functional-privacy was also introduced
in [FIM+01], and requires simulation of the approximated function from the output of the exact
function. That is, a (possibly randomized) approximation function g′ is functional-private with
respect to a function g, if there exists a simulator S such that for every input x in the domain,
S(g(x)) is distributed identically to g′(x). Notably, this is a property of the approximation function
and the task to be computed, and not of the protocol.

20

Our approximation function is not functional-private, yet our protocol is fully simulatable given
the result of the approximation function. An interesting question is whether an efficient secure
protocol can be designed for some approximation function for this task, while the approximation
function is also functional-private. We believe that using differential private techniques can trans-
form our approximation function to be functional-private (by adding noise to the results), however,
at the expense of degrading its accuracy.

We further note that being non-functional private does not render our protocol useless. In fact, in
real-world applications, this task would serve as a building-block and not as a stand-alone system.
In some cases, it is likely that the function to be computed using our approximation would be
functionally-private, even though our approximation by itself is not. In order to see that, consider
the task that motivated our work in the introduction: a medical doctor would like to examine
whether a particular treatment would succeed for her client, based on the medical conditions of
patients in a remote database. Assume that the vast majority of patients in the exact k-set share
the same medical conditions. This is a reasonable assumption, as otherwise such a system would
return arbitrary results. Based on our k-closest approximation function, one can build a protocol
that first finds the (approximated) closest set, and then determines the results according to the
majority of elements in the returned set. As our k-closest approximation recognizes almost all
elements in the exact k-closest set, the output of our approximation and the exact function would
be the same, and thus this function would be functionally-private. We believe that other tasks can
be based on our system and result in functionally-private approximation.

We focused in this work on quantifying the accuracy of our approximation. We compared the
identifiers that were returned by our approximation to the identifiers that were returned by the exact
function (see Columns “Precision” in Table 2 and “Average-∆” in Table 2). These measurements
would be helpful for one who would like to use our approximation as a subprotocol.

The semi-honest model and limitations of the exact functionality. Our solution targets the
semi-honest model of security. The goal is to enjoy the benefits of genomic medicine without violating
federal laws addressing privacy issues and legislations (such as the Health Insurance Portability and
Accountability Act (HIPAA) [HIP]) that safeguard medical information.

It is not hard to see that when deviating from the semi-honest model, by engaging in multiple
executions with adversarially chosen queries, a malicious doctor can choose its queries adversarially
and learn significant information about each individual in the database. We stress that such attacks
can be launched on an “ideal functionality” computing the exact functionality as well. That is, even
if an incorruptible trusted party computed the function for the parties, it would still be possible to
carry out such an attack. Thus, such an application can only be used safely by parties who trust
that they will both behave semi-honestly.

Securely computing the parameters. Our protocol requires fixing several parameters such as
(1) the block size b for breaking up the reference genome R, (2) an upper bound b′ on the size of the
blocks in the query and sequences (after alignment with R), (3) the maximum number of possible
different values v in a block, and (4) an upper bound d on the maximum edit distance. At first,
one may think that these parameters leak information about the database. However, as we discuss
below, they can actually be determined from publicly available data and therefore do not leak any
information about the database or the query.

The reference genome R that we use is GRCh37, which is publicly available to both the client and
the server, and it can be found online (e.g., [GRC]). As it is public knowledge, it leaks no information
whatsoever about any individual in the database, nor the query. Our experiments and theoretical
analysis (§5) show that b has a minor effect on the accuracy of our approach, and we therefore
choose it somewhat arbitrarily. The parameters b′, v and d are related to the “variability” of the

21

range in consideration (i.e., the average ratio between the distance of sequences from the reference
genome and the length of the range). It is possible to extract these parameters as well from public
datasets, and one can create a database mapping between genomic regions and the parameters v
and b′ (while taking into account the size of the database) similarly to other characteristics that are
available for each position in the genome and are publicly available in genomic browsers such as the
NCBI browser [NCB].

By conservative choices of the parameters based on public data, no specific database under
consideration would exceed the parameters with very high probability. Moreover, the server can
monitor whether its actual database satisfies the parameters prior to answering any query.

8 Conclusions

In this work we described a privacy preserving protocol for answering Similar Patient Queries (SPQ)
on genome data. Our protocol was designed to operate in settings with high divergence between
individuals. We developed an efficient method for approximating the edit distance that provides
very good accuracy even in regions of the genome with ≈5% variability, while at the same time
being 2-3 orders of magnitude faster than exact calculation. Our work was motivated by the 2016
iDASH competition for computing on genome data, in which our solution won the first place. In
particular, for the 500-record dataset used in that competition, we can answer SPQ in under 1.2
seconds per query (after about 12 seconds of one-time pre-processing of the database).

Acknowledgment

We thank Shalev Keren, Meital Levy and Assi Barak for the implementation of our protocol. We
thank Diyue Bu and Haixu Tang for their support and help in extracting the datasets, and Haixu
Tang, Diyue Bu, XiaoFeng Wang, Shuang Wang, Xiaoqian Jiang, and Lei Wang for organizing the
iDASH competition and helping us with all our questions and requests. We also than Robin Hui for
the proof in Section 5.1.

References

[AAM17] Md Momin Al Aziz, Dima Alhadidi, and Noman Mohammed. Secure approximation of
edit distance on genomic data. BMC Medical Genomics, 10(2):41, Jul 2017.

[ABOcS15] Mete Akgün, A. Osman Bayrak, Bugra Ozer, and M. Şamil Sağıroğlu. Privacy preserv-
ing processing of genomic data: A survey. Journal of Biomedical Informatics, 56:103 –
111, 2015.

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient
oblivious transfer and extensions for faster secure computation. In ACM Conference on
Computer and Communications Security, pages 535–548. ACM, 2013.

[AO12] Alexandr Andoni and Krzysztof Onak. Approximating edit distance in near-linear time.
SIAM J. Comput., 41(6):1635–1648, 2012.

[BBC+11] Pierre Baldi, Roberta Baronio, Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik.
Countering GATTACA: efficient and secure testing of fully-sequenced human genomes.
In Proceedings of the 18th ACM Conference on Computer and Communications Security,
CCS 2011, Chicago, Illinois, USA, October 17-21, 2011, pages 691–702, 2011.

22

[BI15] Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly sub-
quadratic time (unless SETH is false). In Proceedings of the Forty-Seventh Annual ACM
on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,
2015, pages 51–58, 2015.

[Can00] Ran Canetti. Security and composition of multiparty cryptographic protocols. J. Cryp-
tology, 13(1):143–202, 2000.

[EFLL12] Yael Ejgenberg, Moriya Farbstein, Meital Levy, and Yehuda Lindell. SCAPI: the se-
cure computation application programming interface. IACR Cryptology ePrint Archive,
2012:629, 2012. A link to the library: http://crypto.biu.ac.il/about-scapi.

[FIM+01] Joan Feigenbaum, Yuval Ishai, Tal Malkin, Kobbi Nissim, Martin Strauss, and Re-
becca N. Wright. Secure multiparty computation of approximations. In ICALP, volume
2076 of Lecture Notes in Computer Science, pages 927–938. Springer, 2001.

[GA4] GA4GH. GA4GH Strikes Formal Collaborations with 15 International Genomic Data
Initiatives. https://www.ga4gh.org/news/sAhZCeJjS96QHhVPIYwwWA.article. [On-
line; accessed June-2018].

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In ACM Symposium on
Theory of Computing, STOC, pages 218–229, 1987.

[Gol04] Oded Goldreich. The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, 2004.

[GRC] GRCh37. NCBI: The National Center for Biotechnology Information. The GRCh37
Reference Genome Sequence. https://www.ncbi.nlm.nih.gov/projects/genome/

guide/human/index.shtml. [Online; accessed June-2018].

[HEKM11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party com-
putation using garbled circuits. In 20th USENIX Security Symposium, San Francisco,
CA, USA, August 8-12, 2011, Proceedings, 2011.

[HIP] HIPAA. Centers for Medicare and Medicaid Services. Are you a covered entity? https:

//goo.gl/sdkm13. [Online; accessed June-2018].

[HSE+11] Yan Huang, Chih-Hao Shen, David Evans, Jonathan Katz, and Abhi Shelat. Efficient
secure computation with garbled circuits. In Information Systems Security - 7th Inter-
national Conference, ICISS 2011, Kolkata, India, December 15-19, 2011, Procedings,
pages 28–48, 2011.

[iDA16] iDASH - integrating Data for Analysis, Anonimization, and SHaring, 2016. Web-
page at https://idash.ucsd.edu/genomics, 2016 competition at http://www.

humangenomeprivacy.org/2016/.

[Int18] International Genome Sample Resource. IGSR and the 1000 genomes project. http:

//www.internationalgenome.org/, Accessed Mar-2018.

[JKS08] Somesh Jha, Louis Kruger, and Vitaly Shmatikov. Towards practical privacy for genomic
computation. In 2008 IEEE Symposium on Security and Privacy (S&P 2008), 18-21
May 2008, Oakland, California, USA, pages 216–230, 2008.

23

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with
optimal overhead. In Advances in Cryptology - CRYPTO, pages 724–741, 2015.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates
and applications. In Automata, Languages and Programming, 35th International Col-
loquium, ICALP, pages 486–498, 2008.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2):161–188, 2009.

[LRU14] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive Datasets,
2nd Ed. Cambridge University Press, 2014.

[NAC+15] Muhammad Naveed, Erman Ayday, Ellen W Clayton, Jacques Fellay, Carl A Gunter,
Jean-Pierre Hubaux, Bradley A Malin, and XiaoFeng Wang. Privacy in the genomic
era. ACM Computing Surveys (CSUR), 2015.

[NCB] NCBI. Genome Data Viewer. https://www.ncbi.nlm.nih.gov/genome/gdv/

browser/. [Online; accessed June-2018].

[NW70] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, March 1970.

[WF74] Robert A. Wagner and Michael J. Fischer. The string-to-string correction problem. J.
ACM, 21(1), January 1974.

[WHZ+15] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng Wang, and Diyue
Bu. Efficient genome-wide, privacy-preserving similar patient query based on private
edit distance. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 492–503, New York, NY, USA, 2015. ACM.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
Symposium on Foundations of Computer Science, FOCS, pages 162–167, 1986.

[ZH17] Ruiyu Zhu and Yan Huang. Efficient privacy-preserving general edit distance and be-
yond. Cryptology ePrint Archive, Report 2017/683, 2017. http://eprint.iacr.org/

2017/683.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In Advances in Cryptology - EUROCRYPT,
pages 220–250, 2015.

Appendix

A Related Work

We provide some more in depth comparison with the related work of [WHZ+15] and the concurrent
works of [ZH17] and [AAM17].

The work of [WHZ+15]. The most relevant prior work to ours is by Wang et al. [WHZ+15]
(building on earlier work of Baldi et al. [BBC+11]) that designs a privacy-preserving protocol for

24

supporting the Similar Patient Query functionality. Wang et al. developed an approximation pro-
tocol for edit distance that enables computation in a large scale of the whole genome.

The approach of Wang et al. relies on the fact that the genomes that they are examining have
little divergence.Using this fact, Wang et al. show how to approximate the edit distance by just
considering the set of indexes where the two sequences differ from the reference genome, and running
a set-intersection protocol. The above assumptions are valid in some instances, especially when the
edit-distance result is very close to that of the hamming-distance. The approximation was shown to
be very accurate in these cases, and the computation of a single comparison between two sequences
of total 100K variations is performed in several hundreds of seconds.

However, some regions have high divergence and the differences are also caused by insertions and
deletions, which are more difficult to deal with in computing edit distance. For example in some
regions that affect the immune system the distances between two individuals may be up to 5–7% of
the size of the region, and about 25% of the differences between two sequences are due to insertions
or deletions.

We implement the approximation function of Wang et al., and examined its accuracy. The
approximation function is pretty accurate (>97%) for databases ABHD17AP5, TEKT4P2, but its
accuracy in CDC27P2 is 93.23% (compared to 98.49% of our algorithm), and for CDC27P1 its
accuracy is 66.16% (compared to 97.74% of our algorithm). The experiments where all tested with
the same randomness for choosing the challenged queries, and with the same settings as in §5.2. In
all these tests, our approximation was always more accurate than [WHZ+15].

We remark that while [WHZ+15] deal with 100K variations (i.e., the sets to be intersected are
of size 100K) in few hundreds of seconds (depending on the accuracy level), we compare a single
query to a database of 500 sequences of size 3470 size each at less than a second (after one-time
preprocessing of around 12 seconds). Our problem contain much more characters to check (roughly
factor of 17×) and is still much faster, showing the power of pushing most of the computation to
preprocessing.

The work of Zhu and Huang [ZH17]. The concurrent work of Zhu and Huang computes edit-
distance using garbled circuits, while designing specific gate-level “gadgets” to accelerate computa-
tions of edit-distance and related tasks, such as weighted edit-distance and Needleman-Wunsch [NW70].
This approach enables computation of accurate edit-distance and not approximation as ours, and
also works for other domains rather than genomic data. Zhu and Huang reported a running time
of 3.7 seconds for a single comparison between two sequences in the ZNF717 dataset (≈ 3470-long
strings, see §5 for more information regarding the dataset). Using their approach, answering a single
query to find the 5 closest sequences in a database of 500 sequences would take 1850 seconds (more
than 30 minutes).4

The work of [AAM17]. The work of [AAM17] proposed an approximating algorithm for com-
puting the distances between the query and each sequence of the database based on “shingling”, a
technique used to identify lexically similar documents in data mining [LRU14]. They first break all
sequences into small blocks of consecutive letters (e.g., the sequence ATTGTTA will be broken into
“shingling” {ATTG,TTGT,TGTT,GTTA}). Then, they approximate closeness between a query and a
sequence as the number of elements in the intersection of their shingling set, which is implemented
using private-set-intersection protocol. This yields a somewhat fast approximation algorithm with
low accuracy: around 50% accuracy when looking for the closest-1 set, less than 60% when querying
for the closest-5 and around 25% when looking for the closest-10. In order to improve the accuracy

4We emphasize that we did not implement their protocol, and the only running times that they reported for the
same database as ours is a single comparison.

25

of their algorithm, [AAM17] first apply their fast approximation algorithm to find c · k closest se-
quences (for some constant c ≥ 1), and then proceed to computing accurate edit-distance between
these candidates and the query using garbled circuits. They also present optimizations of the gar-
bled circuit for the case of edit-distance (introducing some error). They report different variants
of their algorithms, where the one with accuracy that is comparable to ours has a running time of
more than 2000 seconds.

B The Wagner-Fischer Algorithm

The WF algorithm [WF74] is based on dynamic programming, for computing the edit distance
between two sequences A = (α1, . . . , αa) and B = (β1, . . . , βb).

The algorithm proceeds by preparing an (a + 1)-by-(b + 1) matrix D[·, ·], where entry (i, j) is
the edit-distance between the i-prefix of A and the j-prefix of B. The first row and column are
initialized by D[i, 0] = i, D[0, j] = j for all 0 ≤ i ≤ a and 0 ≤ j ≤ b. Then for 1 ≤ i ≤ a and
1 ≤ j ≤ b the algorithm iteratively sets

D[i, j] =


if αi = βj : D[i− 1, j − 1] (match)

otherwise : min


D[i− 1, j − 1] + 1 (substitution)

D[i− 1, j] + 1 (delete)

D[i , j − 1] + 1 (insert)

and finally it returns the answer D[a, b].
This procedure can be augmented to return not only the edit distance itself but also the sequence

of operations that transforms A to B in D[a, b] steps. Specifically, together with D we also prepare
a matrix of pointers PTR[·, ·] (with the same dimension as D), that for each entry (i, j) points to
the previous entry from which D[i, j] received its value. Specifically, we initialize PTR[0, 0] =⊥,
PTR[i, 0] = (i − 1, 0) for all 1 ≤ i ≤ a and PTR[0, j] = (0, j − 1) for all 1 ≤ j ≤ b, and then for
1 ≤ i ≤ a and 1 ≤ j ≤ b we iteratively set

PTR[i, j] =


(i− 1, j − 1) if D[i, j] ≤ D[i− 1, j − 1] + 1

(i− 1, j) if D[i, j] = D[i− 1, j] + 1

(i , j − 1) if D[i, j] = D[i, j − 1] + 1

where the first case corresponds to a match or substitution, the second corresponds to a delete, and
the last case corresponds to an insert. When more than one condition applies, we break ties toward
the main diagonal. Namely, we prefer (i , j − 1) to the other options when j > i, prefer (i − 1, j)
when i > j, and prefer (i− 1, j − 1) when i = j.

The PTR table lets us trace on optimal path, starting from PTR[a, b] and following the pointers
to get both the alignment of the sequences A,B, as well as the corresponding operations (match,
substitute, insert, delete).

C Security Definitions and Proofs

We provide security proofs according to the standard definition of secure protocols (cf. [Gol04]) in
the semi-honest model. We briefly describe the definition, and proceed to the security proofs.

26

C.1 Definitions

For two distribution ensembles X = {Xs}s and Y = {Ys}s, we let X
c
≈ Y denote computationally-

indistinguishability. Let f : ({0, 1}∗)2 → ({0, 1}∗)2 be a probabilistic function, and write f =
(f0, f1), where each fi(x0, x1) = yi for i ∈ {0, 1}. Let π be a protocol between parties P0 and P1.
We let viewi(x0, x1) denote the distribution of the view of party Pi in the protocol execution of π,
which consists of the random tape of Pi and all the messages it receives throught the execution.
Likewise, we denote by outputi(x0, x1) to denote its output distribution of that execution.

Definition C.1. Let π, f be as above. We say that π securely realizes f in the presence of a semi-
honest adversary, if there exist S0,S1 such that for every x0, x1 ∈ {0, 1}n and for every i ∈ {0, 1} it

holds that {Si(xi, fi(x0, x1)), f(x0, x1)}
c
≈ {(viewi(x0, x1), output(x0, x1)}.

Modular composition. The sequential composition theorem [Can00] is a tool for analyzing the
security of a protocol in a modular way. Let πf be a protocol for securely computing f that uses
a subprotocol πg for computing g. The theorem states that it suffices to consider the execution of
πf in a hybrid model where a trusted third party is used to ideally compute g. We rely on this
composition theorem in our proof, and refer the reader to [Can00] for the formal statement of the
theorem.

C.2 Security Proofs

We prove the security of our protocols. As in our case the parties are a client and a server, we
denote the simulators as Ss (simulating corrupted server) and Sc (client).

Theorem C.2 (Sharing of χ`,j · L`,j). Protocol 3.5 securely realizes Functionality 3.4 in the FOT-
hybrid model against static corruptions in the semi-honest adversary model.

Proof: We separate between the case of a corrupted client and a corrupted server. First, recall
that Functionality 3.4 receives the inputs χc`,j , χ`, j

s and L`,j from the parties, reconstructs χ`,j =
χc`,j ⊕ χ`, js. It then chooses a random output for the server, Ls`,j and then deterministically sets
the output of the client to be Lc`,j = Ls`,j + χ`,j · L`,j .

In order to simulate a corrupted server, note that the protocol is just an execution of an OT
protocol, and there are no other messages beyond that single invocation. The server has no output
from the OT, and therefore its view is just its randomness, which is solely L0

`,j = Ls`,j . The simulator
Ss receives as input the output of the server, i.e., Ls`,j , and just outputs this value. According to
the definition of the functionality it is guaranteed that the two outputs of the parties, i.e., Ls`,j , L

c
`,j

guarantee Lc`,j − Ls`,j = χ`,j · L`,j . In the real execution, the OT guarantees that the output of the
client Lc`,j = Ls`,j + χ`,j · L`,j For a corrupted client, the simulator Sc receives as input some string
Lc`,j as the output of the client. The view of the client in the protocol consists of just the message
it receives from FOT, and therefore the simulator outputs it. The theorem follows.

Theorem C.3 (Sharing of L). Protocol 3.6 securely realizes Functionality 3.2 against static cor-
ruptions in the semi-honest adversary model.

Proof: Correctness is easy by inspection. As for security, assume the case of a corrupted client.
The simulator Sc receives as input a random Lc as the output of the corrupted client, and the
output of the server guarantees Ls = Lc − L. The view of the client during the execution is the set
of shares {χc`,j}`,j and the vectors {Lc`,j}`,j . The simulator chooses the set of bits {χc`,j}`,j uniformly
at random, and also chooses the vectors {Lc`,j}`,j at random from Zn·vd under the constraint that

27

∑n
`=1

∑v
j=1 L

c
`,j = Lc, and outputs these values. As the intermediate values {χs`,j}`,j are hidden from

the distinguisher, the bits {χc`,j}`,j that the client receives from the invocations of Functionality 3.4
are distributed uniformly. Moreover, as the values {Ls`,j}`,j are also hidden from the distinguisher,
the vectors {Lc`,j}`,j are all random under the constraint that they sum-up to the output of the
client. Therefore, the join distribution of the view of the client and the output of all parties in the
real execution is identical to the distribution of the output of the simulator and the output of the
functionality in the ideal execution.

The case of a corrupted server is proven analogously.

Theorem C.4 (Overall protocol). Protocol 3.8 realizes Functionality 3.1 against static corruptions
in the semi-honest adversary model.

Proof: Functionality 3.1 is deterministic, and therefore we can prove separately correctness and
privacy. Correctness of the protocol is trivial given the definition of the underlying functionalities,
i.e., Functionalities 3.2 and 3.7.

Except for the input and output values, the only other messages that the parties see in Pro-
tocol 3.8 are the vectors Lc, Ls that are returned by the intermediate Functionality 3.2, and that
these vectors are individually uniform, irrespective of the input and output. Thus, in the case of a
corrupted client the simulator Sc just chooses Lc uniformly at random, and in the case of a corrupted
server Ss chooses Ls uniformly at random.

As a conclusion, we derive security for Protocol 3.8 in the plain model using the composition
theorem of [Can00, Gol04] in the stand-alone settings, while combining Theorems C.4, C.2, and C.3
together with the security of Yao’s Protocol [LP09].

D Block Misses

Our approach ignores blocks of the client that do not appear in the database. This introduces some
error to our approximation, but we empirically verify that it is minor. First, in §D.1 we study the
frequency of block-misses and see that they rarely occur. Second, in §D.2 we study the error that is
introduced with each such block-miss, and see that it is indeed very small.

D.1 Empirical Evaluation: Frequency of Block-Misses

Our approach ignores blocks of the clients that do not appear in the database. Intuitively, assuming
that m independent samples from some distribution (i.e., the `th block of each one of the sequences)
occur in some very small set (i.e., T`), then the probability that an additional independent sample
(i.e., Q`) will occur in the same set is close to 1.

In Table 7, we report the frequency of block misses and show that it is a relatively rare event.
The data below is on the real database (ZNF717), where we chose 30 sequences at random to be
the queries, and the other 470 sequences to be the DB. We then built the tables T`, and run our
protocol. Overall, more than 99.95% of the blocks of the queries do appear as one of the blocks
in the DB. In fact, for more than half of the queries, all their blocks appear in the DB, and the
maximal number of block misses per query that was observed is 3. In Table 7 we observe similar
results even for small databases, and even when the number of queries and the number of sequences
in the database are close.

28

DB Size #Queries
Average # Hits Max # of Misses

per Query (stdev) Qer query

276 224 1155.91 (0.62) 2
340 160 1155.90 (0.61) 3
400 100 1155.88 (0.62) 3
434 66 1155.95 (0.49) 2
470 30 1156.51 (0.66) 2

Table 7: Frequency of number of block of the queries Q` that appear or do not appear in the corresponding
set T` of the DB, as a function of the DB size. The DB is the real database, where random number of elements
where chosen to be the DB and the rest where chosen to be the queries. Block size b is always 3, and so the
number of blocks is always 1157.

D.2 On the Error Introduced by Block Miss

Even though that block misses are relatively rare events, it is still a question what to do in case they
occurs. Assume that Q` 6∈ T` for some block ` ∈ {1, . . . , n}. In the following, we compare between
two possible approaches:

• The first approach is to compute the accurate distance between ED(Q`, Si,`) for every Si,1, . . . , Si,m.
This introduces some additional complexity to the protocol, as we have to hide, both to the
client and to the server, on which blocks Q` it holds that Q` 6∈ T`, as well as to compute
edit-distances (of small blocks) in the online time. The resulting approximation function is as
follows: ApproxED(Q,Si) =

∑n
`=1 ∆(Q`, Si,`) where,

∆(Q`, Si,`) = ED(Q`, Si,`) . (D.1)

• The second approach is the one we chose: we simply ignore these blocks. This results in the
following approximation function:
ApproxED(Q,Si) =

∑n
`=1 ∆(Q`, Si,`), where

∆(Q`, Si,`) =

{
ED(Q`, Si,`) if Q` ∈ T`
0 otherwise

. (D.2)

In Table 8, we show that the accuracy improvement is minor when choosing the first approach.
This justifies our choice, as the overhead in computation for computing full edit-distances in case
of block misses is significant. The experiment is the same as in Table 2, with the same setting and
same random choices of queries.

29

Approach I: Eq. (D.1) Approach II: Eq. (D.2)

Dataset Average-∆ (stdev) Precision Average-∆ (stdev) Precision

ZNF717 0.25 (0.82) 96.44% 0.25 (0.82) 97.48%
TEKT4P2 0.54 (2.59) 99.28% 0.60 (3.23) 97.33%
CDC27P1 0.15 (0.69) 97.66% 0.57 (1.48) 96.94%
CDC27P2 1.16 (4.48) 99.02% 0 (0) 99.67%

ABHD17AP5 0 (0) 100% 0 (0) 98%

Table 8: Accuracy loss for block-misses. Comparing between Approach I: computing ∆(Q`, Si,`) =
ED(Q`, Si,`) in case Q` 6∈ T` (as in Eq. (D.1)), and Approach II: ∆(Q`, Si,`) = 0 in case Q` 6∈ T` (as in
Eq. (D.2)). The datasets, experiments and random choices are the same as in Table 2, for k = 10.

30

