Foundations of Homomorphic Secret Sharing*

Elette Boyle' Niv Gilboat Yuval Ishai Huijia Lin¥
IDC Herzliya Ben-Gurion University Technion UC Santa Barbara

Stefano Tessarol
UC Santa Barbara

December 27, 2017

Abstract

Homomorphic secret sharing (HSS) is the secret sharing analogue of homomorphic encryp-
tion. An HSS scheme supports a local evaluation of functions on shares of one or more secret
inputs, such that the resulting shares of the output are short. Some applications require the
stronger notion of additive HSS, where the shares of the output add up to the output over a finite
Abelian group. While strong feasibility results for HSS are known under specific cryptographic
assumptions, many natural questions remain open.

We initiate a systematic study of HSS, making the following contributions.

o A definitional framework. We present a general framework for defining HSS schemes
that unifies and extends several previous notions from the literature, and cast known
results within this framework.

e Limitations. We establish limitations on information-theoretic multi-input HSS with
short output shares via a relation with communication complexity. We also show that addi-
tive HSS for non-trivial functions, even the AND of two input bits, implies non-interactive
key exchange, and is therefore unlikely to be implied by public-key encryption or even
oblivious transfer.

e Applications. We present two types of applications of HSS. First, we construct 2-round
protocols for secure multiparty computation from a simple constant-size instance of HSS.
As a corollary, we obtain 2-round protocols with attractive asymptotic efficiency features
under the Decision Diffie Hellman (DDH) assumption. Second, we use HSS to obtain
nearly optimal worst-case to average-case reductions in P. This in turn has applications to
fine-grained average-case hardness and verifiable computation.

Keywords: Cryptography, homomorphic secret sharing, secure computation, communication com-
plexity, worst-case to average-case reductions.

*This is a full version of [BGI*18].
TEmail: eboyle@alum.mit.edu
YEmail: gilboan@bgu.ac.il

$Email: yuvali@cs.technion.ac.il
YEmail: rachel.lin@cs.ucsb.edu
IEmail: tessaro@cs.ucsb.edu

1 Introduction

Fully homomorphic encryption (FHE) [RAD78, Gen09] is a powerful cryptographic primitive that
supports general computations on encrypted inputs. Despite intensive study, FHE schemes can
only be based on a narrow class of cryptographic assumptions [vDGHV10, BV14, GSW13], which
are all related to lattices, and their concrete efficiency leaves much to be desired.

In this paper we consider the following secret sharing analogue of FHE, referred to as homo-
morphic secret sharing (HSS) [BGI16a]. A standard (threshold) secret sharing scheme randomly
splits an input x into m shares, (z!,...,2™), such that any set of ¢ shares reveals nothing about the
input. An HSS scheme supports computations on shared inputs by means of local computations
on their shares. More concretely, there is a local evaluation algorithm Eval and decoder algorithm
Dec satisfying the following homomorphism requirement. Given a description of a function F,
the algorithm Eval(F;2’) maps an input share 2/ to a corresponding output share y/, such that
Dec(y!,...,y™) = F(x). '

An HSS scheme as above can be trivially obtained by letting Eval output (F,z’) and Dec first
reconstruct = from the shares and then compute F. However, this trivial scheme is not useful.
Analogously to the output compactness requirement of FHE, we require that the HSS output
shares be compact in the sense that their length depends only on the output length of F' and the
security parameter. In fact, it is often useful to make the more stringent requirement that Dec
compute F(z) as the sum y' + ... +y™ in some finite Abelian group. We refer to such an HSS
scheme as an additive HSS. We also consider a relaxed notion of weak compactness that allows the
length of the output shares to grow sublinearly with the input size.

Finally, one can naturally consider a multi-input variant of HSS, where inputs x1,...,x, are
independently shared, Eval locally maps the j-th shares of the n inputs to the j-th output share,
and Dec outputs F(z1,...,x,). In fact, multi-input HSS is meaningful even when F' is a fixed
function rather than an input of Eval. For instance, one may consider additive 2-input HSS where
F computes the AND of two input bits, or compact 2-input HSS where F' takes an inner product
of two input vectors.

HSS vs. FHE. HSS can generally be viewed as a relaxation of FHE that offers protection against
bounded collusions. However, as observed in [BGI16a], in some applications of FHE it is possible
to use HSS as an alternative that offers the same level of security. For instance, in the context of
secure two-party computation [Yao86, GMWS87], using HSS to share the inputs of the two parties
does not compromise security in any way, since the two parties together can anyway learn both
inputs.

More importantly for this work, HSS can potentially offer several useful features that are inher-
ently impossible for FHE. One such feature is information-theoretic security. Information-theoretic
HSS schemes for multiplying two secrets with security threshold ¢ < m/2 serve as the basis for
information-theoretic protocols for secure multiparty computation [BGW88, CCD88, CDMO00].
Information-theoretic HSS schemes for certain classes of depth-2 circuits implicitly serve as the ba-
sis for the best known constructions of information-theoretic private information retrieval schemes
and locally decodable codes [Yek07, Efr09, BIKO12]. Another potential feature of HSS is optimal
compactness: if F has a single output bit, then the output shares 3/ can be as short as a single bit.
Indeed, special types of FHE schemes [LTV12, CM15, MW16] can be used to obtain additive HSS
schemes with ¢ = m — 1 that support general homomorphic computations with optimal compact-
ness [DHRW16]. This feature is useful for several applications of HSS, including ones we discuss in

this work.

Finally, recent works obtain HSS schemes that support rich classes of computations under the
Decision Diffie Hellman (DDH) assumption [BGI16a, BGI17, BCGT17] or the security of the Paillier
encryption scheme [FGJS17, Coul7], which are not known to imply FHE. These constructions use
very different techniques from those underlying known FHE constructions. This suggests a potential
for further diversifying the assumptions and structures on which HSS can be based, which may
potentially lead to more efficient substitutes for known FHE schemes.

1.1 Our Contribution

The current state of the art in HSS mostly consists of isolated positive results and leaves open some
of the most basic questions. In this work we initiate a more systematic study of HSS, making the
following contributions. We refer the reader to the relevant sections for a high level overview of the
main ideas behind each contribution.

A definitional framework. We start, in Section 2, by presenting a general framework for HSS
that unifies and extends several previous notions from the literature. In Section 3 we cast some
known primitives and previous results within this framework. This includes a simple extension
of a previous Learning With Errors (LWE)-based construction from [DHRW16] to the setting of
multi-input HSS, whose details appear in Appendix B.

Limitations. In Section 4 we establish two types of limitations on multi-input HSS. First, in Sec-
tion 4.1, we show that weakly compact information-theoretic multi-input HSS schemes for security
threshold ¢ > m/2 do not exist for functions that have high (randomized, one-way) two-party com-
munication complexity. This includes simple functions such as inner product or set disjointness.
The high level idea is to obtain a low-communication two-party protocol from the HSS scheme by
having the two parties use a common source of randomness to locally simulate the HSS input shares
of both inputs, without any interaction, and then have one party send its HSS output share to the
other. Second, in Section 4.2, we show that additive HSS for non-trivial functions, or even for com-
puting the AND of two input bits, implies non-interactive key exchange (NIKE), a cryptographic
primitive which is not known to be implied by standard public-key primitives such as oblivious
transfer. Loosely, two parties can simultaneously exchange HSS shares of input bits whose AND
is zero, and output their HSS-evaluated output share as a shared key. This result provides some
explanation for the difficulty of constructing strong types of HSS schemes from general assumptions.

Applications. In Section 5 we present two types of applications of HSS. First, in Section 5.1, we
construct 2-round protocols for secure multiparty computation (MPC) from a simple constant-size
instance of additive HSS with n = 3 inputs and m = 2 shares, for computing 3Mult(z1, z2,23) =
x1x2x3. At a very high level, this reduction crucially relies on a randomized encoding of functions by
degree-3 polynomials [ATKO05], which allows decomposing the computation of an arbitrary function
F' into the computation of many degree-3 monomials. The computation of each monomial is then
performed using many invocation of HSS for 3Mult. As a corollary, we can transform a previous
DDH-based 2-round MPC protocol in [BGI17] (which requires a public-key infrastructure) for only
a constant number of parties, into a 2-round protocol for an arbitrary polynomial number of parties.

In the literature, 2-round MPC protocols exist in the CRS model, based on LWE (e.g., [AJLAT12,
MW16]) and in the plain model, from indistinguishability obfuscation or witness encryption, to-

gether with NIZK (e.g., [GGHR14, GLS15]) or bilinear groups [GS17a]. Very recently, it was shown
that 2-round MPC can be based on the (minimal) assumption that 2-round semi-honest oblivious
transfer protocols exist [GS17b, BL17]. Our protocol can be instantiated in the public-key infras-
tructure model under DDH, which is weaker than or incomparable to the feasibility results of other
recent constructions. However, our protocols using HSS still have several advantages, in particular,
they enjoy better asymptotic efficiency, and they are in the more general “client-server” model,
where the computation of the input clients can be done offline, and the computation of the output
clients is relatively cheap.

A second type of applications, presented in Section 5.2, is to obtaining worst-case to average-
case reductions in P. Roughly speaking, the HSS evaluation function Eval for computing F' defines
a function F' such that computing F' on any given input x can be reduced to computing F on two
or more inputs that are individually pseudorandom. A similar application of FHE was already
pointed out in [CKV10]. However, an advantage of the HSS-based reductions is that they allow
F to have a single bit of output. Another advantage is the potential for diversifying assumptions.
We discuss applications of the reductions implied by HSS to fine-grained average-case hardness
and verifiable computation. In particular, the HSS-based approach yields checking procedures for
polynomial-time computations that achieve better soundness vs. succinctness tradeoffs than any
other approach we are aware of.

2 General Definitional Framework for HSS

In this section we give a general definition of homomorphic secret sharing (HSS) that can be
instantiated to capture different notions from the literature. We consider multi-input HSS schemes
that support a compact evaluation of a function F' on shares of inputs z1,...,z, that originate
from different clients. More concretely, each client ¢ randomly splits its input z; between m servers
using the algorithm Share, so that x; is hidden from any ¢ colluding servers. We assume t = m — 1
by default. Each server j applies a local evaluation algorithm Eval to its share of the n inputs,
and obtains an output share y/. The output F(z1,...,x,) is reconstructed by applying a decoding
algorithm Dec to the output shares (y',...,y™).

As discussed in the Introduction, HSS as above can be trivially realized by letting Share be any
m~out-of-m secret sharing scheme, Eval the identity function, and Dec a function that reconstructs
the inputs from their shares and then applies F'. However, applications of HSS require that Dec be
in some sense “simpler” than computing F. The most natural simplicity requirement, referred to
as compactness, is that the output length of Eval, and hence the complexity of Dec, depend only
on the output length of F' and not on the input length of F. A more useful notion of simplicity
is the stronger requirement of additive decoding, where the decoder computes the exclusive-or of
the output shares or, more generally, adds them up in some Abelian group G. We also consider
weaker notions of simplicity that are motivated by applications of HSS and are needed to capture
HSS constructions from the literature.

Finally, for some of the main applications of HSS it is useful to let F' and Eval take an additional
input xg that is known to all servers. This is necessary for a meaningful notion of single-input HSS
(with n = 1). Typically, the input xy will be a description of a function f applied to the input of
a single client, e.g., a description of a circuit, branching program, or low-degree polynomial. The
case of single-input HSS is considerably different from the case of multi-input HSS with no server
input. In particular, the negative results presented in this work do not apply to single-input HSS.

We now give our formal definition of general HSS. We refer the reader to Example 3.1 for an
example of using this definition to describe an HSS scheme for multiplying two field elements using
Shamir’s secret sharing scheme. Here and in the following, we use the notation Pr[A;;...; A, : E]
to denote the probability that event E occurs following an experiment defined by executing the
sequence Ai,...,A,, in order.

Definition 2.1 (HSS). An n-client, m-server, t-secure homomorphic secret sharing scheme for
a function F : ({0,1}*)"*1 — {0,1}*, or (n,m,t)-HSS for short, is a triple of PPT algorithms
(Share, Eval, Dec) with the following syntax:

e Share(1*,i,2): On input 1* (security parameter), i € [n] (client index), and = € {0,1}*
(client input), the sharing algorithm Share outputs m input shares, (z',...,2™). By default,
we require Share to run in (probabilistic) polynomial time in its input length; however, we
also consider a relaxed notion of efficiency where Share is given the total length £ of all n + 1

inputs (including xo) and may run in time poly (A, ¢).

e Eval(j, zo, (x]l, e ,x%)) On input j € [m] (server index), zg € {0,1}* (common server input),
and 7,..., x5 (jth share of each client input), the evaluation algorithm Eval outputs y/ €
{0,1}*, corresponding to server j’s share of F(xo;x1,...,Ty).

e Dec(y!,...,y™): On input (y',...,y™) (list of output shares), the decoding algorithm Dec
computes a final output y € {0,1}*.

The algorithms (Share, Eval, Dec) should satisfy the following correctness and security requirements:

e Correctness: For any n + 1 inputs xq, ..., z, € {0,1}*,
Vi€ [n] (z},...,2") < Share(1*, i, x;) 1
P L ; T :D oy = F(ag; 2, ... =1.
' Vj € [m] y? « Eval(j, zo, (27,...,2%)) ey’ ™) (w0; 21, -, n)

Alternatively, in a statistically correct HSS the above probability is at least 1 — p(A) for some
negligible 1 and in a d-correct HSS (or 6-HSS for short) it is at least 1 —§ — u(A). In the case
of 0-HSS the error parameter § may be given as an additional input to Eval, and the running
time of Eval is allowed to grow polynomially with 1/4.

e Security: Consider the following semantic security challenge experiment for corrupted set
of servers T' C [m]:
1: The adversary gives challenge index and inputs (i,z,z') < A(1}), with i € [n] and
=] = [2'].
! . ~ (zifb=0
2: The challenger samples b «— {0, 1} and (z°,...,2™) < Share(1%,i,7), where = ¢ |
x’ else

3: The adversary outputs a guess b’ <— A((27);er), given the shares for corrupted T

Denote by Adv(1*, A,T) := Pr[b = b'] — 1/2 the advantage of A in guessing b in the above
experiment, where probability is taken over the randomness of the challenger and of A. For
circuit size bound S = S(A) and advantage bound o = «a(\), we say that an (n,m,t)-HSS
scheme II = (Share, Eval, Dec) is (S, a)-secure if for all T C [m] of size |T| < ¢, and all
non-uniform adversaries A of size S(\), we have Adv(1*, A, T) < a()\). We say that II is:

computationally secure if it is (S, 1/.5)-secure for all polynomials S;

— statistically a-secure if it is (.9, a)-secure for all S;

statistically secure if it statistically a-secure for some negligible a()\);

— perfectly secure if it is statistically 0-secure.

Remark 2.2 (Unbounded HSS). Definition 2.1 treats the number of inputs n as being fixed. We
can naturally consider an unbounded multi-input variant of HSS where F' is defined over arbitrary
sequences of inputs z;, and the correctness requirement is extended accordingly. We denote this
flavor of multi-input HSS by (%, m, t)-HSS. More generally, one can allow all three parameters n, m, ¢
to be flexible, treating them as inputs of the three algorithms Share, Eval, Dec.

Remark 2.3 (Robust decoding). Definition 2.1 allows Dec to use all output shares for decoding
the output. When ¢ < m — 1, one can consider a stronger variant of HSS where Dec can recover the
output from any ¢ + 1 output shares. Such a robust notion of threshold homomorphic encryption
was recently considered in [JRS17]. In this work we do not consider robust decoding.

Remark 2.4 (Functions vs. relations). In this work we only consider HSS for functions, where
the output is fully determined by the inputs. It is sometimes useful to consider the more general
problem of HSS for relations (or search problems), where there may be more than one admissible
output. The notion of share conversion from [BIKO12] can be seen as a special case of HSS for
relations.

2.1 Notions of Simple Decoding

As discussed above, Definition 2.1 can be trivially realized by Eval that computes the identity
function. To make HSS useful, we impose two types of requirements on the decoding algorithm.
The strictest requirement is that Dec simply add the output shares over a finite field F or, more
generally, an Abelian group G. We refer to such an HSS scheme as being additive, and assume
by default (unless a group or field are specified) that Dec computes the exclusive-or of its inputs,
namely the group is of the form G = Z5. Note that any HSS scheme where Dec computes a fixed
linear combination of the output shares (over some finite field or ring) can be converted into an
additive scheme by letting Eval multiply its outputs by the coefficients of the linear combination.
See Example 3.1 for a relevant concrete example.

A more liberal requirement is compactness, which says that the length of the output shares
depends only on the output length and the security parameter, independently of the input length.
Finally, we also consider a further relaxation that we call weak compactness, requiring that the
length of the output shares be sublinear in the input length when the input length is sufficiently
bigger than the security parameter and the output length. See Remark 2.7 for motivation and
further discussion. We formalize these notions below, and then discuss other variants of additive
and compact HSS in Remarks 2.6 and 2.7.

Definition 2.5 (Additive and compact HSS). We say that an (n, m, t)-HSS scheme IT = (Share, Eval,
Dec) for F is:

e Additive if Dec outputs the exclusive-or of the m output shares, or G-additive if Dec computes
addition in an Abelian group G (see Remark 2.6 for further generalizations);

e Compact if there is a polynomial p such that for every A, fou, and inputs xg,z1,...,T, €
{0,1}* such that |F(zo;z1,...,2n)| = Llout, the length of each output share obtained by
applying Share with security parameter A and then Eval is at most p(A) - Lour (or O(loyt) for
perfect or statistically a-secure HSS with a constant «);

o Weakly compact if there is a polynomial p and sublinear function g(¢) = o(¢), such that for ev-
ery A, fin, lout, and inputs g, x1, ..., z, € {0, 1}* of total length ¢, with |F(zo;x1,...,2n)| =
Lout, the length of each output share obtained by applying Share with security parameter A and
then Eval is at most g(4in) + p(A) - lout (or g(lin) + O(Loyut) for perfect or statistically a-secure
HSS with a constant «). More generally, we can specify the precise level of compactness by
referring to an HSS scheme as being g(A, fin, fout)-compact.

Remark 2.6 (Generalized additive HSS). Our default notion of additive HSS considers the output
of F' as an element in a group of the form Zé, namely Dec computes the bitwise exclusive-or of
its inputs. Some applications motivate additive HSS with respect to a general Abelian group G
that can be given as an additional input. In particular, this is useful for applications that require
aggregating outputs on different inputs (see, e.g., [BGI15, BGI16a]). The above definition can be
extended to accommodate this by allowing F' to take a description of G as an additional input, where
F(G,zp;z1,...,zy) is guaranteed to take values from G, and allowing all of the HSS algorithms
to receive G as an additional input. In this case Dec performs addition over the group G given as
input. In another dimension of generalization, it is may be useful to require that the m outputs
jointly form a valid encoding of the output of F' with respect to a given linear code. This is useful
for the robust reconstruction feature discussed in Remark 2.3.

Remark 2.7 (On the different notions of compactness). The main notion of compactness from
Definition 2.5 corresponds to the strict notion of compactness that is typically required in the
context of FHE. It is easy to see that every additive HSS is also compact in this sense. However, even
in the case of perfect HSS, there are natural constructions that are compact but are not additive.
Such HSS schemes are implicit in the best known constructions of information-theoretic private
information retrieval schemes and locally decodable codes [Yek07, Efr09, BIKO12]. The more
liberal notion of weak compactness serves two purposes. First, our negative results for information-
theoretic HSS apply to this notion, which makes them stronger. Second, the liberal notion is
needed to capture some known HSS schemes in which the length of the output shares needs to grow
(sublinearly) with the input length; see Section 3.

Finally, another variant of the compactness requirement imposes a restriction on the computa-
tional complexity of Dec. Note that our default notion of compactness implies that Dec is polynomial
in foyt and A, but one may consider relaxed variants that allow sublinear dependence on the input
length. See Section 5.2 for applications that depend on the computational complexity of Dec.

2.2 Default Conventions
It is convenient to make the following default choices of parameters and other conventions.
e We assume ¢ = m — 1 by default and write (n, m)-HSS for (n,m, m — 1)-HSS.

e We assume computational security by default, and refer to the statistical and perfect variants
collectively as “information-theoretic HSS.”

e In the case of perfectly secure or statistically a-secure HSS, X is omitted.

e Forn > 2 clients, we assume by default that the servers have no input and write F'(z1,...,z,),
omitting the server input zp. Note that (n,m,t)-HSS with server input can be reduced to
(n 4+ 1,m,t)-HSS with no server input by letting the server input be shared by one of the
clients.

e We consider additive HSS by default. This stronger notion is useful for several application of
HSS, and most HSS constructions realize it.

e We will sometimes be interested in additive HSS for a constant-size (finite) function F, such
as the AND of two bits; this can be cast into Definition 2.1 by just considering an extension
F of F that outputs 0 on all invalid inputs. Note that our two notions of compactness
are not meaningful for a constant-size F. We can similarly handle functions F' that impose
restrictions on the relation between the lengths of different inputs. Since Eval can know all
inputs lengths, we can ensure that Dec output 0 in case of mismatch.

e As noted above, the common server input zg is often interpreted as a “program” P from a
class of programs P (e.g., circuits or branching programs), and F' is the universal function
defined by F(P;z1,...,z,) = P(x1,...,x,). We refer to this as HSS for the class P.

2.3 HSS with Setup

When considering multi-input HSS schemes, known constructions require different forms of setup
to coordinate between clients. This setup is generated by a PPT algorithm Setup and is reusable,
in the sense that the same setup can be used to share an arbitrary number of inputs. We consider
the following types of setup:

e No setup: This is the default notion of HSS defined above.

o Common random string (CRS) setup: An algorithm Setup(1%) is used to generate a uniformly
random string ¢ which is given as input to Share, Eval, and Dec. The correctness and security
definitions are extended in the natural way, where both the adversary and the challenger in
the security game are given access to an honestly generated o. This can be relaxed to a
common reference string that can be picked from an arbitrary distribution. However, this
relaxation will not be useful in this work.

o Public-key setup: We consider here a strong form of public-key setup in which Setup(1*)
outputs a public key pk and m secret evaluation keys (eky, ..., ek,), where each key is given
to a different server. The algorithm Share is given pk as an additional input, and Eval (Js -)
is given ek; as an additional input. The security game is changed by giving both the adversary
and the challenger pk and giving to the adversary (ek;);jer in addition to (z7);er. Following
the terminology from [BGI17], we refer to HSS with this type of setup as public-key (*,m,t)-
HSS.

3 Constructions

In this section we present positive results on HSS that are either implicit in the literature or can be
easily obtained from known results. We cast these results in terms of the general HSS framework

from Section 2.

We start with a detailed example for casting Shamir’s secret sharing scheme [Sha79] over a finite
field F as a perfectly secure, F-additive (2, m,t)-HSS scheme for the function F' that multiplies two
field elements. Such a scheme exists if and only if m > 2t.

Example 3.1 (Additive (2,m,t)-HSS for field multiplication). Let m,t be parameters such that
m > 2t, let F be a finite field with |F| > m, let 01,...,0,, be distinct nonzero field elements, and
let A1, ..., \p be field elements (“Lagrange coefficients”) such that for any univariate polynomial p
over I of degree at most 2t we have p(0) = > "2, \jp(0;). Let F:F xF — I be the (constant-size)
function defined by F(x1,x9) = x1 - xa. A perfectly secure, additive (2,m,t)-HSS scheme for F is
defined by the following algorithms. (Since F' is a constant-size function we are not concerned with
efficiency; we also omit xg since there is no server input and omit the security parameter \ since
security is perfect.)

1. Share(i,z): pick r1,...,r; uniformly at random from F and let p(Z) = x + 172 + raZ° +
.+ 1 Z be a random polynomial of degree at most t with x as its free coefficient. Output
(p(01),...,p(0m)). Note that Share does not depend on i (the inputs are shared in the same

way).
2. Eval(j, (:L'Jl,ZL'])) Output \; :n]lx%
3. Dec(y!,...,y™): Output y* +...+y™.

We now survey some other instances of HSS schemes from the literature.

e Additive m-out-of-m secret sharing over an Abelian group G is a G-additive, perfectly secure
(¥,m)-HSS for the function F(z1,...,2,) = 1 + ...+ @, where x; € G. This is the first
instance of HSS considered in the literature [Ben86].

e Generalizing Example 3.1, multiplicative secret sharing [CDMO0] over a finite field F is an
F-additive, perfectly secure (2,m,t)-HSS for the function F' that multiplies two field ele-
ments. Such schemes exist if and only if m > 2¢. Multiplicative secret sharing schemes
such as Shamir’s scheme serve as the basis for secure multiparty computation protocols in
the information-theoretic setting [BGW88, CCD88|. More generally, information-theoretic
F-additive (d, m,t)-HSS for multiplying d elements of F exists if and only if m > dt [BIW10].
Multiplicative schemes with a smaller threshold ¢ that work over a constant-size field (indepen-
dent of m) can be based on algebraic geometric codes [CCO06]. Efficient multiplicative schemes
that support a pointwise multiplication of two vectors are considered in [FY92, CCCX09].

e A l-round k-server private information retrieval (PIR) scheme [CGKS98, CG97] can be seen
as a weakly compact (1,k,1)-HSS for the selection function F'(D;~v) = D.,,. For the 2-server
case (k = 2), information theoretic PIR schemes provably cannot achieve our stronger notion
of compactness unless the share size is linear in |D| [GKST06, KdW04]. Moreover, current
schemes only realize our relaxed notion of efficiency for Share, since the share size is super-
polynomial in || (see [DG15] for the best known construction in terms of total size of input
shares and output shares). In the computational case, there are in fact additive 2-server
schemes based on the existence of one-way functions, where Share satisfies the default strict
notion of efficiency (see [BGI16b] for the best known construction).

e Non-trivial instances of compact, perfectly-secure (1,3,1)-HSS for certain classes of depth-
2 boolean circuits [BIKO12] implicitly serve as the basis for the best known constructions
of information-theoretic 3-server PIR schemes and 3-query locally decodable codes [Yek07,
Efr09].

e The main result of [BGI16a] is a construction of (single-input, computationally secure, addi-
tive) (1,2)-6-HSS for branching programs under the DDH assumption. The same paper also
obtains a public-key (%, 2)-6-HSS variant of this result. Similar results assuming the circular
security of the Paillier encryption were recently obtained in [FGJS17, Coul7].

e The notion of function secret sharing (FSS) from [BGI15] is dual to the notion of HSS for
a program class P. It can be cast as an additive (1,m)-HSS for the universal function
F(x; P) = P(x), where P € P is a program given as input to the client and = is the common
server input. The special case of distributed point function (DPF) [GI14] is FSS for the class
of point functions (namely, functions that have nonzero output for at most one input). DPF
can be seen as additive (1, m)-HSS for the function F'(z;(a, 8)) that outputs f if z = a and
outputs 0 otherwise. It is known that one-way functions are necessary and sufficient for DPF
with m = 2 servers [GI14]. Whether they are sufficient for 3-server DPF is open.

e We observe that additive! (,m)-HSS for circuits with statistical correctness can be obtained
from the Learning With Errors (LWE) assumption, by a simple variation of the FSS construc-
tion from spooky encryption of [DHRW16] (more specifically, their techniques for obtaining
2-round MPC). The share size in this construction must grow with the circuit depth, hence
Share only satisfies the relaxed notion of efficiency; this dependence can be eliminated by
relying on a stronger variant of LWE that involves circular security. We provide details of
the underlying tools and construction in Appendix B.

We note that a key feature of HSS is that Dec does not require a secret key. This rules
out nontrivial instances of single-server HSS. In particular, single-server PIR [KO97] and fully
homomorphic encryption [Gen09] cannot be cast as instances of our general definitional framework

of HSS.

4 Limitations

In this section, we discuss some inherent limitations in HSS. First, in Section 4.1, we show lower
bounds on the length of output shares in statistically-secure HSS using communication complexity
lower bounds. Then, in Section 4.2, we show that additive (2,2)-HSS for the AND of two bits
implies non-interactive key-exchange (NIKE). Given what is known about NIKE (in particular it
only follows from non-generic assumptions, and it is not known to be implied directly by public-
key encryption or OT), this gives a strong justification for the lack of instantiations from generic
assumptions.

'If one does not insist on additive HSS and settles for the weaker notion of compactness, then single-input HSS
can be trivially obtained from any FHE scheme by letting Share include an encryption of the input in one of the
shares and split the decryption key into m shares.

10

4.1 Lower Bounds for Statistically-Secure Multi-Input HSS

We show lower bounds on the length of output shares in statistically-secure multi-input HSS using
communication-complexity lower bounds. The key step is to derive a public-coin two-party protocol
to compute a function F' from an HSS scheme for the function F', with the additional property that
the communication cost of the resulting protocol only depends on the length of the output shares.

4.1.1 Communication Complexity Refresher

We consider an arbitrary public-coin interactive protocol II between two parties, Alice and Bob,
who start the execution with respective inputs z € X and y €), and common random tape R.
(We can assume wlog that the protocol is otherwise deterministic, and all random coins come from
R. Moreover, the sets X and) are finite here.) At any point in the execution, one of the parties
can return an output value, denoted II(R,z,y). The cost of II is the maximum number of bits
exchanged by Alice and Bob, taken as the worst case over all possible inputs z,y, and random
tapes R. We also say that such a protocol is one-way (or one round) if only one message is sent,
and this goes from Alice to Bob.

We are interested in the inherent cost of a protocol II that evaluates a function F': X x) — Z.
In particular, the (randomized) communication complexity of F' with error €, denoted R¢(F'), is the
minimum cost of a public-coin protocol II such that Pr[II(R, z,y) # F(z,y)] < € for all x,y, where
the probability is over the public random string R. If we restrict ourselves to one-way protocols,
then we define analogously the one-way communication complexity of F with error €, denoted
RAZB(F). Tt is clear that RA75(F) > R.(F) must always hold.

The following are classical examples of lower bounds on the (one-way) randomized communica-
tion complexity. (We note that the choice of the constant 1/3 is arbitrary, as any other constant
< 3 would do.)

Theorem 4.1 (e.g., [KN97]). Let 1P, : {0,1} x {0,1}¢ — {0,1} be such that IPy(z,y) = Zle TiYi
(mod 2). Then, Ry/3(IP;) = Q(¢).

Theorem 4.2 ([KS92]). Let DISJ; : {0,1}x{0,1}¢ — {0,1} be such that DISJy(x,y) = = \V/'_, (ziA
yi). Then, Ry/3(DISJy) = Q(¢).

Theorem 4.3 ([KNR99]). Let INDEX, : {0, 1} x [(] — {0,1} be such that INDEXy(z122 . .. 2, 1) =
zi. Then, RAZ5(INDEX,) = Q(0).

4.1.2 Lower Bounds on the Length of Output Shares

We start with a lower bound on the length of the output shares in (2, 2)-HSS. (Recall that (n, m)-
HSS is a shorthand for (n,m,t = m — 1)-HSS.) Below, we describe informally how to extend the
technique to more general settings.

Recall that a (2,2)-HSS scheme is defined for a function F' : ({0,1}*)2 — {0,1}*. (In this section,
we consider the case where the servers have no input zg, but the results extend straightforwardly
to handle server inputs.) For any two integers £; in, f2,n, it is convenient to define the restriction
Flumbain o L0 1}0in x {0,1}2n — {0,1}* such that F@.nf2in(zy 29) = F(21,22). Also, for a
suitable function g, we say that a (2,2)-HSS scheme is g-compact if, for security parameter A\, when
the two inputs have lengths ¢1 ;, and ¢5 ;,, respectively, the output shares have length each at most

IN i jn, loin)-

11

Proposition 4.4 (Compactness lower bound). Let (Share, Eval, Dec) be a (2,2)-HSS scheme for a
function F : ({0, 1}*)2 — {0,1}*, which is statistically a-secure, g-compact, and d-correct. Then,
for all X, and {1 in,l2in > 0,

g()\agl,in,@,in) > R?(Y)Emo\)(Fe””’b*‘”) ' (1)

Proof. Let a = a(\), § = 6(\). We first consider the following private-coin protocol II to compute
the function Finf2in for all z; € {0, 1} and x5 € {0, 1}%2n:

Protocol II(x1, x3):
e Alice runs (z},2?) + Share(1*,1,z;). Bob runs (z3,23) + Share(1*,2, x3).
e Bob sends x3 to Alice.
e Alice computes y; + Eval(1*, 1, (z},23)), and sends (22, 1) to Bob.

e Bob computes yz < Eval(1*,2, (22, 22)), y + Dec(1*, 1, 2), and outputs y.

Clearly, the protocol has error probability at most §. We now show how to use public randomness
and reverse sampling, as well as HSS security, to eliminate the need to exchange the input shares
xd and 22. To this end, let us define the following distributions on pairs of input shares (x!, z?):

e Distribution D;(x): (2!, 2?) + Share(1*,i,z) for i = 1,2

e Distribution D;(z): (Z!,22) < Share(1*,1,0%), 2! «+ Dj(z)|z2, where Di(z)|z? is the
distribution of ! in D;(x) conditioned on the second input-share value being equal z? (if it
is well defined), and an arbitrary distribution otherwise.

e Distribution Dy(z): (21,72) < Share(1*,2,0%in), 22 < Dy(x)|z', where Dy(z)|z! is the
distribution of 22 in Do(x) conditioned on the second input-share value being equal 2! (if it
is well defined), and an arbitrary distribution otherwise.

The statistical distance e; between Dj(z) and Dy (z) _is at most 2a. This is because Di(z) can
equivalently be sampled by replacing 0ftin with z in Dy (z) and therefore, the statistical distance
between Dj(x) and D;(z) cannot be larger than the statistical distance between the r!’s sampled in
D1 (x) and D1(x). Then, by statistical a-security, this distance cannot be larger than 2a. Similarly,
the distance ey between Da(x) and Da(z) is also at most 2ce. This can be exploited to obtain the
following one-way public-coin? protocol IT" with cost at most g(, 1,in, £2,n)-

2Here we allow the distribution of the public coins to be arbitrary. One can force them to be uniform by using
them as the randomness needed to generate our public-coin distributions.

12

Public coin generation:
e Sample (22, x1), where (71,22) < Share(1*,1,0°n), (23, 72) < Share(1*,2, 0%n)
Protocol IT'((x3, 23), 21, 22):

e Alice first samples x1 < Dj(x1)|z?, then computes y; + Eval(1*, 1, (x1,23)), and
sends y; to Bob.

« Bob first samples 23 < Dy(rs)[zb, then computes v Eval(1,2, (:2,42)), and
finally outputs y < Dec(1*,y1,92).

The output of II' can be seen as a (possibly randomized) function of the four inputs shares
xi, 22, xd ¥2, and similarly, the output of II can be obtained by applying the same function to
the input shares. As the statistical distance between the joint distributions of all four shares in IT’
and IT is at most €1 + €2 < 4a, the error probability can increase by at most 4a when moving from
II to IT'. Therefore, the length of 4 in II' must be at least Ry 4 (F¢tn*2in), which concludes the
proof.]

As an application, consider any statistically secure (2,2)-HSS scheme for inner products, i.e.,
for the function IP : ({0,1}*)2 — {0, 1} such that IP(z1,72) = IP;(z1, 72) whenever |z1| = |z2| = £.
Then, the following corollary implies that such scheme cannot be weakly compact. Similar lower
bounds can be obtained for disjointness, and for the index function.

Corollary 4.5. There exists no weakly compact, statistically 1/24-secure 1/6-correct (2,2)-HSS
scheme for IP.

Proof. Apply Proposition 4.4 with ¢;in = lojn = ¢, § = 1/6, and o = 2%1. Regardless of the
security parameter, the length of the output shares must be at least RfEB(IPg) = Ql1,in + l2in)
by Theorem 4.1, and this violates weak compactness. O

Extensions. Proposition 4.4 can be extended to obtain lower bounds for general (n,m,t)-HSS
where m,n > 2 and t > m/2. We briefly summarize the main ideas here.

e (n,2)-HSS. For any n-ary function F' : ({0,1}*)" — {0, 1}*, we can define a two-party function
as follows. Fix k € {1,...,n—1}, as well as Alice’s indices I = (a1, ..., ar), and Bob’s indices
Iy = (b1,...,by—k), where {ai,...,ax,b1,...,bp—r} = [n]. Then,

F'l(Zays -y Tay)s @by - vxp,) = F(x1,...,20)

The proof of Proposition 4.4 can be adapted to lower bound the length of the output shares
in an (n,2)-HSS scheme for F' via RA7B(F’), noting one would then choose the sets I, I5 to
maximize communication complexity of the resulting F”.

e (n,m,t)-HSS fort > m/2. A lower bound for (n,2)-HSS extends straightforwardly to a lower
bound for (n,m,t)-HSS where t > m/2, since the latter type of HSS implies the former type,
by simply having one of the two servers in the (n,2)-HSS simulate m/2 < my < t servers
from the (n,m,t)-HSS scheme, and the other simulate the remaining mg = m — m; servers.

13

e Simultaneous messages. In the case of (n,m)-HSS, where n > m, we can alternatively ob-
tain useful lower bounds via communication complexity in the simultaneous message model
[KNR99, BGKLO03|, where m players send a message to a referee that decides the output.
Roughly, a variant of the proof of Proposition 4.4 would build a protocol where the messages
sent are exactly the m servers’ output shares.

4.2 Additive Multi-Input HSS Implies Non-Interactive Key Exchange

It is known that roughly any non-trivial additive HSS (even for a single input) implies the existence
of one-way functions [GI14, BGI15]; in turn, one-way functions have been shown to imply (single-
input) additive (1,2)- and (1, m)-HSS for certain classes of simple functions [CG97, GI14, BGI15,
BGI16b]. However, to date, all constructions of additive HSS supporting multiple inputs rely on
a select list of heavily structured assumptions: DDH, LWE, Paillier, and obfuscation [BGI16a,
DHRW16, FGJS17]. A clear challenge is whether one can instantiate such an object from weaker
general assumptions, such as one-way functions, public-key encryption, or oblivious transfer.

We show that this is unlikely to occur. We demonstrate the power of additive multi-input HSS by
proving that even the minimal version of (2, 2)-additive-HSS for the AND of two input bits already
implies the existence of non-interactive key exchange (NIKE) [DHT76], a well-studied cryptographic
notion whose known constructions similarly are limited to select structured assumptions. NIKE is
black-box separated from one-way functions and highly unlikely to be implied by generic public-key
encryption or oblivious transfer.

On the other hand, we observe that (2,2)-additive-HSS for AND is unlikely to be implied by
NIKE, as the primitive additionally implies the existence of 2-message oblivious transfer (OT) [BGI16a],
unknown to follow from NIKE alone.

We first recall the definition of NIKE. For a two-party protocol II between Alice and Bob, we
denote by out4(IT) and outp(IT) their respective outputs, and Transc(II) the resulting transcript.

Definition 4.6 (NIKE). A 2-party protocol II with single-bit output is a secure non-interactive
key-exchange (NIKE) protocol if the following conditions hold:

e Non-Interactive: The protocol II consists of exchanging a single (simultaneous) message.

e Correctness: The parties agree on a consistent output bit: Pr[out4(IT) = outg(I)] = 1,
over randomness of II.

e Security: There exists a negligible function v such that for any non-uniform polynomial-time
E, for every A € N, it holds Pr[b <+ E(1*, Transc(Il)) : b = out4(II)] < 1/2 + v(\), where
probability is taken over the randomness of IT and FE.

Proposition 4.7. The ezistence of additive (2,2)-HSS for the AND function F : {0,1}? — {0,1}
defined by F(x1,x2) = x1x9 tmplies the existence of non-interactive key exchange.

Proof. Consider the candidate NIKE protocol given in Figure 1.

Non-interactive: By construction, the protocol consists of a single communication round.

Correctness: Follows by the additive decoding correctness of the (2,2)-HSS for AND. Namely,
with probability 1, it holds 24 + 2% = 0 € {0,1}; that is, 24 = 5.

Security: Suppose there exists a polynomial-time eavesdropper E who, given the transcript of
the protocol 2B,y succeeds in predicting Bob’s output bit z” = Eval(B(zZ, y?)) with advantage

14

Communication Round:

e Alice samples shares of 0: i.e., (x4, z5) < Share(1*, 4,0).
Send z® to Bob.

e Bob samples a random bit b + {0, 1} and shares b: (y*,y?) < Share(1*, B, b).
Send y* to Alice.

Output round:
e Alice outputs 24 = Eval(4, (z4,y4)) € {0,1}.

e Bob outputs z? = Eval(B, (27, y?)) € {0,1}.

Figure 1: NIKE protocol from any additive (2,2)-HSS for AND.

b+ 0,1;
(x4, 2B) « Share(1*, A, 0);
(y4,yP) < Share(1*, B, b);
b B, (27, y%))

Pr b = Eval(B, (zP,y5))| > 1/2+ a(N).

We prove in such case a must be negligible, via the following two claims.

Claim 4.8. E must succeed with advantage o if Alice shares 1 instead of 0: Fxplicitly, there exists
a negligible function vy for which

b+ 0,1;
(x4, 2B) « Share(1*, A, 1);
Pri A B A)
(y*, y7) « Share(1%, B, b);
v« B, (27, y%))

b = Eval(B, (z,y%))| >1/2+a(\) —vi(N).

Proof of Claim 4.8. Follows by the security of Alice’s HSS execution. Namely, consider a distin-
guishing adversary D for the (2,2)-AND-HSS, who performs the following:

1: Sample a random bit b + {0, 1}, and HSS share b as () < Share(1*, B, b).

2: Receive a challenge secret share 27, generated either as (xA, rP) Share(l’\7 A,0) or (24, 2B) «

Share(1*, A, 1).

3: Execute E on “transcript” o and y?: Let &/ < E(1%, (2B, y4)).

4: Output 0 if and only if ¥’ = b.
By construction, the distinguishing advantage of D is exactly the difference in the prediction ad-
vantage of E from the real protocol and the protocol in which Alice shares 1 instead of 0. Thus,
this difference must be bounded by some negligible function v. O

Claim 4.9. The prediction advantage a(\) of E must be negligible in \.

Proof of Claim 4.9. Follows by the security of Bob’s HSS execution. Namely, consider a distin-
guishing adversary D for the (2,2)-AND-HSS, who performs the following:

1: Generate HSS shares of 1, as (2, 27) < Share(1*, 4, 1).

15

2: Receive challenge secret share 4y, generated as (y*,y?) < Share(1*, B, b) for random challenge
bit b + {0, 1}.
3: Execute E on “transcript” =P and y4: Let ' « E(1%, (2B, y4)).
4: Output V' as a guess for b.
By construction, the distinguishing advantage of D is precisely «(A) — v1(A). Thus (since v is
negligible), it must be that « is negligible, as desired. O

This concludes the proof of Proposition 4.7. 0

As a direct corollary of this result, any form of HSS which implies additive (2,2)-HSS for AND
automatically implies NIKE as well. This includes HSS for any functionality ' with an embedded
AND in its truth table.

As an example, consider a form of split distributed point function [GI14], where the nonzero
input value a € {0, 1}Z of the secret point function f, is held split as additive shares across two
clients. This corresponds to additive (2,2)-HSS for the function F(z;a1,a2) = [z == (a1 & a2)]
(i.e., evaluates to 1 if and only if x = a3 @ ag). Such a notion would have applications for secure
computation protocols involving large public databases, where the index « of the desired data item
is not known to either party, but rather determined as the result of an intermediate computation.
Unfortunately, we show that such a tool (even for inputs of length 2 bits) implies NIKE, and thus
is unlikely to exist from lightweight primitives.

Corollary 4.10. The existence of “split” DPF, i.e. additive (2,2)-HSS for the function F(x; a1, ag) =
[z == (a1 ®)], implies the existence of NIKE.

Proof. Consider the special case of 2-bit values ag, a1 € {0,1}2. We show evaluation of F' enables
evaluation of AND of clients’ input bits, and thus additive (2,2)-HSS for AND. Indeed, for any
b1,ba € {0,1}, observe that F((0,0);(1,b1),(b2,1)) = [(0,0) == ((1,b1) @& (b2, 1))] = [(0,0) ==
(b1 ®1,bo@1)] = by A bo.]

5 Applications

In this section we present two types of applications of HSS. In Section 5.1 we present an application
to 2-round secure multiparty computation, and in Section 5.2 we present an application to worst-
case to average-case reductions.

5.1 From (3,2)-HSS to 2-Round MPC

Let us define the following function over Zs: 3Mult(x1, 2, z3) = z1x223. In this section, we show
that (3,2)-HSS for 3Mult implies 2-round MPC for arbitrary functions in the client-server model.
Recall that (n,m)-HSS refers to HSS with n clients, m servers, tolerating up to m — 1 corrupted
servers. Similarly, a (n,m)-MPC protocol is a MPC protocol in the client server model with n
clients, m servers, and is semi-honest secure against up to (m — 1) corrupted servers.

Theorem 5.1. Assume the existence of PRGs in NC'. For any n,m, and any polynomial-time
computable function F : ({0,1}*)" — {0, 1}, there is a construction of an (n, m)-MPC protocol that
securely computes F, from an additive (3,2)-HSS for 3Mult.

16

Combining this with the additive 6-HSS construction of [BGI16a] from DDH would result in
(n,m)-MPC from DDH with (at best) only 1/poly(\) correctness. Fortunately, we can do better.
Indeed, as an intermediate step in the proof of Theorem 5.1 (Lemmas 5.7 and 5.8 below), we
prove that (3,3)-MPC for 3Mult-Plus also suffices to imply (n,m)-MPC for general functions. A
construction of (3, 3)-MPC for general functions (in the PKI model) was shown to follow from DDH
in [BGI17] (in fact, they obtain (n,c)-MPC for any constant number of servers ¢). Combining this
with Lemmas 5.7 and 5.8, and the fact that PRGs in NC! also follow from DDH, we obtain the
following result. This improves directly over the 2-round MPC result of [BGI17], by supporting an
arbitrary polynomial number of servers instead of constant. A detailed comparison between our
2-round MPC protocols and other recent ones is provided in Section 5.1.3.

Corollary 5.2 (2-round MPC from DDH). For any n,m, and any polynomial-time computable
function F : ({0,1}*)" — {0,1}, there is a construction of an (n,m)-MPC protocol that securely
computes F' in the PKI model, assuming DDH.

Overview of Proof of Theorem 5.1 We prove Theorem 5.1 by combining the following steps.

Step 1: (3,2)-HSS for 3Mult-Plus. Starting from an additive (3,2)-HSS scheme Ilzmy for
the function 3Mult, thanks to the property of additive reconstruction, we can directly modify it to
obtain an additive (3,2)-HSS for the function 3Mult-Plus (again over Zg) defined as

3Mult-Plus((x1, z1), (z2,22), (x3,23)) = x93+ 21+ 22+ 23 .

Lemma 5.3. There is a construction of additive (3,2)-HSS for the function 3Mult-Plus from any
additive (3,2)-HSS for the function 3Mult.

Proof. An additive (3,2)-HSS for 3Mult-Plus can be obtained by simply combining the additive
(3,2)-HSS TIzpmye for 3Mult with an additive (3,2)-HSS Ilaqq for addition as follows: The 3 clients
and 2 servers run the protocol Il3py; and Ilagq in parallel, using inputs x1, s, 3 in the former and
inputs z1, 22, 23 in the latter, respectively. Each server S; for j € [2] obtains two output shares ngult
and yﬂdd, and outputs 3/ = yéMult + yidd. It follows from the correctness and security of IIzpm,;; and
IIaqq that the above described scheme is a correct and secure HSS scheme for Ilzmyit-pPius-]

Step 2: (3,3)-MPC for 3Mult-Plus. From an additive (3,2)-HSS scheme for 3Mult-Plus, we
can use the server-emulation technique from [BGI17] to construct a 3-client 3-server MPC protocol
for 3Mult-Plus. In fact, the technique in [BGI17] is way more general, it shows that from any given
n-client m-server HSS for 3Mult-Plus, one can construct a n-client m?2-server MPC protocol for any
n-ary function F', assuming the existence of low-depth PRGs.

Lemma 5.4 (Server-Emulation in [BGI17]). Assume existence of PRGs in NC'. For any n,m
and polynomial-time function F : ({0,1}*)" — {0,1}, there is a construction of an (n,m?)-MPC
protocol 11 that securely computes F', from an additive (n,m)-HSS for 3Mult-Plus.

Their general lemma implies the following corollary we need, using the fact that one can reduce
the number of servers by having a single server simulating multiple ones. See Claim 5.6.

Corollary 5.5. Assume the existence of PRGs in NC'. There is a construction of a (3,3)-MPC
protocol that securely computes 3Mult-Plus, from an additive (3,2)-HSS for 3Mult-Plus.

17

Claim 5.6. For anyn, m, m' < m, and any polynomial-time computable function F : ({0,1}*)" —
{0, 1}, there is a construction of a (n,m’)-MPC protocol II' that securely computes F, from a (n,m)-
MPC protocol 11 that securely computes F'.

Proof. To reduce the number of servers, in II, the first m’ — 1 servers act exactly as the first m’ —1
servers in II, and the last server acts as all of the last m — m’ + 1 servers in II. Correctness holds
trivially. Security holds as the view of an attacker participating in an execution of II' corrupting a
strict subset S of the m/ servers, and an arbitrary subset T of the clients, is identical to the view
of an attacker participating in an execution of II, corrupting the same set of clients, and still a
strict subset S’ of the m servers. In particular &’ = S if S does not contain the m/’th server, and
S'=8Su{m/,;m'+1,--- ,m} otherwise. Therefore, if II securely computes F, so does IT'. O

Step 3: (3,m)-MPC for 3Mult-Plus — Increase the number of servers. Next, from a
(3,3)-MPC protocol for computing 3Mult-Plus, we show how to construct (3, m)-MPC protocol for
computing the same function 3Mult-Plus, with an arbitrary number m of servers.

Lemma 5.7. For any m, there is a construction of (3,m)-MPC protocol that securely computes
3Mult-Plus, from a (3,3)-MPC protocol that securely computes 3Mult-Plus.

Proof Overview. Let II? be a (3,3)-MPC protocol for 3Mult-Plus; consider m servers, and three
clients Cy, Cy, and C3. Recall that each client Cy has input (z4,z4). If we naively let the three
clients execute II? with some subset of 3 servers, in the case all three servers are corrupted, the
security of II?> no longer holds, and the inputs of all clients are potentially revealed. Thus, the
challenge is ensuring that when all but one server is corrupted, the inputs of honest clients remain
hidden. To achieve this, each client secret-shares its input bit zg = y s;-l; as long as server S; is
uncorrupted, the j’th share s? for each honest client’s input x4 remains hidden, and hence so are

the inputs 2. (The additive part z; of the inputs can be hidden easily; we omit this part in this
brief overview.) Towards this, note that multiplying 1, 22, 23 boils down to computing the sum
of all possible degree 3 monomials over the shares xixox3 = Zijk 3}3?32. Our idea is using the
protocol II? to compute each monomial sil s?s% hidden with some random blinding bits, and using
a protocol Ilpgq for addition to cancel out these random blinding bits, as well as add z1, 22, 23, all

of which done in parallel. More specifically,

e for every 14, j, k, C1, Co, C3 together with three appropriate servers described below run II? to
enable the output client to obtain M;j;, = s}s?s% + tiljk + t?jk + tf’jk, where tfjk is a random
blinding bit sampled by client Cy;

e in parallel, C7, Cy, C5 together with all m servers run a (3, m)-MPC protocol IIagq to enable
the output client to obtain the sum 7' = T' +T? + T3, where T% = z; — Z”k tfjk;

e finally, the output client adds all M;;; with T', which gives the correct output, i.e., z1z2x3 +
21 + 29 + 23.

The only question left is what are the three servers involved for computing M;;;; they naturally
should be servers S;, S, Sk, since for an honest client, say C1, if server S; is uncorrupted, the share
s} remains hidden in all computations of My, involving this share. This allows us to argue security.
One technicality is that some monomials may have form 52-15125? or s}s?s? and only correspond to
two servers S;, S; or one S;. In the former case, we will use the (3,2)-MPC protocol 12, and in the

latter case, we directly implement a trivial protocol with one server.]

18

A full proof is provided in Section 5.1.1.

Step 4: (n,m)-MPC for FF — Increase the number of clients and handle general
functions. Finally, we show how to construct MPC protocols for computing any n-ary function
F, from MPC protocols for computing 3Mult-Plus, using the same number m of servers.

Lemma 5.8. Assume the existence of PRGs in NC'. For any n,m, and any polynomial-time
computable function F : ({0,1}*)" — {0,1}, there is a construction of (n,m)-MPC protocol that
securely computes F, from a (3,m)-MPC protocol that securely computes 3Mult-Plus.

Proof Overview. Staring from a (3, m)-MPC protocol Iamyi-pius for 3Mult-Plus, our goal is con-
structing a (n, m)-MPC protocol Iz for an arbitrary F' with an arbitrary number of clients. To do
so, we reduce the task of computing F' to the task of computing a degree-3 randomized encoding
REp(z1,--- ,xy,; r) of F. Here, having a degree of 3 means that REr can be represented as a degree
3 polynomial in its input and random bits. Such a randomized encoding scheme is constructed in
[IK02, AIK04], assuming the existence of a low-depth PRG. The first question is where does the
random tape r come from. A natural choice is having r = r1 + - - - + r,, contributed by all clients.
When the randomized encoding has degree 3, its computation can be expanded into a sum of de-
gree three monomials, that is, REp(x1, -,z ; 7 =114+ + 1) = Zafjk v;vjv) , where each
variable v; is either a bit in some input x; or a bit in some random tape r;. This decomposes the
computation of F' into many 3-way multiplications, which can be done securely using 3Mult-Plus.
More specifically, in the protocol I,

e for every monomial afj ViV;Vk, the three clients Cy,, Cy,, €, holding the variables v;, v;, v; Tun

II3mult-pius With all m servers to enable the output client to obtain M;;, = afjkvivjvk + tfﬁc +
tfji + tf]’.‘rz, where the three ¢t variables are random blinding bits sampled by the three clients
respectively;

e in parallel, all clients and servers run a (n, m)-MPC protocol IIaqgq for addition to enable the
output client to obtain the sum of all £ blinding elements;

e the output client adds all M;;; terms, subtracts the sum of blinding elements to obtain the
randomized encoding of F', and decodes the randomized encoding.

O

A full proof is provided in Section 5.1.2.

5.1.1 Increase the Number of Servers — Proof of Lemma 5.7

In this section we construct a (3, m)-MPC protocol II"™ that securely computes 3Mult-Plus for any
number m of servers. Our construction makes use of the following sub-protocols:

e A (3,3)-MPC protocol II? for computing 3Mult-Plus, and a (3, 2)-MPC protocol II? for com-
puting 3Mult-Plus. By Claim 5.6, the latter is implied by the former.

e A (3,m)-MPC protocol IIpqq for computing Adds as constructed in Claim 5.9 below.

19

Claim 5.9 (MPC for ADD). For any n,m, there is a construction of (n,m)-MPC protocol that
(perfectly) securely computes Add,, : {0,1}" — {0,1} defined below:

Add,, (21, @9, n) = Y @

i€[n]

Proof. To compute the sum, each client C; samples a random m-way secret share of its input x;,
that is, s;1,- - , Sim such that Zje[m} sij = x;, and sends share s;; to server S; for all j € [m]. Each
server S; sums up all the shares it receives as its output share y; = Zie[n] sij. 1t is easy to see that
correctness holds. For security, if all clients are corrupted, the view of the corrupted parties can be
emulated honestly, since all inputs are known to the simulator. Otherwise, since at least one server
is uncorrupted, the shares sent from the honest clients to corrupted servers can be emulated using
random bits. This emulation is perfect, since without knowing the shares that honest clients send
to honest servers, the marginal distribution of the shares sent to corrupted servers are random. [J

The Protocol II": The three (input) clients C, Co, C3 receive respectively inputs (z1, 21), (22, 22)
and (z3, z3); the m servers Sy, - - - Sy, and the output client O have no input. They proceed as follows
to compute 3Mult-Plus((z1, 21), (x2,22), (x3,23)) = 12273 + 21 + 22 + 23.

1. Each client Cy for d € [3] additively share its input x4, by sampling {s?}ie[m} randomly from
{0,1} subject to > s¢ = x4. Cy additionally sample random bits tgjk for every i,7,k € [m].

2. For every i,j,k € [m], clients C1, Cy, C3 work with servers S;,S;, S; and O to compute
Mg = 558} + tig, + the + e
by running in parallel appropriate protocols as described below.

Case 1: i,7, k are all distinct. In this case, C;,Cy, C3 execute protocol II? with Si, Sj, Sk
and O, using inputs (s%,t}jk), (s?,t?jk), and (s%,t?jk) respectively.
Case 2: Exactly two of i, j, k are equal.

e If they have pattern (i,4,7), the clients execute the protocol II? with S;,S; and O,
using inputs (s%,t}ij), (s?,t?ij), and (sz,t?ij) respectively.

e If they have pattern (i,7,4), the clients execute the protocol II? with S;,S; and O,
using inputs (s%,t}ji), (s?,t?ji), and (s?,t?ﬁ) respectively.

e If they have pattern (j,4,4), the clients execute the protocol II? with S;, S; and O,
using inputs (s},t;ii), (s?,t?ii), and (s?,t;’ii) respectively.

Case 3: If i = j = k, each client Cy sends (sf, tfﬁ) directly to server S;, who computes Mj;;

and sends it to O. Denote this simple protocol as IT!.

In each case, O obtains M.

3. Clients C1, Cs, (5 run Ilpgq with all servers S1,---, S, and O to compute the sum
T:ZTd, where T = 24 — Z tfjk,
de([3] i.4,k€[m]

where Cy uses input 7%, and O obtains output 7. This execution is carried out in parallel
with all executions in the previous step.

20

4. Finally, the output client O outputs

Correctness: It

The Simulator

y = Z Mk +T
i-j,kelm]

is easy to verify that O obtains the correct output.

= > (ssSsi+t g tti) > [a— Dot

i,j,k€[m] de(3] i,5,k€[m]
- Y Y
i,5,k€[m] de(3)]

= x1Tax3 + 21 + 22 + 23 = 3Mult-Plus((z1, 21), (z2,22), (x3,23))

Sim™ of TI"™: To show the security of II"™, we need to construct a simulator Sim™,

such that, for every possible corruption set Z excluding at least one server, Sim” can simulate the
view of the corrupted players using only the inputs of the corrupted clients, and the output if the
output client is corrupted. Formally, let Realnm (Z, {(z4, 24) }4e3)) denote the view of the corrupted
parties 7 in an execution of II"™ with client inputs { (x4, 24) }4e[3)- The simulator Sim™ must satisfy:

{Realin (Z, {24, 2a}aer)), = {SIM™(Z, {2a,2a}d «r. chezs ¥)}y y = {

We now formally

If O is corrupted

y 0eZl
1 0¢71

describe the simulation procedure Sim™(Z, {(x4, 2d) }d «1. CyeT,Y)-

, Sim™ proceeds as follows:

1. Sim™ samp

Sampling

les the following shares and blinding bits.

I: For every corrupted client Cy € Z, Sim™ samples {sf} at random subject to

that Zie[m} s¢ = x4, and samples tfjk at random for every i, j, k € [m].

Sampling
1 2
S’L 5 S]’

Sampling

4=
II: For every i,j,k € [m], such that, S;,S;, Sy are all corrupted, Sim™ samples
si and tlljk, t?jk, t%k at random.

ITI: If all clients are corrupted, that is, {C1,Ca,Cs} C Z, compute for all i, j, k

1.2.3 41 2 3
Miji = ;8785 + tiji + tin + tiji

using shares and blinding bits sampled in step Sampling I.

Otherwise, compute M;j;, honestly for ¢, j, k, such that, S;, S;, Sy, are all corrupted, using

shares

and blinding bits sampled in step Sampling II. For every ¢, j, k, such that, not all

of S;,Sj, Sk are corrupted, sample M;;; at random.

Let S denote the set of shares sampled, 7 the set of blinding bits, and M the set of M,
bits computed or sampled.

2. For every 1,

J, k € [m], Sim™ simulates the execution for computing M;;j, in two cases depend-

ing on whether all servers involved for this computation are corrupted or not.

21

Case I: {S;,S;,S;} C Z. In this case, the security of protocols II?, II?, and II! no longer

hold as all servers are corrupted. Sim” finds shares sil, s?, si and blinding bits tiljk, t?jk,

tfjk in § and 7 respectively (sampled in step Sampling II). It emulates the view of the

corrupted parties in the execution for computing M;;, by emulating the honest clients

using inputs (s%,tzljk), (si,t?jk), (sz,tfjk).

Case II: {S;,5;, Sk} € Z. In this case, Sim™ relies on the security of protocols II3, I1?, and

II' to simulate.

Case 1: i,j,k are all distinct. Sim™ finds share sfd (ig=idifd=1,ig=7jifd =2,
and ig = k if d = 3) and blinding bit tfjk of each corrupted client Cy € 7 in § and
T respectively (sampled in step Sampling I). It then invokes the simulator Sim? of
protocol II? with inputs

Sim3 (Z N {Clv CQ? C?)a Siv Sj7 Sk7 0}7 {S;,'ida tzdjk}d s.t. Cq€L>s Ml]k)

to simulate the view of the corrupted parties in the execution for computing M;;y.

Case 2: Exactly two of 4, j, k are equal. Sim™ finds the relevant share sfd and blinding
bit tgjk of each corrupted client Cy € Z in S and T as before. It then invokes the
simulator Sim? of protocol II? with inputs

Sim3 (I N {Cla C27 C37 Sia Sja Skv O}) {S;'ida t;lyk}d s.t. Cq€L Mljk)

to simulate the view of the corrupted parties in the execution for computing M.

Case 3: If i = j = k, only one server .S; is involved in computing M;; and is uncor-
rupted. Thus the only message in the view of the corrupted parties is the message
from S; to O sending M;;;. Sim™ emulates the message using M;; € M computed
or sampled in step Sampling ITI. Denote by Sim?® this simulation procedure.

3. Finally, Sim™ simulates the execution of IIpgq by invoking the simulator Simagq for ITagq
Simada | Z, S Ta=za+ >t Y= M
ijk d st CyeT ijk

If O is uncorrupted, Sim™ proceeds as described above, except for the following:

e In Step 1, Sim™ does not execute Sampling III.

e In Step 2, to simulate the executions computing Mj;;i, in Case 1 and 2, Sim™ invokes Sim? and
Sim? without M; i, and in Case 3, since O is uncorrupted, there are no messages to simulate.

e In Step 3, to simulate the execution of Tlpqq, SIm™ invokes Simaqgq without the output y —

> ik Miji-

Correctness of Simulation: To show that the view generated by Sim™ is indistinguishable to
the view of the corrupted parties in the real execution, we introduce the following intermediate
hybrid simulation procedure:

HSIm(Z, {(z4, za) }ac[3), ¥) With inputs of all clients proceeds as follows:

22

1. For every client C¢ (honest and corrupted), HSim emulates perfectly its shares and blinding
bits at random, that is, sampling {s¢} at random subject to that Eie[m] s¢ = x4, and samples

t?jk at random for every i, j,k € [m]. Then, it computes all M;j;, honestly

_.1.2.3 1 2 3
Mijr = s; 858k + tiji + tije + L -

2. For every i, j, k € [m], HSim simulates the view of the corrupted parties in the execution for
computing M;;, as Sim™ does, but using the above honestly generated {sg,t%k} as inputs
and {M;;1} as outputs for Sim?, Sim?, Sim™.

3. HSim simulates the view of the corrupted parties in the execution of ITagq as Sim™ does, using
the above honestly generated {tfjk} as inputs and y — Zijk M; ;i as output for Simagq.
We first argue that the view of the corrupted parties in the real execution is indistinguishable
to that generated by the hybrid simulator, that is,

{Realum (Z, {(za,2a) }aez) }y, = {HSIM(Z, {(z4, 2a)}acis) }

The only difference between the hybrid simulation and the real execution is that in the former
all executions of IT3, I12, II', IIaqq are simulated, whereas in the latter, they are executed honestly.
Since HSim generates the inputs and outputs fed to Sim3, Sim?,Sim!, Simagq honestly. It follows
directly from the security of II?, 112, II!, ITaqq that the above indistinguishability holds.

Next, we argue that the hybrid simulation is indistinguishable to the actual simulation, that is,

{HSim(Z, {(.de,Zd)}de[g})})\ = {Sim"™(Z, {(®4,24)}d ss. Chez> Y},

The only difference in the two simulation procedures lies in how the inputs and outputs fed to the
simulators Sim?,Sim?, Sim!, Simaqq are generated. In HSim, they are generated honestly, whereas
Sim™ generates them with the following difference:

e For every honest client Cy, and every corrupted server S;, the share sld is generated at random,
not subject to being consistent with .

e If not all clients are corrupted, for every i, j, k s.t. not all of S;, S;, Sg are corrupted, M;;y is
sampled at random instead of computed honestly.

We argue that the above sampling procedure produces the same distribution as in HSim. First,
for every uncorrupted client Cy, the shares sg corresponding to uncorrupted severs S; ¢ T are
never used by neither Sim”™ nor HSim. Therefore, the marginal distribution of s? corresponding to
corrupted severs S; € Z are random. Second, for every 4, j,k s.t. not all of S;, 5}, S, are corrupted,
the blinding bits tfjk belonging to the honest clients Cy € Z are never used by neither Sim™ nor
HSim. Therefore, the distribution of M;;; is also random. Since the rest of the simulation is
identical in HSim and Sim™, we have that their distributions are identical.

By a hybrid lemma, we conclude the correctness of the simulator, which further concludes

Lemma 5.7.

23

5.1.2 General Client-Server MPC for Any Functionality — Proof of Lemma 5.8

For any polynomials n, m, and any polynomial-time computable function F : ({0,1}*)" — {0, 1},
we construct a (n,m)-MPC protocol Il that securely computes F. To this end, we rely on the
following tools:

e A degree-3 randomized encoding (REr, RE.Eval) for F' (see Definition 5.10 below).

e A (3, m)-MPC protocol II3myi-pius that securely computes 3Mult-Plus, as guaranteed to exist
by Lemma 5.7.

e A (n,m)-MPC protocol IIpqq that securely computes Add, as given by Claim 5.9.

Definition 5.10. A randomized encoding scheme (REr, RE.Eval) for a function F': {0,1}* — {0,1}
consists of two algorithms that behave as follows.

F(z) < REp(z) probabilistically samples a string, which acts as a randomized encoding for
the computation (F,z), in time polynomial in T}, the worst-case running time of (a given
implementation of) F' on inputs of length |z|.

Y RE.EvaI(I?(m\)), which is meant to deterministically compute a string y from the randomized
encoding F'(x), in time polynomial in |F(z)|.
They satisfy the following conditions.

Correctness: For any x € {0, 1}*,
Pr[RE.Eval(REg(z)) # F(x) | < negl(|z]) ,
where the probability is taken over the randomness of REf.

Simulation: There exists an algorithm RE.Sim such that the following ensembles are computa-
tionally indistinguishable,?

{REp(z) }, ~ {RESm(1", F(z)) }

x

where RE.Sim runs in time polynomial in T}, as defined above.

The Protocol IIr: Let (REp,RE.Eval) be the degree-3 randomized encoding scheme for the
function F'. To compute F(x1,--- ,x,), the n clients Cy, - - - , Cy, with respective inputs 1, -+ , zp,
work with the m servers Si,- - S, to enable the output client O to obtain a randomized encoding
of the computation (F,x),

F(:E):REF(xl,"',xn;T:T1+"'+Tn),

where the random tape r is the (bit-wise) sum of n random tapes ri,--- , 7, contributed by each

client, and O can then evaluate the randomized encoding F'(z) to obtain the actual output y = F(z).

3Here, the ensemble short-hand means that there exists a negligible function v such that for every string = € {0,1}",
no attacker can tell apart REr(x) and RE.Sim(1!*!, F(z)) with advantage larger than v(|x|).

24

Since REF is a degree 3 polynomial in the input bits (the z-bits) and the random bits (the r-bits),

it can be expanded as sums of degree-3 monomials. Formally, for every bit ¢ € [|F/’(;)H of the
randomized encoding,

Flx),= Y ag vivjog where V = { (24, denliclaa)) Y { (Fdj)demlic)r) | -

'Ui,’Uj,UkEV
where afjk is the coefficient associated with the degree 3 monomial v;v;v;, and V' is the set of all

z-bits and r-bits of all clients. Thanks to the degree 3 structure, this sum can be computed using
the protocols I3myi-pius and Ilagq as follows:

1. Each client Cy samples rg < {0, 1}"”‘ at random, as its share of the random tape for computing
the randomized encoding.

2. For every £ € [|F(x)]], every v;,vj, v, € V, let Cy,, Cq;Cy, be the clients that own these bits
respectively (i.e., if vy is an input bit, Cy, is the client that has this input bit; if v, is a
random bit, Cy, is the client that sampled it). They compute the degree three monomial

fjkvw]vk blinded with random bits twk, fﬁg nd tsz,
l,1 4,2 4,3 K 3
Mijk; = 3Mult-Plus((a Ukvl,t”k) (v],t”k) (vk,t”k)) = kvzv]vk + t”k +t”k Eik -

in the following two cases:

Case 1: All Cy,, Cy,;Cy,, are distinct. In this case, they sample random blinding bits tZJ) tfﬁc,
tz}k respectively, and execute the protocol Ilspmyr-plus With all m servers, using inputs

4,1 4,2 4,3 .
(a fjk”i’ti}k)v (vj,t;51.), and (vg, t;7;) respectively.

Case 2: Not all Cy,, Cy,Cy,, are distinct. In this case, each client Cy uses the product of its
bits as its actual v bit. In addition, add other clients (chosen in an arbitrary way) to
the computation, so that, there are exactly three clients; the added clients set their v
bits to 1. Let Cdi’ Cd; OdL be the three (distinct) clients. They proceed identically as in

Case 1 to compute the term Mf] i

At the end of this execution, O obtains term ij i

3. For every ¢ € [|F(z)]], each client sums up the blinding t-bits that it has sampled (related to
the ¢’th bit of the randomized encoding); denote the sum as T 5 . They, Cq,---,Cy, run the
protocol Iagq with all servers Si, -, S,, and O to compute their sum 7% = 3 den] Tf . This
execution is carried out in parallel with all executions in the previous step.

4. Finally, the output client O computes for every ¢ € Hﬁ?)ﬂ, F/’(;)e = (v vj.0nev M” L —T0).

Then, it decodes the randomized encoding y = RE.EvaI(F/’(;)) and outputs y.

Correctness: It is easy to verify that O indeed obtains the correct randomized encoding.

Fa), = > (alpomjon+t5 + 02 1+ 3 02 4 4h
¢ — zjk 1V Vk ijk ij z]k Z]k Z]’C Uk
v;,05,0,EV V;,05,0, €V
14
= Z aijk'l)i'l)j'l)k
v3,0;5,0EV

25

Then, by the correctness of randomized encoding, the output y = RE.EvaI(I?(;)) equals to F(x).

The Simulator Simg of IIp: To show the security of I1z, we need to construct a simulator Simg,
such that, for every possible corruption set Z, excluding at least one server, Simg can simulate the
view of the corrupted players using only the inputs of the corrupted clients, and the output if the
output client is corrupted. Formally,

~ I<i / / y=F(x1,---,z,) O€T
{Realn, (Z, {za}aem))}y = {SIMr(Z, {2a}d wr cezs ¥}y, y = {L 041
We now formally describe the simulation procedure Simp(Z, {(x4)}d o cyez,Y')-

If O is corrupted, Simp proceeds as follows:

1. Simp samples the following:

Sampling I: For every corrupted client Cy € Z, Simp samples r4 at random, which is Cy’s
share of the random tape for computing the randomized encoding. In addition, for every
¢, Simp samples all the blinding t-bits generated by Cy, and sums them up to Tf. (Note
that after this step, Simp has all the input, random, and blinding bits of all corrupted
clients.)

—

Sampling II: For every ¢ € [|F(x)|], and every v;,v;,v;, € V, if all clients Cd;acd{}.acd;
involved for computing Mf;k are corrupted, Simp compute honestly

¢ 0 01
My, = ajjpvivyoe + 15+t

02

03
ikt tijk

using the input, random, and blinding bits of all corrupted parties. Otherwise, if not all
of Cd;, C’d;, C’d;C are corrupted, sample M;;;, at random.

—

2. For every ¢ € [|F(z)|], and every v;, v, v, € V, Simp simulates the execution for computing
ijk by invoking the simulators Simsmuit-pius for Ismul-pius as follows:

Case 1: AllCy,;, Cy,Cy, are distinct. In this case, let Xjj, be the subset of bits in {afjkvi, Vj, Uk,

tfﬁ, tfﬁw tfﬁc} that are owned by corrupted clients {Cy;, Cq;Cq, } N Z. It then invokes

Simamute-pius ({Ca;» Ca,Cay, } NI, Xijr, Mijr)

to simulate the view of the corrupted parties in the execution for computing M, ;.
Case 2: Not all Cy,,Cy,Cy, are distinct. In this case, the protocol specifies three (distinct)
clients Cdg, C’dg,,Cd;c and their v bits for computing ijk Simg proceeds identically as
above to simulate the view of the corrupted parties {Cy, Cd;,, Cu, NZ.
3. Simy simulates the randomized encoding using the output 3’ =y, F(x) + RE.Sim(1!%l,).

—

4. Finally, for every ¢ € [|F(z)|], Simp simulates the execution of IIaqq4 for computing the ¢’th
bit of the randomized encoding, by invoking the simulator Simaqq for Iaqq,

Y My - F(z),

V3,05,V EV

SimAdd T {Té}
’ d d s.t. C'dEI7

26

If O is uncorrupted, Simp proceeds as described above, except for the following:

e In Step 1, Simg does not execute the step Sampling II.

Simp invokes Simsmute-pius without MY

e In Step 2, to simulate the execution computing M?! ik

ijk>

e In Step 3, Simp skips this step.

e In Step 4, to simulate the executions of Ilagq, Simp invokes Simpagq without the output
4
Zvi,vj,vkev Mijk — F(z),.

Correctness of Simulation: To show that the view generated by Simp is indistinguishable to the
view of the corrupted parties in the real execution, we introduce the following intermediate hybrid
simulation procedure:

HSIm(Z, {(z4) }aefn), ¥) with inputs of all clients proceeds as follows:

1. For every client C¢ (honest and corrupted), HSim emulates perfectly its random and blinding
bits, that is, sample rd and all te blts generated by Cy; at random. Then, it computes all

y4 Z
ka ijvzvjvk+t1]k+tz]k l]k honestly.

2. For every ¢, and v;,v;,vr € V, HSim simulates the view of the corrupted parties in the
execution for computing M? ik 88 Simp does (using the -, 7-, and t’- bits of the corrupted

clients as inputs), except that it feeds Simzmyi-pius above honestly generated ijk as output.

3. HSim computes honestly the randomized encoding F/’(;) =REp(x1, -+ ,xp;r =114 +1).

4. For every £, HSim simulates the execution of IIaqq for computing the £’th bit of the randomized

encoding as Simp does, except that it feeds Simaqq the value (D —F(x),) as output.

14
Vi,V5,Vk Mijk
We first argue that the view of the corrupted parties in the real execution is indistinguishable
to that generated by the hybrid simulator, that is,

{Realn, (Z, {(xd,)}aem) }, = {HSIM(Z, {(x4)}aem)) }y

The only difference between the hybrid simulation and the real execution is that in the latter all
executions of Ilgpmuie-pius and Ilagq are simulated, whereas in the former, they are executed honestly.
Observe that for every execution of IIzpmuit-pius Or Ilaqgd, the input and output that HSim feeds to
Sim3mul-Plus OF Simagq is identically distributed as the input and output of the execution in the
real world. Then, indistinguishability follows directly from the security of Ilgmyi-pius and Ilagq-
Next, we argue that the hybrid simulation is indistinguishable to the actual simulation, that is,

{HSim(Z, {(xd)}de[n})})\ ={Simp(Z, {(za)}d s+ coez, Y)}\

The only difference in the two simulation lies in how the outputs fed to the simulators Simsmuit-pius,
and Simagq are generated (the inputs fed to the simulators are identically distributed in these two
simulation). In HSim, the outputs are computed honestly as in the real execution, whereas in Simp,
they are simulated with the following difference:

27

e For every ¢, and v;,vj,v; € V, such that, not all of the clients Cd’l ,Cdé,C’dé involved in
computing ijk is corrupted, the output ijk is sampled at random.

e For every ¢, the output (th%vk Mék — F(z),) of the £’th execution of IIaqq is generated

using a simulated randomized encoding, instead of an honestly generated one F(x).

We argue that the distribution of outputs described above is computationally indistinguishable to
that used in HSim. First, for every M fj . computed by clients Cd’l , Cdé, Cdg that are not all corrupted,
at least one of the blinding bits {tfﬁw tfﬁ, tfﬁ;
distribution of ijk is random in both Simp and HSim. Second, by the security of the randomized
encoding, the simulated randomized encoding used in Simp is computationally indistinguishable to
the honestly generated one used in HSim.

Therefore, by a hybrid lemma, we conclude the correctness of the simulator, which further
concludes Lemma 5.8.

} is never used in Simp and HSim. Thus, the marginal

5.1.3 Comparison with Other 2-Round MPC Constructions

The round complexity of multi-party computation protocols has been extensively studied. So
far, in the optimal 2-round setting, we have 2-round protocols in the Common Reference String
(CRS) model, based on LWE [AJLAT12, MW16, CM15, BP16, PS16], and protocols in the plain
model, from indistinguishability obfuscation or witness encryption, together with NIZK [GGHR14,
GP15, CGP15, DKR15, GLS15], or bilinear groups [GS17al, or even 2-round semi-honest Oblivious
Transfer (OT) protocols [GS17b, BL17].

Our construction above starts with a (3, 2)-HSS for computing 3Mult-Plus. Alternatively, we can
start with a (3, 3)-MPC for computing 3Mult-Plus and apply Lemmas 5.7 and 5.8 only. In the latter
case, we extend the 2-round client-server MPC protocols in the Public Key Infrastructure (PKI)
model based on DDH by [BGI17], from handling only a constant number of servers, to handling an
arbitrary number of servers. Below, we briefly compare our construction with the above mentioned
2-round protocols.

o Approach and Underlying assumptions: The LWE-based protocols use multi-key FHE. By
using multi-input HSS instead, our construction can be based on DDH. The constructions
in the plain model use a completely different approach: At a very high-level, they obtain
2-round protocols by collapsing rounds of multi-round protocols. The state-of-the-art con-
structions in this line [GS17b, BL17] managed to perform round-collapsing using “distributed
garbling”, which can be done relying only on the necessary assumption of 2-round semi-honest
OT. Though our protocols rely on stronger assumptions, the HSS-based approach has other
advantages as discussed below.

o C(lient-server model: Our protocols are in the more general client-server model. Note that
any (n,n)-MPC with the same number of clients and servers implies n-party MPC in the
standard model, by letting each party act as one client, one server, and one output client.
However, the converse is not true in general. In a 2-round n-party MPC protocol, i) the first
round messages may depend on the function being computed, ii) the second-round messages
may depend on the private inputs of the parties, and their random coins for generating the
first-round messages, and iii) recovering the outputs may require private inputs and coins.

28

In particular, condition ii) is true for all known protocols following the round-collapsing
approach. In contrast, such dependency is not allowed in the client-server model. Therefore,
client-server MPC provides more flexibility. For instance, the clients can share their inputs
“off-line” before the function is chosen, and servers upon learning the functions can perform
the computation homomorphically without learning any information of clients’ private inputs,
and finally any party who has collected the output shares from the servers can recover the
output.

Asymptotic Efficiency: Known protocols following the round-collapsing approach have high
asymptotic complexity: The overall computational complexity (of all parties) scales linearly
in the complexity T of the functionality being computed, but scales with n* in the number of
parties. In two natural settings described below, the complexity of our protocols scales with
n? only.

— The first setting is when the number of servers is a constant m = O(1). In this case,
starting from a (3, m)-MPC protocol Igmyi-pius for 3Mult-Plus for a constant number
of servers by [BGI17], we can obtain a (n,m)-MPC protocol Il for an arbitrary func-
tionality F' by only applying Lemma 5.8 (skipping the step of applying Lemma 5.7 for
increasing the number of servers to super-constant). Recall that in Lemma 5.8, we re-
duce the task of computing F' to the task of computing a degree-3 randomized encoding
of F' using random coins contributed by all clients,

—

F(I):REF(JJL , T s T:rl—i_"'_{—Tn):Zafjk UinUk, (2)

where v; is either a bit in some input z; or some random tape r;. Since each degree-3
v-monomial can be computed via an invocation of Ismyr-pus (and each invocation of
II3pmuie-plus has fixed polynomial complexity poly())), the complexity of our protocols
is determined by the number of such degree-3 monomials. Since REr has complexity
Tpoly()), there are at most Tpoly(\) x n® such monomials.

— The second setting is when the number of servers is the same as the number of clients
n = m and the indexes of the set of corrupted servers is the same as that of corrupted
clients. This setting in particular implies standard n-party MPC. In this setting, starting
from a (3,3)-MPC protocol Izpmyi-pius for 3Mult-Plus (and a (2,2)-MPC protocol for
3Mult-Plus), we can again obtain a (n,m)-MPC protocol Il for F' without applying
Lemma 5.7. To do so, we modify Lemma 5.8 as follows. Again, we use II3mult-pius tO
compute every v-monomial in the randomized encoding in Equation (2). However, for
each v-monomial, the three clients C;, C;, C), holding v;,v;, vy compute the monomial
with servers S;, Sj, Si with the same indexes (instead of with all servers). (In case that
only 2 of i, j, k are distinct, invoke a (2,2)-MPC for 3Mult-Plus, and in case that they
are all the same, simply send the computed output to the server.) Since the indexes of
corrupted servers are the same as that of corrupted clients, whenever clients C;, C;, Cy,
are not all corrupted, the 3Mult-Plus computation is secure, and hence security holds.
With this modification, the overall complexity is again determined by the number of
v-monomials, which scales with T'poly(\)n3.

Finally, we remark that if there exist degree-3 randomized encodings, where every monomial
has only degree 2 in the random coins, the number of v-monomials to be computed decreases

29

to Tpoly(A\)n?. This improves the asymptotic efficiency of our protocols, but has no effect on
the efficiency of these round-collapsing protocols. However, currently, the existence of such
randomized encodings is unknown.

o Qutput Client Complexity: Finally, we remark that our protocols has the feature that the
output client is relatively efficient. Its sole job is recovering the randomized encoding from
the output shares and then decode the randomized encoding. The latter task has T'poly(\)
complexity, and the former has at most Tpoly(A) x m complexity, since for every output
element, the output client merely needs to add the corresponding output shares from the
m servers, due to the additive decoding of HSS. This feature is important for delegating
secure computation. Computationally weak (input) clients can share their inputs offline, and
computationally weak output clients can recover the outputs efficiently. The most expensive
computation is performed by the servers who are computationally powerful. In comparison,
protocols following the round-collapsing approach all have high complexity for deriving the
outputs, namely Tpoly(A) x n? per party.

5.2 Worst-Case to Average-Case Reductions

In this section we describe a simple application of HSS to worst-case to average-case reductions. We
then discuss applications of these reductions to fine-grained average-case hardness and verifiable
computation. These applications of HSS can be seen as more efficient or more general conditional
variants of previous applications of locally random reductions that rely on arithmetization or error-
correcting codes [Lip89, BK89, BF90, BFNW93, STV01, GI14, BRSV17]. In contrast to the above
reductions, the HSS-based reductions can reduce any polynomial-time computable function to
another polynomial-time computable function with closely related complexity.

Worst-case to average-case reductions based on fully homomorphic encryption (FHE) were
previously used by Chung et al. [CKV10] in the context of delegating computations. Compared
to the FHE-based reductions, the use of HSS has the advantages of diversifying assumptions,
making only a constant number of queries to a Boolean function (as small as 2), and minimizing
the complexity of recovering the output from the answers to the queries. The latter can lead to
efficiency advantages in the context of applications.

To make the discussion concrete, we focus here on the application of (computationally secure,
additive?) (1,2)-HSS for circuits, namely for the universal function F(C;x) = C(x). Such HSS
schemes can be based on variants of the LWE assumption (see Appendix B). Weaker versions of
the following results that apply to branching programs can be based on the DDH assumption or
the circular security of Paillier encryption using the HSS schemes from [BGI16a, FGJS17].

A high level overview. The idea of using HSS for worst-case to average-case reductions is
similar to previous applications of locally random reductions for this purpose, except that we apply
a “hybrid HSS” technique [BGI16a] to improve the efficiency of the reduction. Concretely, the
reduction proceeds as follows. Suppose for simplicity that the HSS sharing algorithm Share(1*,)
outputs a pair of shares (z',2?) such that each share is individually pseudo-random. Moreover,
suppose that the evaluation function Eval(j, C, 27) does not depend on j. The evaluation of a circuit
C:{0,1}" — {0,1} on an arbitrary input x € {0,1}" can then be reduced to the evaluation of
an extended circuit C, defined by C(#) = Eval(C, %), on the two inputs z',22. Indeed, C(z) =

4The requirement of being additive can be relaxed here to small decoding complexity.

30

C(x) @ C(x2). Now, suppose that C* is a polynomial-size circuit that agrees with C' on all but
an € fraction of the inputs. Then, by the pseudo-randomness of z!, 22, the probability that o
agrees with C on both inputs, and hence the reduction outputs the correct value C'(x), is at least
1 — 2¢ — negl(n). Finally, to make the reduction run in near-linear time, we convert the given HSS
into a hybrid HSS scheme in which the sharing Share’ can be implemented in near-linear time. The
algorithm Share’ uses Share to share a short seed r for a pseudorandom generator GG, and includes
the masked input G(r) @z as part of both shares. Given a circuit C and G(r) @ x, one can efficiently
compute a circuit C’ such that C’(r) = C(z). The algorithm Eval’ of the hybrid scheme applies
Eval to homomorphically evaluate C’ on r.

The following theorem formalizes and generalizes the above. Here, by a “near-linear time”
algorithm we refer to an algorithm whose running time is O(n!*) for an arbitrary e > 0.

Theorem 5.11 (Worst-case to average-case reductions from HSS). Suppose there is a (1,2)-HSS
scheme (Share, Eval, Dec) for circuits. Then, there is a near-linear time probabilistic oracle algorithm
QU : {0,1}* — {0,1}*, polynomial-time algorithm A : {0,1}* x {0,1}* — {0,1}, and a PPT
sampling algorithm D(1™) with the following properties:

e (Q makes two queries to a Boolean oracle (where the queries are computed in near-linear time
and the answers are 1-bit long) and outputs the exclusive-or of the two answer bits.

e For any x € {0,1}" and circuit C : {0,1}" — {0,1}, we have Pr[QAC)(z) = C(z)] = 1.

e For any polynomial p(-) there is a negligible p(-) such that the following holds. For any
x € {0,1}" and circuits C : {0,1}" — {0,1}, Af : {0,1}" — {0,1} of size < p(n) such that
Pri pam[AG(2) = A(C,2)] > 1 — ¢, we have Pr[Q4c()(z) = C(x)] > 1 — 2¢ — p(n).

Moreover, if Share produces pseudorandom shares then the distribution D(1™) can be replaced
by the uniform distribution.

Proof. In the following we treat the security parameter A as being independent of the input length
n = |z|, under the understanding that the security of the HSS is maintained whenever n is poly-
nomially bounded in . This means that complexity of n - poly(\) qualifies as near-linear since we
can set A = nd for an arbitrarily small constant ¢ > 0.

We start by converting II(Share, Eval, Dec) into II'(Share’,Eval’,Dec) in which Share/(1*,z)
runs in near-linear time. This is done using the following hybrid HSS approach (cf. [BGI16a]):
Share/(1*, 2) picks a random seed r € {0, 1}* for a pseudorandom generator (PRG) G, lets (r!,72) «
Share(1*,r), and outputs ((r', G(r) @), (r?,G(r) @ x)). (Note that the existence of G follows from
the existence of a one-way function, which follows from additive HSS for circuits [GI14], and that
G(r) can be computed in time n - poly(A).) Given a circuit C' and G(r) @ z, one can efficiently
compute a circuit C’ such that C’(r) = C(z). The algorithm Eval’ applies Eval to homomorphically
evaluate C’ on r.

We are now ready to define the algorithms @, A, and D. Algorithm @ on input = € {0,1}" lets
A = n® (for an arbitrarily small constant § > 0) and lets (x!, 2%) < Share/(1*, 2). It then invokes the
oracle twice, once on input (1,2') and once on input (2, 2?), and outputs the exclusive-or of the two
answers. Algorithm A, on input (C, (4,27)), simply outputs Eval'(j,C,z7). Finally, algorithm D,
on input 17, lets (2!, 2%) < Share’(1*,0") (for A = n%) and outputs (j,z7) for a random j € {1,2}.

31

It is easy to see that @, A, D described above satisfy the first two requirements (the second
requirement follows from the correctness of II' as an additive HSS scheme for circuits). We argue
that the third requirement is also satisfied. The security of II" implies that if Prz, pn)[AG(2) =
A(C,2)] > 1— ¢ then, replacing D(1") by D’(z) that invokes Share’(1*,) instead of Share’(1*,0"),
we have Prz, pi()[A5(2) # A(C,2)] < e+ p/(n) for a negligible 4/. Letting ¢; be the latter
probability conditioned on & = (j,27) (namely, & being the share of server j) we have that (e; +
€2)/2 < e+ p/(n). Since the probability of @ failing is upper bounded by the probability that A
differs from A(C,-) on at least one of the two queries, by a union bound we have Pr[Q4c() () #
C(z)] < €1+ €2 < 2e + 24/ (n) as required.

Finally, the “moreover” part of the theorem follows from the fact that when each of the shares
x! and 22 is individually pseudorandom, the distribution (j,z7) for a random j € {1,2} is also
pseudorandom, and hence the output of D(1") is indistinguishable from a uniform.]

Remark 5.12 (Instantiating Theorem 5.11). The strong flavor of HSS required by Theorem 5.11
can be instantiated under a variant of the LWE assumption that further assumes circular secu-
rity [Gen09, DHRW16] (see Corollary B.3). Due to the negligible decoding error of the HSS, we
get a slightly weaker version of the conclusion where Pr[Q4(“)(z) = C(z)] > 1 — negl(n). On
the other hand, since the implementation of Eval has a small asymptotic overhead, we get the
stronger guarantee that the oracle A(C,) has roughly the same circuit size as C' (rather than being
polynomially bigger). One can relax the assumption to a more standard variant of LWE by using
depth-dependent HSS for circuits, where the length of the input shares grows polynomially with the
depth of the circuit C' being evaluated by Eval. In this case, using an LWE-based NC!' implemen-
tation of the PRG G, the conclusion of Theorem 5.11 still holds when restricted to NC-circuits C.
More generally, the complexity of @) should in this case be allowed to grow with the depth of C.

A straightforward generalization of Theorem 5.11 relaxes the assumption to (1, m, 1)-HSS, where
the 2e in the conclusion is changed to me. However, this relaxation is not known to give rise to
new HSS schemes for circuits.

We now informally discuss two types of applications of Theorem 5.11, which follow previous
applications of such worst-case to average-case reductions from the literature.

Fine-grained average-case hardness. Theorem 5.11 implies, assuming HSS for circuits, that
the following holds for any constants ¢’ > ¢. For every polynomlal time computable function f there
is a polynomial-time computable “extension” f , such that if f has a tlme—O(¢) algorithm that
computes it correctly on, say, 90% on the inputs, then f has a time-O(n¢") probabilistic algorithm
that computes it correctly (with overwhelming probability) on every input. This implies that if f
is hard in the worst case for time O(n¢) then f is hard in the average case for time O(n¢). The
same connection holds also in a non-uniform setting.

A similar result under the incomparable assumption that FHE exists is given in [CKV10]. These
results are incomparable to recent results on fine-grained average case hardness [BRSV17, GR17]
that obtain tighter and unconditional connections of this kind, but only for specific functions f.
They are also incomparable to the unconditional average case time hierarchy from [GGH94], which
does not apply to the probabilistic or nonuniform setting (see [GR17] for a more detailed compar-
ison). We note that f is essentially the HSS Eval function applied to the circuits corresponding to
f. Using LWE-based HSS (or FHE) constructions, the worst-case circuit complexity of f can be

32

made close to that of f (concretely, if f has circuits of size O(n¢) then f has circuits of size n? for
any d' > d).

Verifiable computation. The goal of program checking [BK89] is to reliably compute a given
function f using an untrusted program or piece of hardware that purportedly computes f. We
consider a variant of the problem in which a program M for computing f : {0,1}" — {0,1} can
access a purported implementation of a related function f . The program M can make oracle calls to
f and perform additional computations, as long as the complexity of these additional computations
is significantly smaller than that of computing f from scratch. The requirements are that if fis
implemented correctly, then M/ (z) = f(x) for all z. On the other hand, even if f is replaced by an

incorrect implementation f*, the output of M7” () on every input z is either f(z) or L except with
small failure probability e. This is very similar to the traditional goal of verifiable computation,
except that a malicious “prover” f* is required to be stateless. In this setting, one can make a
direct use of probabilistically checkable proofs (PCPs) for proving the correctness of f(x) without
any additional cryptographic machinery.

Worst-case to average-case reductions provide a the following “amortized” approach. Suppose
that computing f(x) on the worst case reduces to computing a related function f (Z) on the average
case. Then, a checker M for f given a purported implementation f * of f can proceed in the following
way. In an offline phase, before any input x is known, M picks a random set of polynomially many
inputs and checks that f * correctly implements f on these inputs by evaluating f on its own. If any
inconsistency is found M rejects. Otherwise, M is assured that (except with negligible probability)
f* correctly implements f on all but a 1/p(n) fraction of the inputs, for some polynomial p(-).
This offline phase can now be used to verify any number of online instances: given an input x, the
checker M applies the worst-case to average case reduction for computing f(x) using oracle calls
to f *. Since f * is guaranteed to be correct on almost all inputs, the reduction will fail with small
error probability, that can be exponentially reduced via repetition.

Combined with the worst-case to average-case reduction based on HSS from Theorem 5.11,
this approach gives rise to checkers M with the following feature: after an input-independent
polynomial-time preprocessing, any computation f(x) can be verified with an arbitrarily small
inverse polynomial error by receiving just a constant number of bits from f*. We do not know of
any other approach for verifiable computation that yields such a result.

6 Conclusions and Open Problems

In this work we initiate a systematic study of homomorphic secret sharing (HSS) by providing a
taxonomy of HSS variants and establishing some negative results and relations with other primitives.
We also present applications of HSS in cryptography and complexity theory.

There is much left to understand about the feasibility and efficiency of HSS in different settings.
In the information-theoretic setting, we have no strong negative results for single-input, (weakly)
compact HSS. This should be contrasted with multi-input compact HSS, for which negative results
are obtained in this work, and with single-input additive HSS, where information-theoretic impos-
sibility results are also known [CGKS98|. The difficulty of making progress on this question can be
partially explained by its relation with information-theoretic private information retrieval and lo-
cally decodable codes [KT00, BIKO12], for which proving good lower bounds is still an outstanding
challenge. However, this barrier only seems to apply to special instances of the general problem. In

33

the computational setting, the main open problems are to obtain HSS schemes for circuits under

new assumptions and, more broadly, extend the capabilities of HSS schemes that do not rely on
FHE.

ACKNOWLEDGEMENTS. We thank the anonymous ITCS reviewers for helpful comments.

E. Boyle was supported by ISF grant 1861/16, AFOSR Award FA9550-17-1-0069, and ERC grants
307952, 742754. N. Gilboa was supported by ISF grant 1638/15, a grant by the BGU Cyber
Center by the European Union’s Horizon 2020 ICT program (Mikelangelo project), and ERC grant
742754. Y. Ishai was supported by ERC grant 742754, NSF-BSF grant 2015782, BSF grant 2012366,
ISF grant 1709/14, DARPA/ARL SAFEWARE award, NSF Frontier Award 1413955, NSF grants
1619348, 1228984, 1136174, and 1065276, a Xerox Faculty Research Award, a Google Faculty Re-
search Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This
material is based upon work supported by the DARPA through the ARL under Contract W911NF-
15-C-0205. H. Lin was supported by NSF grants CNS-1528178, CNS-1514526, CNS-1652849 (CA-
REER), a Hellman Fellowship, the Defense Advanced Research Projects Agency (DARPA) and
Army Research Office (ARO) under Contract No. W911NF-15-C-0236, and a subcontract No.
2017-002 through Galois. S. Tessaro was supported by NSF grants CNS-1553758 (CAREER),
CNS-1423566, CNS-1719146, CNS-1528178, and 1IS-1528041, and by an Alfred P. Sloan Research
Fellowship. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense, the National Science Foundation, or the U.S. Government.

References

[ATKO04] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Cryptography in N 0. m
FOCS 2004, pages 166175, 2004.

[ATKO5] Benny Applebaum, Yuval Ishai, and Eyal Kushilevitz. Computationally private ran-
domizing polynomials and their applications. In CCC, pages 260-274, 2005.

[AJLA*12] Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. Multiparty computation with low communication, com-
putation and interaction via threshold FHE. In EUROCRYPT, pages 483-501, 2012.

[BCG*17] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, and Michele Orrti. Homomor-
phic secret sharing: Optimizations and applications. In ACM CCS, pages 2105-2122,
2017.

[Ben86] Josh Cohen Benaloh. Secret sharing homomorphisms: Keeping shares of A secret
sharing. In CRYPTO 1986, pages 251-260, 1986.

[BF90] Donald Beaver and Joan Feigenbaum. Hiding instances in multioracle queries. In
STACS, pages 37-48, 1990.

[BFNW93] Laszl6 Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subex-
ponential time simulations unless EXPTIME has publishable proofs. Computational
Complezity, 3:307-318, 1993.

34

[BGI15]

[BGI16a]

[BGI16b)]

[BGI17]

[BGIT18]

[BGKLO3]

[BGWSS)]

[BIKO12]

[BIW10]

[BK89)

[BL17]

[BP16]

[BRSV17]

[BV14]

[Can00]

[CC06]

E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing. In EUROCRYPT, pages
337-367, 2015.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Breaking the circuit size barrier for secure
computation under DDH. In CRYPTO, pages 509-539, 2016. Full version: IACR
Cryptology ePrint Archive 2016: 585 (2016).

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In ACM CCS 2016, pages 1292-1303, 2016.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Opti-
mizing rounds, communication, and computation. In EUROCRYPT, pages 163193,
2017.

Elette Boyle, Niv Gilboa, Yuval Ishai, Huijia Lin, and Stefano Tessaro. Foundations
of homomorphic secret sharing. In ITCS, 2018.

Lészl6 Babai, Anna G&l, Peter G. Kimmel, and Satyanarayana V. Lokam. Communi-
cation complexity of simultaneous messages. SIAM J. Comput., 33(1):137-166, 2003.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In STOC, pages 1-10, 1988.

Amos Beimel, Yuval Ishai, Eyal Kushilevitz, and Ilan Orlov. Share conversion and
private information retrieval. In CCC 2012, pages 258-268, 2012.

Omer Barkol, Yuval Ishai, and Enav Weinreb. On d-multiplicative secret sharing. J.
Cryptology, 23(4):580-593, 2010.

Manuel Blum and Sampath Kannan. Designing programs that check their work. In
STOC 1989, pages 86-97, 1989.

Fabrice Benhamouda and Huijia Lin. k-round MPC from k-round OT via garbled
interactive circuits. Manuscript, 2017.

Zvika Brakerski and Renen Perlman. Lattice-based fully dynamic multi-key FHE with
short ciphertexts. In CRYPTO, Part I, pages 190-213, 2016.

Marshall Ball, Alon Rosen, Manuel Sabin, and Prashant Nalini Vasudevan. Average-
case fine-grained hardness. In STOC 2017, pages 483-496, 2017.

Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. SIAM J. Comput., 43(2):831-871, 2014.

Ran Canetti. Security and composition of multiparty cryptographic protocols. Journal
of Cryptology, pages 143-202, 2000.

Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure
multi-party computations over small fields. In CRYPTO, pages 521-536, 2006.

35

[CCCX09)]

[CCDsS]

[CDMO0]

[CGOT]

[CGKSO8]

[CGP15]

[CKV10]

[CM15]

[CoulT]
[DG15]

[DH76]

[DHRW16]

[DKR15]

[Efr09]

[FGJS17]

[FY92]

Ignacio Cascudo Pueyo, Hao Chen, Ronald Cramer, and Chaoping Xing. Asymptoti-
cally good ideal linear secret sharing with strong multiplication over Any fixed finite
field. In CRYPTO, pages 466—486, 2009.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty unconditionally secure
protocols. In STOC, pages 11-19, 1988.

Ronald Cramer, Ivan Damgard, and Ueli M. Maurer. General secure multi-party
computation from any linear secret-sharing scheme. In FUROCRYPT, pages 316-334,
2000.

Benny Chor and Niv Gilboa. Computationally private information retrieval (extended
abstract). In STOC 1997, pages 304-313, 1997.

B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
J. ACM, 45(6):965-981, 1998.

Ran Canetti, Shafi Goldwasser, and Oxana Poburinnaya. Adaptively secure two-party
computation from indistinguishability obfuscation. In TCC, Part II, pages 557585,
2015.

Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO 2010, pages 483-501,
2010.

Michael Clear and Ciaran McGoldrick. Multi-identity and multi-key leveled FHE from
learning with errors. In CRYPTO, pages 630-656, 2015.

Geoffroy Couteau. Personal communication, 2017.

Z. Dvir and S. Gopi. 2-server PIR with sub-polynomial communication. In STOC,
pages 577-584, 2015.

Whitfield Diffie and Martin Hellman. New directions in cryptography. IFEE Trans-
actions on Information Theory, 22(6):644-654, 1976.

Yevgeniy Dodis, Shai Halevi, Ron D. Rothblum, and Daniel Wichs. Spooky encryption
and its applications. In CRYPTO, pages 93-122, 2016.

Dana Dachman-Soled, Jonathan Katz, and Vanishree Rao. Adaptively secure, univer-
sally composable, multiparty computation in constant rounds. In TCC, Part II, pages
586613, 2015.

Klim Efremenko. 3-query locally decodable codes of subexponential length. In STOC,
pages 39-44, 2009.

Nelly Fazio, Rosario Gennaro, Tahereh Jafarikhah, and William E. Skeith. Homomor-
phic secret sharing from paillier encryption. In ProvSec, pages 381-399, 2017.

Matthew K. Franklin and Moti Yung. Communication complexity of secure computa-
tion (extended abstract). In STOC, pages 699-710, 1992.

36

[Gen09]

[GGHO4]

[GGHR14]

[GI14]

[GKSTO6]

[GLS15]

[GMWS87]

[Gol04]

[GP15]

[GR17]

[GS17a]

[GS17b]

[GSW13]

1K02]

[JRS17]

[KdW04]

Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages
169-178, 2009.

Mikael Goldmann, Per Grape, and Johan Hastad. On average time hierarchies. Inf.
Process. Lett., 49(1):15-20, 1994.

Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure
MPC from indistinguishability obfuscation. In TCC, pages 74-94, 2014.

N. Gilboa and Y. Ishai. Distributed point functions and their applications. In Proc.
EUROCRYPT 14, pages 640—658, 2014.

Oded Goldreich, Howard J. Karloff, Leonard J. Schulman, and Luca Trevisan. Lower
bounds for linear locally decodable codes and private information retrieval. Compu-
tational Complexity, 15(3):263-296, 2006.

S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness
and guarantee of output delivery. In CRYPTO, Part II, pages 63-82, 2015.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
a completeness theorem for protocols with honest majority. In STOC, pages 218-229,
1987.

Oded Goldreich. Foundations of Cryptography — Basic Applications. Cambridge
University Press, 2004.

Sanjam Garg and Antigoni Polychroniadou. Two-round adaptively secure MPC from
indistinguishability obfuscation. In TCC, Part II, pages 614-637, 2015.

Oded Goldreich and Guy N. Rothblum. Worst-case to average-case reductions for
subclasses of p. Electronic Colloquium on Computational Complexity (ECCC), 17-
130, 2017.

Sanjam Garg and Akshayaram Srinivasan. Garbled protocols and two round MPC
from bilinear maps. In FOCS 2017, 2017.

Sanjam Garg and Akshayaram Srinivasan. Two-round secure multiparty computation
from minimal assumptions. Manuscript, 2017.

Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic encryption from learn-
ing with errors: Conceptually-simpler, asymptotically-faster, attribute-based. In
CRYPTO (1), pages 75-92, 2013.

Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via
perfect randomizing polynomials. In ICALP, pages 244-256, 2002.

Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai. Threshold fully homomorphic
encryption. TACR Cryptology ePrint Archive, 2017:257, 2017.

Tordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally
decodable codes via a quantum argument. J. Comput. Syst. Sci., 69(3):395-420, 2004.

37

[KN97]

[KNR99)

[KOY7]

[KS92]

[KT00]

[Lip89]

[LTV12]

[MW16]

[PS16]

[RAD78]

[Reg09]

[Sha79]
[STVO1]

[VDGHV10]

[Yao86]

[YekO07]

Eyal Kushilevitz and Noam Nisan. Communication complexity. Cambridge University
Press, 1997.

Ilan Kremer, Noam Nisan, and Dana Ron. On randomized one-round communication
complexity. Computational Complezity, 8(1):21-49, 1999.

E. Kushilevitz and R. Ostrovsky. Replication is NOT needed: SINGLE database,
computationally-private information retrieval. In Proc. FOCS 97, pages 364-373, 1997.

Bala Kalyanasundaram and Georg Schintger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discret. Math., 5(4), November 1992.

Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for
error-correcting codes. In STOC, pages 80-86, 2000.

Richard J. Lipton. New directions in testing. In DIMACS Workshop on Distributed
Computing And Cryptography, pages 191-202, 1989.

Adriana Lopez-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In STOC, pages
1219-1234, 2012.

Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation via multi-
key FHE. In EUROCRYPT, pages 735-763, 2016.

Chris Peikert and Sina Shiehian. Multi-key FHE from Iwe, revisited. In TCC, Part
11, pages 217-238, 2016.

Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On data banks and privacy
homomorphisms. In Foundations of secure computation, pages 169-179. 1978.

Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM (JACM), 56(6):34, 2009.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.

Madhu Sudan, Luca Trevisan, and Salil P. Vadhan. Pseudorandom generators without
the XOR lemma. J. Comput. Syst. Sci., 62(2):236-266, 2001.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan. Fully ho-
momorphic encryption over the integers. In Proc. EUROCRYPT 2010, pages 24-43,
2010.

Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In
FOCS, pages 162-167, 1986.

S. Yekhanin. Towards 3-query locally decodable codes of subexponential length. In
Proc. STOC, pages 266—274, 2007.

38

A Preliminaries

A.1 Learning With Errors Assumption

Below we identify Z, with the symmetric interval [—q/2, ¢/2) () Z and let [z], denote the reduction
of x modulo ¢ into this interval.

Definition A.1 (a-LWE [Reg09]). Let n = n(X), ¢ = ¢(\) € Z be functions of the security param-
eter A and x = {x(\)}, be a distribution ensemble over Z. The decision-LWE assumption with
parameters (n,q, x) states that for any polynomial m = m()\) € Z, the following two distribution
ensembles are computationally indistinguishable:

LWE[n,m,q,x] == {(A,b) : A ZI™ 5 LI, & + Y™, b= [FA + €|},

Uln,m,q] = {(A, b): A<+ Zy™™, b+ Zy'} (i-e., uniform over Zg”+1)xm).

For a = a(\) € (0,1), the a-DLWE assumption asserts the existence of parameters n, ¢, x as above
with polynomial n in A, such that e < x yields |e| < ag with overwhelming probability.

Note that the a-DLWE assumption becomes stronger as « gets smaller, but is commonly be-
lieved to hold for super-polynomially small a.

A.2 Spooky Encryption

“Spooky” encryption is a form of public-key encryption which admits certain types of limited
malleability across independent keys (so-called “spooky action at a distance”) [DHRW16]. This
is denoted via an additional “spooky-eval” algorithm which takes as input k ciphertexts under
independent keys and outputs k ciphertexts whose decryption under the respective keys satisfies a
given relation of the original plaintext values. We present a treatment of additive-function-sharing
spooky encryption as per [DHRW16], supporting relations of the form @le yi = C(x1,...,z) for
circuit C of choice.

Definition A.2 (AFS-Spooky Encryption). An AFS-spooky encryption scheme is a tuple of PPT
algorithms (Gen, Enc, Dec, SpookyEval) such that (Gen, Enc, Dec) is a semantically secure PKE scheme,
and SpookyEval has syntax:

e SpookyEval(C, (pk;,ci)¥_1) = (¢},...,c}): Given a description of a circuit C' : ({0,1}*)% —
{0,1}* with k = k()\) inputs and outputs, and k pairs of public keys and ciphertexts (pk;, c;),
the procedure SpookyEval outputs k ciphertexts ¢},. .., c}.

satisfying the following property:

e AFS-spooky correctness: There exists a negligible function v such that for every A € N,
every Boolean circuit C' computing an k-argument function f : ({0,1}*)¥ — {0,1}, and any
set of inputs x1,...,x for C, it holds that

Vi € [k], (pk;,sk;) « Gen(11), ¢; « Enc(pk;, z;), &
Pr| (c,...,c,) + SpookyEval(C, (pk;, c;)F_;), : @yz =C(zy...,x5)| > 1—v(N).
Vi € k], y; < Dec(sk;, c}) i=1

39

We consider also a leveled variant, in which key generation Gen receives an additional depth pa-
rameter d € N and spooky evaluation correctness holds only for circuits C' of depth < d.

Further, an AFS-spooky scheme in the common random string (CRS) model has an additional
algorithm CRSGen which takes the security parameter and outputs a random string crs of appro-
priate length. The algorithm Gen now also takes crs as input, and the AFS-spooky correctness and
standard decryption properties hold over the choice of crs <— CRSGen(1%).

Theorem A.3 ([DHRWI16]). Assuming the hardness of a-DLWE for any a(\) € X~ there
exists a leveled AFS-spooky encryption scheme in the CRS model. Further making a circular-
security assumption, there exists a (non-leveled) AFS-spooky encryption scheme in the CRS model.

A.3 Secure Multiparty Computation

We refer the reader to [Can00, Gol04] for standard definitions of MPC protocols. In a standard
MPC protocol there are n parties who interact with each other in order to compute a function of
their inputs. We say that such a protocol is (semi-honest) secure if it is computationally secure
against a static, passive adversary who may corrupt any strict subset of the parties.

In this work, we consider the stronger notion of client-server MPC protocols, which is a special
form of the standard MPC protocols where parties act in different roles, namely clients, servers,
and output client, and communicate according to a special pattern.

Client-server MPC protocols. A client-server MPC protocol with n clients and m servers for
computing F': ({0,1}*)" — {0, 1} is a standard (n+m+ 1)-party MPC protocol with the following
special form:

e n parties act as n clients Cy,--- , Cy, who each has an input z;.
e m parties act as m servers Si,---, Sy, who do not have inputs (or equivalently, each has
input L).

e One party acts as an output client O, who also does not have input.

e Clients, servers, and the output client interact with each other via secure point-to-point
channels in order to compute F(z1,- - - ,), observing the following canonical communication
pattern:

— In the first round each client sends a message, also called an input share, to each server.

— Then there may be r > 0 rounds of interaction in which each server can send a message
to each other server.

— Finally, in the last, output reconstruction round, each server sends a message, also
called an output share, to the output client, who computes an output by applying a local
decoding function to the £ messages it received.

In this work, we construct 2-round client-server MPC protocols Il for general functions F :
({0,1}*)™ — {0,1}; in such protocols, the servers do not interact with each other (i.e., r = 0),
and the protocol involves only each client sending one input share to each server, followed by each
server sending one output share to the output client.

Security. We say that a client-server MPC protocol II is a t-secure protocol for computing F', if
it is secure against a static, passive (semi-honest) adversary who may corrupt any set of parties

40

that includes at most ¢ servers and an arbitrary number of clients. Security is defined identically as
security of standard MPC. More specifically, there exists a simulator Sim, such that, for every set of
corrupted parties Z C {C4,- -+ ,Cy, S1, -+, Sm, O} that include at most ¢ servers, Sim can simulate
the view of the corrupted parties using only the inputs of the corrupted clients, and the output if
the output client is corrupted. Formally, let Realy(Z, {(z4)}ac[n)) denote the view of the corrupted
parties Z in an execution of I with client inputs {z4}. The simulator Sim must satisfy that for
every sequence of corrupt sets {Z} ey and every sequence of tuples of inputs {{%q}ac[n}ren of
length polynomial in A, the following two ensembles are indistinguishable.

F(zy,---z,) O€T

{Realp(Z, {xd}de[n])}A ~ASIM(Z, {zatd wr. cacs ¥)hy v= {J_ O¢1

We use the notation (n,m,t)-MPC protocol for computing F to denote a n-client, m-server, t-
secure MPC protocol for computing F. By default, we assume (m — 1)-security and denote such
protocols as (n, m)-MPC protcols.

Finally, we note that any secure m-client m-server protocol for F implies a standard m-party
MPC for F' by letting each party ¢ simulate both client ¢ and server ¢, and also act as the output
client. Furthermore, it is without loss of generality to consider only Boolean, single-output, function
F:({0,1}*)™ — {0, 1}, since in the semi-honest security setting, to compute a more general non-
Boolean, mult-output, function F’ : ({0,1}*)™ — ({0,1}*)™ for standard MPC protocols, the
parties can execute in parallel different protocols for computing each bit in every output, where for
every bit in the k’th output, only party k acts as the output client.

MPC with PKI setup. We consider both standard and client-server MPC protocols, with
a public key infrastructure (PKI) setup. A PKI setup allows a one-time global choice of pa-
rameters params < ParamGen(1%), followed by independent choices of a key pair (sk;, pk;)
KeyGen (1%, params) by each party P;.> We assume that each party knows the public keys of all
parties with whom it wants to interact as well as its own secret key. Note that the public keys are
generated independently of any inputs or even the number of other parties in the system. For this
reason we do not count the PKI setup towards the round complexity of MPC protocols.

B Multi-Input HSS from LWE

We observe that general multi-input HSS for arbitrary polynomial-size circuits can be obtained
from the Learning With Errors (LWE) assumption, by a simple variation of the 2-round MPC
construction from spooky encryption of [DHRW16].

Recall an additive-function-sharing (AFS) spooky encryption scheme (Definition A.2) provides
a procedure for k ciphertexts ¢; of inputs x; under k independent keys sk; to be publicly transformed
into k new ciphertexts ¢}, so that the resulting decrypted plaintext values (under the respective
keys sk;) form additive secret shares y; of C(x1,...,z;). Dodis et al. [DHRW16] showed that
AFS-spooky encryption for all polynomial-size circuits exists based on LWE.

Note that Dodis et al. [DHRW16] also observed that AFS-spooky encryption implies function
secret sharing (FSS) for general circuits. As discussed in Section 3, F'SS can be viewed as the special
case of (1,m)-HSS (i.e., single-input HSS) for the universal function F'(z; P) = P(x). Taken as a

SWe will only use params to specify a group for ElGamal encryption; hence, we can let params be a common
random string, or even pick params deterministically under a suitable variant of DDH.

41

black box, FSS is weaker than general (%, m)-HSS in two ways: (1) it does not address the setting
of multiple inputs (recall (x,m) means arbitrarily many inputs); and (2) comparing within the
single-input setting, HSS requires the share size of an input x to grow only as a function of the size
of z, whereas the (1, m)-HSS resulting from an FSS scheme may have respective share size that
grows with both x and the program P.

More directly relevant to us is the use of AFS-spooky encryption in [DHRW16] within the
context of obtaining 2-round MPC. Essentially we observe that combining an additional layer on
top of this construction enables HSS correctness and secrecy for multiple inputs.

Explicitly, consider the following (additive) (*,m)-HSS construction from a generic AFS-spooky
encryption scheme (Gen, Enc, Dec, SpookyEval).

Sharenss(1*, 4, z;): Client 4 performs the following to share input z; € {0, 1}*.

. Sample m independent spooky encryption key pairs, (pk;;, skij) < Gen(1%), for j € [m).
. Additively secret share x; into m shares over {0, 1}%: i.e., (21, ..., Zim) <+ AdditiveShare(z;, m).

inj) V] S [m]

1
2
3. Encrypt each share x;; under the jth encryption key: i.e., ¢;; < Enc(pkij,
4

. For each j € [m], set the jth HSS share of z; to be: shareg = ((pkij/)gr}:l, (cij) i1, skij>.
Evalpss (7, o, (share{, ...,sharel)): Server j € [m] performs the following.

1. For each i € [n], parse shareg = ((pkij/)g.’?zl, (c,»j/);.?zl,skij)

2. Perform spooky evaluation on all nm ciphertexts (cij)icin],j7cm), for the function

F/((xij/)ie[n],j’e[m]) = F(@ ;Ulj/, ceey @ xnj/> .

j'em j'€[m]

That iS, let (C;'j/)ie[n},j’e[m] < SpookyEvaI(F, (pkij/, Cij’)ie[nLj’e[m])'
3. For each ¢ € [n], decrypt the corresponding ciphertext ¢;; using key sk;;: i.e., yf =
Dec(skj, cij)-

4. Output ¢/ = D, yf as the HSS-evaluated share.

Decuss(y!, . ..,y™): Output D, .

Theorem B.1. Assuming the existence of AFS-spooky encryption for circuits, there exists (x,m)-
HSS for circuits.

Proof. Statistical correctness and security of the above construction follow directly by correctness
of the spooky evaluation and semantic security of the AFS-spooky encryption scheme (in addition
to privacy of the additive secret sharing scheme). In particular, note that each server has ability
to decrypt only one additive share of each client’s input. O

Plugging in the AFS-spooky encryption construction of [DHRW16], this yields (x,m)-HSS from
LWE in the CRS model. From standard LWE, we obtain a form of depth-dependent (*, m)-HSS,

42

where the share size of an input x grows also with the depth of the circuits that can be homomor-
phically evaluated.® Further making a circular security assumption (see [Gen09, DHRW16]), we
obtain an analogous result for standard HSS.

Corollary B.2 (Multi-input HSS with CRS setup from LWE). Assuming the hardness of a-DLWE
for any a(X) € X\=“W) | then for every polynomial m(\), there exists depth-dependent (x,m)-HSS
for circuits with a CRS setup. Further making a circular security assumption [Gen09, DHRW16],
there exists standard (non-leveled) (x,m)-HSS for circuits with a CRS setup.

In the special case of single-client HSS, the need for CRS setup can be removed by having the
client sample the CRS on his own:

Corollary B.3 (Single-input HSS from LWE). Assuming the hardness of a-DLWE for any a(\) €
AW then there exists depth-dependent (1,m)-HSS for circuits. Further making a circular security
assumption [Gen09, DHRW16], there exists standard (non-leveled) (1,m)-HSS for circuits.

5This can be formalized by replacing the function F(C;x1,...,2,) of the HSS evaluation (as in Section 2.2) with
the function F'(C; (1%, 21),..., (1% x,)), which outputs L if the depth of C is greater than d; for any i € [n].

43

