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Abstract. We present a signature scheme with the tightest security-
reduction among known constant-size signature schemes secure under
the computational Diffie-Hellman (CDH) assumption. It is important
to reduce the security-reduction loss of a cryptosystem, which enables
choosing of a smaller security parameter without compromising security;
hence, enabling constant-size signatures for cryptosystems and faster
computation. The tightest security reduction far from the CDH assump-
tion is O(q), presented by Hofheinz et al., where q is the number of sign-
ing queries. They also proved that the security loss of O(q) is optimal
if signature schemes are “re-randomizable”. In this paper, we revisit the
non-re-randomizable signature scheme proposed by Böhl et al. Their sig-
nature scheme is the first that is fully secure under the CDH assumption
and has a compact public key. However, they constructed the scheme
with polynomial-order security-reduction loss. We first constructed a
new existentially unforgeable againt extended random-message attack
(EUF-XRMA) secure scheme based on Böhl et al.’s scheme, which has
a tighter security reduction of O(q/d) to the CDH assumption, where d is
the number of group elements in a verification key. We then transformed
the EUF-XRMA secure signature scheme into an existentially unforge-
able against adaptively chosen-message attack (EUF-CMA) secure one
using Abe et al.’s technique. In this construction, no pseudorandom func-
tion, which results in increase of reduction loss, is used, and the above
reduction loss can be achieved. Moreover, a tag can be generated more
efficiently than Böhl et al.’s signature scheme, which results in smaller
computation. Consequently, our EUF-CMA secure scheme has a tighter
security reduction to the CDH assumption than any previous schemes. 1

keywords Digital signatures, the CDH assumption, Trapdoor commit-
ment, a Tight security reduction

1 This is a revised version of the LNCS version of [23], where there are many technical
bugs. We have fixed the bugs in this version



1 Introduction

1.1 Background

Digital signatures are the most elemental cryptographic primitives that guar-
antee authenticity of electronic documents and are analogous to pen-and-ink
signatures on physical documents. In digital signatures, each signer has a pair
of secret (signing) and public (verification) keys. A signer signs documents by
using one secret key, and authenticity of a signature is publicly verifiable with
the public key. Digital signatures are widely used in the real world. For example,
it is used in transport layer security and e-commerce and so on.

The performance of cryptographic primitives is evaluated by reduction loss
to a certain difficult problem. The (security) reduction is a particular way of
using a mathematical proof to ensure that a cryptographic primitive is secure. It
shows that breaking the primitive is at least as difficult as breaking the difficult
problem. Reduction loss is the gap in difficulty between breaking the primitive
and breaking the difficult problem. When there is approximately no security-
reduction loss, it is called tight security. Strictly speaking, if a t-time adversary
attacks the scheme with success probability ε, then a t′-time algorithm can be
constructed to break some difficult problem with success probability ε′ = ε/θ
and t′ = k · t + O(t). A cryptographic scheme is tightly secure if θ is a small
constant. The constant θ measures the security loss of the security reduction of
our primitives from the underlying assumption. In particular θ does not depend
on other parameters under the adversary control (e.g. the number of queries, the
scheme’s security parameter and adversary’s own success probability).

When the parameter θ is a small constant only depends on a small poly-
nomial of the security parameter, the cryptographic scheme is called almost
tightly secure. It is important to reduce the security-reduction loss of a cryp-
tosystem, which enables the choosing of as small a security parameter without
compromising security as possible; hence, enabling small security parameters
for cryptosytems, i.e., signatures and verification keys, and fast computations of
signature generation and verification, etc.

1.2 Related Works

There are many provable digital signature schemes [2, 10, 27, 22, 4, 19, 6, 14, 8].
The security of signature schemes first can only be proven in the random oracle
model. Signature schemes in the random oracle model have heuristic security
arguments based on the random oracle [16]. Then digital signatures in the stan-
dard model are developed. With these schemes, there are two major problems
used for security proof, decisional problem, i.e. the decisional Diffie-Hellman
(DDH) problem, and search problem, i.e., the Computational Diffie-Hellman
(CDH) problem. Generically, search problems are harder than decisional prob-
lems, namely, breaking the CDH problem is harder than breaking the DDH
problem.
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Constant-Size Signature If a signature consists of a (small) constant number
of group elements, the size of the signature is called constant-size. We discuss
constant-size signature schemes in the standard model from now. The digital
signatures with a security reduction to decisional problems has been extensively
studied last years and its reduction loss to the DDH problem is achieved O(l),
where l is the bit length of a message [12, 18]. There are a few digital signatures
secure under the hardness of search problems. Waters proposed a scheme [27]
that is efficient and provably secure under the CDH assumption in the standard
model. Some digital signatures under the CDH assumption based on Waters’ sig-
nature scheme have been developed [22, 20, 6, 26, 7]. However, their reduction loss
to the CDH problem are not so tight. The loss of security reductions on Waters’
signature scheme is O(8(l+ 1)q), where q is the number of adversarial signature
queries. The technique called programmable hash functions (PHFs) [21] improves
the tightness of the security reduction to O(

√
lq). To the best of our knowledge,

the tightest security reduction to the CDH problem from a constant-size sig-
nature scheme is O(q), presented by Hofheinz et al [20]. They proposed a re-
randomizable signature scheme by applying an error-correcting code to Waters’
signature scheme. They also proved that the reduction loss of O(q) is optimal if
signature schemes are re-randomizable.

In spite of many of these previous studies, constant-size signatures with a
tight reduction to the CDH problem in the standard model remain unknown. If
it is not limited to these condition, there are some signature schemes with a tight
reduction. Unless a signature is constant-size, there exists a signature scheme
with a tight reduction from the CDH assumption was proposed by [8]. Unless
a signature scheme is based on the CDH assumption, there exists a constant-
size signature scheme with a tight reduction [11]. Unless a signature scheme is
in the standard model, there exists a constant signature scheme with a tight
reduction [24].

However these either have not constant-size signatures (e.g. O(κ) times the
number of group elements in the CDH assumption) [25] or are based on strong
assumption (e.g. strong RSA, strong DH) [11], where κ is the security parameter.
Although there exist signature schemes with a tight reduction to search problem,
they either are based on the random oracle model or have a non-constant size sig-
nature. Tree-based signature schemes achieve a tight reduction to search problem
but their signature size is not constant. This is an open problem that obtaining
a tightly secure and short (i.e. constant-size) signature scheme under the search
assumptions (e.g., CDH). In this paper, we focus on the security reduction of
constant-size signature scheme can be obtained from the CDH assumption.

1.3 Our Contribution

We present a signature scheme with a tighter security reduction than known
constant-size (in the sense that the signature contains constant number of group
elements or vectors) signature schemes under the CDH assumption. In this paper,
we revisit the non-re-randomizable signature scheme proposed by Böhl et al. [7].
Their scheme has compact public keys at the price of a loose security-reduction
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Scheme Origin VK Size Sig. Size Reduction Loss

Waters new O(κ)τG 2τG O(κq)
HK Waters O(κ)τG 2τG O(

√
κq)

HJK Waters O(κ)τG 2τG O(q)

BHJKS new O(logc κ)τG 2τG + τFp O
(

2
2+ c

d q
c
d
+c

ε
c
d

)
Seo BHJKS ω(1)τG 2τG + τFp O(κq)
Ours BHJKS O(κ)τG 2τG + τFp O(κ

q
)

Table 1. Constant-size signature scheme under the CDH assumption in the
standard model: κ is the security parameter, τG is the size of group element, τFp is
the size of the exponent, q is the maximum bound of the signing queries, c and d are
constants, ε is the success probability of the adversary.

loss. We address that there is a trade-off between public key size and a security-
reduction loss in their scheme. Moreover, without a pseudo-random generator
and adopting a generic transformation from the scheme with extended random-
message-attack security to that with chosen-message-attack security [1], we can
obtain a signature scheme with the reduction loss of O(q/d), where d is the
number of group elements in a verification key.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, . . . , n}. We let negl(κ) denote an unspecified
function f(κ) such that f(κ) = κ−ω(1), saying that such a function is negligible
in κ. For a probabilistic polynomial-time (PPT) algorithm A, we write y ← A(x)
to denote the experiment of running A for a given x, selecting an inner coin r
uniformly from an appropriate domain, and assigning the result of this experi-
ment to the variable y, i.e., y = A(x; r). Let X = {Xκ}κ∈N and Y = {Yκ}κ∈N
be probability ensembles such that each Xκ and Yκ are random variables rang-
ing over {0, 1}κ. The statistical distance between Xκ and Yκ is Dist(Xκ, Yκ) ≜
1
2 · |Prs∈{0,1}κ [X = s] − Prs∈{0,1}κ [Y = s]|. We say that two probability en-

sembles, X and Y , are statistically indistinguishable in κ, denoted as X
s
≈ Y ,

if Dist(Xκ, Yκ) = negl(κ). Let A and B be PPT algorithms that both take as

input x ∈ {0, 1}∗. We write {A(x)}κ∈N, x∈{0,1}κ

s
≈ {B(x)}κ∈N, x∈{0,1}κ to denote

{A(xκ)}κ∈N
s
≈ {B(xκ)}κ∈N for every sequence {xκ}κ∈N such that |xκ| = κ.

2.1 Digital Signatures

We use the standard definition of digital signature schemes. A digital signature
scheme is given by a triple, SIG = (KGen,Sign,Vrfy), of PPT Turing machines,
where for every (sufficiently large) κ ∈ N, KGen, the key-generation algorithm,
takes as input security parameter 1κ and outputs a pair of verification and
signing keys, (vk, sk). The signing algorithm Sign, takes as input (vk, sk) and
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m and produces σ. The verification algorithm Vrfy, takes as input vk, m, and
σ, and outputs a verification result bit. For completeness, it is required that for
any (vk, sk) pair generated with KGen(1κ) and for any m ∈ {0, 1}∗, it holds
Vrfy(vk,m, Sign(sk,m)) = 1.

tag-based signatures A tag-based signature scheme SIGt = (KGent,Signt,
Vrfyt) with message space Mλ and tag space Tλ consists of three PPT al-
gorithms. Key-generation (vk, sk) ← KGent(1

λ) takes as input a security pa-
rameter 1λ and outputs a pair of verification and signing keys (vk, sk). The
signing algorithm σ ← Signt(sk,m, t) computes σ on input sk, m, and tag
t. The verification algorithm Vrfyt(vk,m, σ, t) ∈ {0, 1} takes vk, m, σ, and t,
and outputs a verification result bit. For correctness, we require that for any
λ ∈ N, all (vk, sk) ← KGent(1

λ), m ∈ Mλ, t ∈ Tλ, and σ ← Signt(sk,m, t),
Vrfyt(vk,m, σ, t) = 1.

Re-Randomizable Signatures Intuitively, re-randomizable signatures [20]
have a property that, given vk, m, and valid σ, one can efficiently generate
a new σ′ that is distributed uniformly over the set of all possible signatures for
m under vk.

Formally, let SIG = (KGen,Sign,Vrfy) be a signature scheme. Let us denote
the set of σ for m that can be verified correctly under vk by

Σ(vk,m) = {σ |Vrfy(vk,m, σ) = 1}.

We say that SIG is re-randomizable if there is a PPT algorithm Rerand such that
for all (vk,m, σ) with Vrfy(vk,m, σ) = 1, the output distribution of Rerand(vk,
m, σ) is identical to uniform distribution over Σ(vk,m).

2.2 Trapdoor Commitments

We now define a trapdoor commitment scheme [13]. Let TCOM = (Gentc,Comtc,
TComtc,TColtc) be a tuple of the following four algorithms. The Gentc algorithm
is a PPT algorithm that takes as input security parameter κ and outputs a pair
of public and trapdoor keys (pk, tk). The Comtc algorithm is a PPT algorithm
that takes as input pk and m, selects a random r ← COINcom, where COINcom

represents the internal random number 0 or 1, and outputs a ψ = Comtc
pk(m; r).

The TComtc algorithm is a PPT algorithm that takes as input tk and outputs
(ψ, χ) ← TComtc

tk(1κ). The TColtc algorithm is a deterministic polynomial-time
algorithm that takes as input (tk, ψ, χ, m̂) and outputs r̂ ∈ {0, 1} such that
ψ = Comtc

pk(m̂; r̂).
We call TCOM a trapdoor commitment scheme if the following two conditions

hold.

Condition 1 Trapdoor Collision. For the pk generated with Gentc(1κ), and
all m ∈ {0, 1}λm(κ), the following ensembles are statistically indistinguishable in

5



κ: {
(ψ,m, r) | r ← COINcom;ψ = Comtc

pk(m; r)
}

s
≈
{

(ψ,m, r) | (ψ, χ)← TComtc
tk(1κ); r = TColtctk(ψ, χ,m)

}
.

Condition 2 Computational Binding. For any PPT adversary A,

εcomp-bind = Pr

[
pk ← Gentc(1κ); (m1,m2, r1, r2)← A(pk) :
Comtc

pk(m1; r1) = Comtc
pk(m2; r2) ∧ (m1 ̸= m2)

]
= negl(κ).

2.3 Security class of digital signatures

EUF-CMA A digital signature scheme SIG is said to be existentially unforge-
able against adaptively chosen-message attack (EUF-CMA) [17], if for any A,
AdvEUF-CMA

SIG,A (κ) := Pr[ExptEUF-CMA
SIG,A (κ) = 1] = negl(κ), where ExptEUF-CMA

SIG,A (κ) is
defined in Fig. 1.

EUF-XRMA A SIG is said to be existentially unforgeable against extended
random-message attack (EUF-XRMA) [1] with respects to the message gen-
erator MsgGen, a PPT algorithm that takes as input a message-generation key
gk and outputs m, if for any A and any positive integer n bounded by a poly-
nomial in κ, AdvEUF-XRMA

SIG,A (κ) := Pr[ExptEUF-XRMA
SIG,A (κ) = 1] = negl(κ), where

ExptEUF-XRMA
SIG,A (κ) is defined in Fig. 2, and Qm = {m1, . . . ,mn}.

2.4 Bilinear Groups

Let G be a PPT algorithm that, on input of a security parameter 1κ, outputs a
description of bilinear groups (G,GT , e, q, g) [9] such that G and GT are cyclic
groups of prime order q, g is a generator of G, and a map e : G × G → GT

satisfies the following properties:

– (Bilinear:) for any g, h ∈ G and any a, b ∈ Zq, e(ga, hb) = e(g, h)ab,
– (Non-degenerate:) e(g, g) has order q in GT , and
– (Efficiently computable:) e(·, ·) is efficiently computable.

ExptEUF-CMA
SIG,A (κ):

(vk, sk)← KGen(1κ); (m∗, σ∗)← ASignsk(·)(vk)
If m∗ ∈ Qm, then return 0
Return Vrfy(vk,m∗, σ∗).

Fig. 1. Experiment with EUF-CMA. Signsk(·) is a signing oracle with respect to sk
that takes m and returns σ ← Signsk(m) and records m to Qm, which is initially an
empty list.
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ExptEUF-XRMA
SIG,A (κ):

(vk, sk)← KGen(1κ); gk ← Setup(1κ)
For ∀i ∈ [n],

(mi, wi)← MsgGen(gk); σi ← Signsk(mi)
(m∗, σ∗)← A(vk, {mi, σi, wi}ni=1)
If m∗ ∈ Qm, then return 0
Return Vrfy(vk,m∗, σ∗).

Fig. 2. Experiment with EUF-XRMA. The Setup algorithm is a PPT algorithm that
takes as input a security parameter 1κ and outputs gk.

2.5 Computational Diffie-Hellman Assumption

Let g be a group generator of G. We say that the CDH assumption [26] holds if
for any PPT algorithm A the following advantage

AdvCDH
A (κ) := Pr

[
A(q,G, g, gα, gβ)→ gαβ |α, β $←− Zq, g

$←− G
]

= εCDH

is negligible function in the security parameter κ.

2.6 Pseudorandom Functions

For any set S a pseudorandom function (PRF) [5] with a range S is an efficiently
computable function PRFS : {0, 1}κ × {0, 1}∗ → S. We may write PRFS

κ (x) for
PRFS(κ, x) with a key κ ∈ {0, 1}∗. Additionally we require that

Advprf
PRFS ,A(κ) :=

∣∣∣Pr
[
APRF

κ (·) = 1 for κ← {0, 1}∗]− Pr[AU
S (·) = 1

]∣∣∣ = εPRF

is negligible in κ where U is a truly uniform function to S. We often write PRF,
which is omitted from S.

2.7 Scheme of Böhl et al.

We now revisit the signature scheme [7] proposed by Böhl et al. They present
a new paradigm for the construction of efficient signature schemes secure un-
der standard computational assumptions. First, they define a mild security for
signature schemes that is much easier to achieve than full security. We con-
sider EUF-CMA security as full security. They present efficient mildly secure
schemes under the CDH assumption in pairing-friendly groups. Concretely, they
construct an EUF-dnaCMA secure signature scheme by using a SIGt, which
is EUF-dnaCMA∗

d secure, and a PRF, which is a PRF. Moreover, they ap-
plied trapdoor commitment and modified the EUF-dnaCMA secure signature
scheme and achieved an EUF-CMA secure signature scheme under the CDH as-
sumption. Therefore, they constructed a full secure signature scheme generically
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from a mildly secure signature one. They constructed the signature scheme that
is secure against non-adaptive attack by using PRFs. Pseudorandom functions
affect security-reduction loss. In their security proof, they use the confined guess-
ing technique. They choose an appropriately sized tag set, where their signature
simulation is done.

Theorem 1. If PRF is a PRF and a SIGt is EUF-dnaCMA∗
d secure, then

there is an EUF-dnaCMA∗
d secure SIG. Concretely, let A be a PPT adver-

sary against a SIG with at most q signature queries and having advantage
ε := AdvEUF-dnaCMA

SIGt,A (κ). Then there exists an EUF-dnaCMA∗
d adversary A′

against the SIGt that makes q′(κ) ≤ 2 · { 2·q
d+1

ε(κ) }
c/d + l · q signature queries and

has advantage ε′ := Adv
EUF-dnaCMA∗

d

SIGt,A′ (κ) and PRF distinguisher with advantage
εPRF such that

ε′ ≥ ε/2− εPRF − p′(κ)

|Mk|
for infinitely large κ, where p′(κ) is a suitable polynomial and Mk denotes the
message space.

Lemma 1. Let T be a tag set with |T | = n. Let t1, . . . , tq be q independent
random variables taken uniformly random from T . Then, the probability that
there exist d+ 1 pairwise distinct indices i1, . . . , id+1 such that ti1 = · · · = tid+1

is upper bounded by qd+1

nd .

Theorem 2. The SIGt is EUF-dnaCMA∗
d secure if the CDH assumption holds

in G. Let A be a PPT adversary on SIGt with advantage ε := Adv
EUF-dnaCMA∗

d

SIG,A (κ)
with at most q random messages along with signatures. Then, it can be used to
solve the CDH problem with probability of at least ε/q′, where q′ denotes the
number of distinct tags queried by A.
Theorem 3. If the CDH assumption holds in G, then the signature scheme with
trapdoor commitments SIGB

t is EUF-CMA secure. Let A be a PPT adversary on

SIGB
t with advantage ε := Adv

EUF-dnaCMA∗
d

SIG,A (κ) querying for q random messages
along with signatures. Then, it can be used to solve the CDH problem with proba-

bility of at least 22+
c
d ·qc+

c
d

εcd+1−2εcd(εPRF+εcomp-bind)
, where εPRF and εcomp-bind correspond

to the advantages for breaking the PRF and computational binding, respectively,
and c > 1 denotes a granularity parameter in which the size of tag spaces is

defined by T i = 2⌈c
i⌉.

There are some changes of notation between our signature scheme and Böhl
et al.’s signature scheme. We omit these proofs. Please visit [7] for details of
these proofs.

3 Proposal: Modified Mildly Secure Signature Scheme

We modify Böhl et al.’s signature scheme and reduced it to the CDH assumption
more efficiently. We first construct an EUF-XRMA secure signature scheme
under the CDH assumption based on Böhl et al.’s signature scheme [7].
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– Böhl et al. transformed EUF-dnaCMA∗
d secure signature schemes to EUF

-CMA secure ones. We first construct a EUF-XRMA secure signature
scheme based on theirs. We transform it to an EUF-CMA secure signa-
ture scheme with trapdoor commitments using Abe et al.’s technique[1]. In
this way, we construct a new non-re-randomizable signature scheme since
re-randomizable signature scheme has a property that bounds of security-
reduction loss to the CDH problem is O(q).

– We construct this signature scheme without a PRF. In an experiment with
EUF-XRMA security, messages are generated by a message generatorMsgGen
instead of the PRF. The PRF affects security-reduction loss, but the MsgGen
does not. Consequently, the security-reduction loss of our scheme improves
when PRF disappears.

– In Böhl et al.’s signature scheme, the tag space is divided into |Tj | = 2⌈c
j⌉.

While in our construction, we make the tag space stepwise |Tj | = 2j and set
a tag by using modulo operation t(j) = m mod 2j , where m is generated by
the MsgGen. We can choose the size of the tag set Tj adequately and prepare
Tj to be as small as possible so that any q signatures can be produced from
q messages.

– We evaluate the condition under which an identical tag t is generated from
distinct messages ms in the signature simulation more strictly. In Böhl et al.’s
lemma 1, the probability of condition Pr[(d+ 1)-fold] is negligible. Since we
change the parameter size of tag sets and the number of tag collisions d, we
evaluate the lemma again with the parameter d, which results in exponen-
tially small Pr[(d+ 1)-fold].

3.1 Construction

SIG0 is an EUF-XRMA secure signature scheme under the CDH assumption and
described in Fig.3. Tag sets are generated along with the following tag-making
rule. Each Tj is set as {0, 1}j (1 ≤ j ≤ l), and each tag in Tj is determined

as t
(j)
i = mi mod 2j for 1 ≤ i ≤ q by using an mi. This scheme does not

require a PRF, unlike that by Böhl et al. [7]. In the EUF-XRMA experiment,
messages {mi}ni=1 are generated by MsgGen uniformly. Thus, tag t(j) is also
distributed uniformly. We assume that G and GT are groups of prime orders
and e : G × G → GT is an efficiently computable non-degenerate bilinear map.
We let l = ω(log κ) and d = O(κ) for public parameters.

3.2 Security Analysis

We first show the following lemma used in the security proof of SIG0 then prove
that SIG0 is secure under the CDH assumption.

Lemma 2. Let T be a set with |T | = n. Let t1, . . . , tq be q independent random
variables, taken uniformly random from T . Then, let q = O(poly(κ)), d = O(κ).
For n > e·q

d+1 ,
Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1

]

is exponentially small in κ, where e is the base of the natural logarithm.
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KGen(1κ) Sign(sk,m) Vrfy(vk,m, σ)
set G s.t. |G| = p r ← Z/pZ For j := 1 to ℓ do

T (j) = {0, 1}j u(m) =
∑d
i=0 u

mi

i t(j) = m mod 2j .

α← Zp T (j) = {0, 1}j If e(σ0, g)

(g, h, {ui}di=0, {zj}lj=1)← G t(j) = m mod 2j ̸= e(u(m), gα)e(z(m)h, σ1)

sk = α z(m) =
∏l
j=1 z

t(j)

j return 0

vk = (g, gα, h, {ui}di=0, {zj}lj=1) σ0 = u(m)α(z(m)h)r else
return (vk, sk) σ1 = gr return 1

return σ = (σ0, σ1)

Fig. 3. SIG0: EUF-XRMA-secure signature scheme under the CDH assumption

Proof.

Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1
]

= qCd+1

(
1

n

)d

=
q!

(q − (d+ 1))!(d+ 1)!

(
1

n

)d

=
q · (q − 1) · · · (q − d)

(d+ 1)!

(
1

n

)d

≤ qd+1

(d+ 1)!

(
1

n

)d

· · · (∗)

≤ qd+1√
2π(d+ 1)

(
e

d+ 1

)d+1(
1

n

)d

· · · (∗∗)

=
e · q√

2π(d+ 1)(d+ 1)

(
e · q

n(d+ 1)

)d

where Inequation ∗∗ holds by Stirling’s approximation

√
2πx

(x
e

)x
≤ x! ≤ e

√
x
(x
e

)x
.

Now, we set n > eq
d+1 then e·q

n(d+1) < 1 and e·q√
2π(d+1)(d+1)

is polynomial in κ.

Hence, Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1
] is exponentially small in

κ. ⊓⊔
Böhl et al. assumed that d is constant and showed that the probability

Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1
] is bounded by qd+1

nd . However, d is
not necessarily constant. When assuming d = O(κ), (d + 1)! in Inequation ∗,
which is also in the proof of lemma 1, cannot be ignored. Lemma 2 shows that

the (d+ 1)-fold probability is exponentially small when q tags {t(j)i }
q
i=1 are cho-

sen from Tj . This is a key lemma since this probability affects reduction loss.
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This modification makes the vk size increased but our security reduction tighter
than that of Böhl et al.’s scheme.

Theorem 4. If the CDH assumption holds in G, then SIG0 is EUF-XRMA se-
cure. Concretely, let A be a PPT adversary against SIG0 with advantage εEUF-XRMA

:=AdvEUF-XRMA
SIG,A (κ) and let A have at most q random messages and their cor-

responding signatures. Then, another adversary B, which can solve the CDH
problem with probability of at least O(d

q ), can be constructed using A.

Proof. Suppose that there exists an A that has at most q random messages and
corresponding signatures, and outputs a valid forged signature with probability
εEUF-XRMA. We show that we can construct another adversary B that uses A as
an internal sub-algorithm to solve the CDH problem.

Let εEUF-XRMA be B’s advantage in the EUF-XRMA experiment.

Setup Adversary B receives a CDH challenge (g, gα, gβ) ∈ G3 as an instance
of the CDH problem. It then generates q random messages mi ← MsgGen(gk) ;
gk ← Setup(1κ) for 1 ≤ i ≤ q, defines tag sets T (j) = {0, 1}j , and generates tags

t
(j)
i ∈ T (j) from message mi,

t
(j)
i = mi mod 2j for 1 ≤ i ≤ q, 1 ≤ j ≤ l.

Note that t
(j)
i is not ti to the j-th power, and l = ω(log2 κ). B chooses the

challenge instance j∗ such that the probability of a (d+ 1)- tag collision Pr[(d+
1)-fold] is exponentially small, i.e.,

Pr[{∃i1, . . . , id+1} ⊆ [q] : t
(j∗)
i1

= · · · = t
(j∗)
id+1
| ∀i ∈ [q] : t

(j∗)
i ← T (j∗)]

is exponentially small such that |T (j∗)| is polynomial in κ. Thus, j∗ := ⌊log( e·q
d+1 )⌋

+ 1 for |T (j∗)| = ⌊(e · q/(d+ 1)⌋+ 1 is an index that fulfills these conditions (see
lemma 2).

Adversary B chooses t̃ ∈ T (j∗) randomly and mi1 , . . . ,mid such that t
(j∗)
i1

=

· · · = t
(j∗)
id

= t̃. It can choose at most d messages mi1 , . . . ,mid which have the

same tag t̃ with probability 1, except exponentially small probability according
to Lemma 2. It then constructs a polynomial:

f(X) =

d∏
i=1

(X −mi) =

d∑
i=0

µiX
i ∈ Zp[X] ,

where coefficients (µ0, . . . , µd) in Zp and f(X) = 1 for d = 0. Note that f(X) = 0
for mi, . . . ,mid . Adversary B chooses random exponents (r0, . . . , rd, xz1 , . . . , xzl ,
xh) ∈ Zp, where the index z1, . . . , zl ⊆ [l], and defines

r(X) =

d∑
i=0

riX
i,

11



u(X) = (gβ)f(X)gr(X),

z(X) = (gβ)t̃g
∑l

j=1 xt(j)

zj | t(j) = X mod 2j ,

using the instance of the CDH problem.
Adversary B then generates a vk. Concretely, B chooses ť ∈ T (j∗) such that

t̃ ̸= ť and generates coefficients µi and h as follows:

ui = (gβ)µigri (i = 0, . . . , d),

h = (gβ)−ťgxh .

Moreover, B chooses gα from the CDH instance and generates a vk = (g, gα,
{ui}di=0, {zj}lj=1, h).

Adversary B then creates q signatures σ1, . . . , σq for q messages m1, . . . ,mq.
Let t̂ be a tag for a message m̂. For m̂ ∈ {m1, . . . ,mq}, let t̂ = m̂ mod 2j

∗
. If

t̃ ̸= t̂, then f(m̂) ̸= 0 since f(X) does not have mi1 , . . . ,mid as a root, which
maps to t̃. There are two cases according to the value of t̃; t̃ = t̂ or t̃ ̸= t̂.

When t̂ = t̃, then B chooses a random r ← Zp and computes a signature
σ̂ = (σ̂0, σ̂1) as follows:

σ̂0 = (gα)r(m̂)(z(m̂)h)r,

σ̂1 = gr.

From the definition of SIG0, σ̂0 = u(m̂)α(z(m̂)h)r, gr). In fact,

σ̂0 = (u(m̂)α(z(m̂)h)r, gr)

=
(

(gβ)f(m̂)gr(m̂)
)α

(z(m̂)h)
r
.

In case that t̂ = t̃, f(m̂) = 0. Then

σ̂0 = (gα)r(m̂)(z(m̂)h)r.

When t̃ ̸= t̂, then B chooses a random r ← Zp and computes a signature
σ̂ = (σ̂0, σ̂1) as follows:

Let S = g
∑l

j=1 xt(j)

zj
+xh , r̂ = −αf(m̂)

t̃−ť
mod p, r′ ← Zp, and r = r̂ + r′ mod p.

σ̂0 = (gα)r(m̂)(gβ)r
′(t̃−ť)Sr

σ̂1 = gr.

Note that r ∈ Zp is uniformly distributed since r′ is chosen at random.
From the definition of SIG0, σ̂0 = u(m̂)α(z(m̂)h)r, gr). In fact,

σ̂0 = u(m̂)α(z(m̂)h)r

= (gβf(m̂)+r(m̂))α{(gβ)t̃g
∑l

j=1 xt(j)

zj (gβ)−ťgxh}r

= (gβf(m̂)+r(m̂))α{g
∑l

j=1 xt(j)

zj (gβ)(t̃−ť)gxh}r

12



= (gα)r(m̂)(gr)
∑l

j=1 xt(j)

zj
+xh(gαβ)f(m̂)(gβ)(r

′−αf(m̂)

t̃−t∗ )(t̃−ť)

= (gα)r(m̂)(gr)
∑l

j=1 xt(j)

zj
+xh(gαβ)f(m̂)(gβ)r

′(t̃−t∗)(gαβ)−f(m̂)

= (gα)r(m̂)(gr)
∑l

j=1 xt(j)

zj
+xh(gβ)r

′(t̃−t∗)

= (gα)r(m̂)(gβ)r
′(t̃−t∗)Sr.

B then sends (vk, {mi, σi}qi=1) to A.

Forgery Adversary A receives q message and signature pairs (m1, σ1), . . . , (mq,
σq) from B. After that, A generates a forged signature σ∗ = (σ∗

0 , σ
∗
1) on m∗ and

returns (m∗, σ∗) to B.

Solution of the CDH problem Adversary B derives the solution of the CDH
problem using (m∗, σ∗).

When A succeeds in the forgery, m∗ /∈ {m1, . . . ,mq}; hence f(m∗) ̸= 0.
Adversary B then calculates a tag t∗ of m∗. If t∗ ̸= t̃, then it aborts; otherwise,
it outputs the solution of the CDH problem gαβ as follows:(

σ∗
0

(gα)r(m∗)(σ∗
1)(

∑l
j=1 xzj

t(j)+xh)

)−f(m∗)

= gαβ .

The simulation of B is perfect, and A is given the same environment as a real
attack.

Claim The q signature and message pairs (mi, σi) sent to A are valid.

Proof of Claim. Let (m1, σ1), . . . , (mq, σq) be the message and signature pairs
that A received. Adversary A verifies these signatures using vk = (g, gα, {ui}di=0,
{zj}lj=1, h).

The pairs that A received are classified into two groups according to the tag
of message t̂ = m̂ mod 2j

∗
. One group is t̂ = t̃ and the other is t̂ ̸= t̃.

Regarding the group that has t̂ = t̃, σ̂ = (σ̂0, σ̂1) = ((gα)r(m̂)(z(m̂)h)r, gr).
The signature σ̂ is verified as follows:

e(σ̂0, g) = e
(

(gα)r(m̂)(z(m̂)h)r, g
)

= e
(

(gα)r(m̂), g
)
e ((z(m̂)h)r, g)

= e
(

(gα)r(m̂)+βf(m̂), g
)
e ((z(m̂)h)r, g)

= e
(
gr(m̂)+βf(m̂), g

)α
e ((z(m̂)h), g)

r

= e
(
gr(m̂)+βf(m̂), gα

)
e ((z(m̂)h), gr)

13



= e (u(m̂), gα)e(z(m̂)h, σ̂1) .

Regarding the group that has t̂ ̸= t̃, σ̂ = (σ̂0, σ̂1) = ((gα)r(m̂)(gβ)r
′(t̃−ť)Sr, gr).

The signature σ̂ is verified as follows:

e(σ̂0, g) = e
(

(gα)r(m̂)(gβ)r
′(t̃−t∗)Sr, g

)
= e

(
(gα)r(m̂)(gβ)

(r+
αf(m̂)

(t̃−t∗)
(t̃−t∗)

(gr)
∑l

j=1 xt(j)

zj
+xh , g

)
= e

(
(gα)r(m̂)+βf(m̂)(gr)

β(t̃−t∗)+
∑l

j=1 xt(j)

zj
+xh , g

)
= e

(
(gα)r(m̂)+βf(m̂), g

)
e

(
(gr)

β(t̃−t∗)+
∑l

j=1 xt(j)

zj
+xh , g

)
= e

(
gr(m̂)+βf(m̂), g

)α
e

(
g
β(t̃−t∗)+

∑l
j=1 xt(j)

zj
+xh , g

)r

= e
(
gr(m̂)+βf(m̂), gα

)
e

(
(gβ)

t̃+
∑l

j=1 xt(j)

zj (gβ)−t∗+xh , gr
)

= e(u(m̂), gα)e(z(m̂)h, σ̂1).

Both groups satisfy the equation

e(σ̂0, g) = e (u(m̂), gα)e(z(m̂)h, σ̂1) .

⊓⊔

Analysis Let success be the event that B outputs a CDH solution gαβ . In
this simulation, B can extract gαβ from the forgery if t̃ = t∗. This probability
Pr[t̃ = t∗] is

Pr[t̃ = t∗] =
1

|T (j∗)|
=

1

⌊ e·q
d+1⌋+ 1

.

However, if no tag t
(j∗)
i ∈ T (j∗) has at most d-fold collisions, B can not extract

gαβ from the forgery since f(m∗) ̸= 0. Moreover, there is a gap in tag distribution
1/2O(κ) between mod 2j computation and uniform distribution, where j ≤ d ≤
O(κ). Hence,

Pr[success] =
1

⌊ e·q
d+1⌋+ 1

εEUF-XRMA − Pr[d+ 1-fold]− 1

2O(κ)

= O
(
d

q

)
εEUF-XRMA.

⊓⊔

4 EUF-CMA Full Security Scheme

In this section, we discuss the construction of a fully EUF-CMA secure scheme
from SIG0 by applying trapdoor commitment TCOM.
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4.1 Construction

We describe SIG in Fig. 4.

KGen(1κ) Sign(sk,m) Vrfy(vk,m, σ, r)
set G s.t. |G| = p r ← COINcom, s← Z/pZ ψ = Comtc

pk(m; r)
α← Zp ψ = Comtc

pk(m; r) For i := 1 to ℓ do

(g, h, {ui}di=0, {zj}lj=1)← G u(ψ) =
∏d
i=0 u

ψi

i t(j) = ψ mod 2j

sk = α For j := 1 to ℓ do If e(σ̃0, g)

vk = (g, h, gα, {ui}di=0, {zj}lj=1) t(j) = ψ mod 2j ̸= e(u(ψ), gα)e(z(ψ)h, σ̃1)

(tk, pk)← Gentc(1κ) z(ψ) =
∏l
j=1 z

t(j)

j return 0

return (vk, sk, tk, pk) σ̃0 = u(ψ)α(z(ψ)h)s else
σ̃1 = gs return 1
return (σ = (σ̃0, σ̃1), r)

Fig. 4. SIG: EUF-CMA-secure signature scheme with TCOM under the CDH assump-
tion

Remark 1. One can construct TCOM such that ψ can be seen in an element in
Z/pZ (except for one element). In addition, ψ ← Comtc

pk(m) is (almost) uniformly
distributed over Z/pZ for any m. The latter condition is needed to transform
an EUF-XRMA secure signature scheme to an EUF-CMA secure one. For
example, let G be the group defined over the super-singular elliptic curve y2 =
x3 + b on Fp, where p = 2 (mod 3). Then, there is the one-to-one encoding,
called map-to-point, from G×(= G\{O}) to Z/pZ [3].

Lemma 3. The signature scheme SIG (Fig. 4) is non-re-randomizable.

Proof. Let vk = (g, gα, {ui}di=0, {zj}lj=1, h) be a given vk, and let m and (σ =
(σ̃0, σ̃1), r) be valid messages for signatures, i.e., σ satisfies

e(σ̃0, g) = e(u(ψ), gα)e(h

l∏
j=1

zt
(j)

j , σ̃1). (1)

The set of all σs satisfying (1) is therefore identical to the set

Σ(vk,m) = {(u(ψ))α(z(ψ)h)s, gs; s ∈ Zp, r ← COINcom}.

Consider an algorithm Rerand taking as input vk, σ, and message m. We as-
sume that Rerand samples s′ ← Zp and returns σ′ = (σ′

0, σ
′
1) distributed uni-

formly over Σ(sk,m). However, since Rerand cannot generate ψ = Comtc
pk(x; r);

r ← COINcom, there is no Rerand that returns the new signature σ′ distributed
uniformly over the set of all possible signatures for m. Hence, SIG is non-re-
randomizable. ⊓⊔
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4.2 Security Analysis

Theorem 5. Let TCOM = (Gentc,Comtc, TComtc, TColtc) be a trapdoor commit-
ment and SIG0 be EUF-XRMA secure. Then, SIG is EUF-CMA secure. More-
over, let εEUF-CMA

SIG = AdvEUF-CMA
SIG,A (κ) be an advantage of anEUF-CMA adversary

for SIG, εEUF-XRMA
SIG0

= AdvEUF-XRMA
SIG0,B (κ) be an advantage of anEUF-XRMA ad-

versary for SIG0, and εcomp-bind be an advantage of a computational binding
adversary. Then, εEUF-CMA

SIG can be bounded by εEUF-XRMA
SIG0

+εcomp-bind.

Proof Let BEUF-XRMA
SIG0

be the adversary against EUF-XRMA security of SIG0

and Bcomp-bind be the adversary against computational binding for TCOM and
AEUF-CMA

SIG be the adversary against EUF-CMA security of SIG.
As we can regard commitments as input in SIG0 instead of messages, the

adversary BEUF-XRMA
SIG0

who can breaks EUF-XRMA security of SIG0 can break
EUF-XRMA with TCOM for SIG0. According to Theorem 4, if the CDH as-
sumption holds in G, then SIG0 is EUF-XRMA secure with TCOM. We write
BEUF-XRMAwithTCOM
SIG0

as the adversary against EUF-XRMA security with TCOM
of SIG0.

Now we show that if the adversary AEUF-CMA
SIG who can break EUF-CMA

security of SIG exists, then the adversaries BEUF-XRMAwithTCOM
SIG0

who can break

EUF-XRMA security with TCOM for SIG0 or Bcomp-bind who can break compu-
tational binding for TCOM exist. Then we compare their advantages εEUF-XRMA

SIG0

and εcomp-bind with εEUF-CMA
SIG . We consider a EUF-XRMA with TCOM game

and two cases; when queried commitments {ψ1, . . . , ψq} contains challenge com-
mitment ψ∗, BEUF-XRMAwithTCOM

SIG0
breaks EUF-XRMA security with TCOM

(Case 1) and when ψ1, . . . , ψq do not contain ψ∗, Bcoomp-bind breaks computa-
tional binding (Case 2). Here, we write the verification key and signing key of
SIG as (vk, sk) and those of SIG0 as (vk0, sk0). From the view of the adversary
AEUF-CMA

SIG , it is statistically indistinguishable that view made by the adversary
BEUF-XRMA
SIG0

and the adversary Bcomp-bind. According to Case 1 and Case 2,

the advantage of AEUF-CMA
SIG can be bounded by the sum of the advantages of

BEUF-XRMA
SIG0

and Bcomp-bind.

We construct the adversary BEUF-XRMAwithTCOM with advantage of εEUF-XRMA
SIG0

or Bcomp-bind with advantage of εcomp-bind by using the adversary AEUF-CMA
SIG .

Setup We consider TComtc
tk as MsgGen of EUF-XRMA, then commitments are

generated with auxiliary information such that

(ψi, ri)← TComtc
tk(1k).

The adversary BEUF-XRMAwithTCOM
SIG0

receives the verification key vk0, com-
mitments ψi, signatures σi of SIG0 for 1 ≤ i ≤ q and auxiliary information
wi,

wi = (pk, tk, ri),
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where pk is the public key, tk is the trapdoor key for TCOM, and commitment
ψi satisfies that

ψi = Compk(xi; ri)

for xi ∈M. BEUF-XRMAwithTCom
SIG0

sets

vk = (vk0, pk)

and send vk to AEUF-CMA
SIG .

Signing AEUF-CMA
SIG makes q signing queries. For 1 ≤ i ≤ q, AEUF-CMA

SIG gives a
message mi to BEUF-XRMAwithTCOM

SIG0
. Then BEUF-XRMAwithTCOM

SIG0
computes

ri = TColtctk(ψi, ri,mi),

where ri satisfies
ψi = Comtc

pk(mi; ri).

Then BEUF-XRMAwithTCOM
SIG0

returns (σi, ri) corresponding to mi. Here, the sig-

natures which BEUF-XRMAwithTCOM
SIG0

firstly received as input in this game are
regarded as that of SIG since messages can be just replaced by commitments.

Forgery of AEUF-CMA
SIG BEUF-XRMAwithTCOM

SIG0
receive a forgery (m∗, σ∗, r∗) of

SIG from AEUF-CMA
SIG , where m∗ ̸∈ {mi, . . . ,mq}. Then BEUF-XRMAwithTCOM

SIG0
com-

putes commitment
ψ∗ = Comtc

pk(m∗; r∗).

Case 1: breaking EUF-XRMA security of SIG0 In this case that ψ∗ ̸∈
{ψ1, . . . , ψq}, BEUF-XRMAwithTCOM

SIG0
outputs (ψ∗, σ∗). This means the adversary

succeeds in breaking EUF-XRMA with TCOM security of SIG0. This goes
against the fact that any adversary who breaks the EUF-XRMA security of
SIG0 does not exists in Theorem 4.

Case 2: breaking computational binding In the case that ψ∗ ∈ {ψ1, . . . , ψq},
Bcomp-bind outputs (m∗, r∗,mi, ri) such that

(ψ∗ = ψi) ∩ (m∗ ̸= mi)

for 1 ≤ i ≤ q. This means BEUF-XRMAwithTCOM
SIG0

succeeds in breaking computa-

tional binding for trapdoor commitment as Bcomp-bind.

Analysis

Supposed that SIG is EUF-CMA secure. Then BEUF-XRMAwithTCOM
SIG0

breaks

EUF-XRMA security when ψ∗ ̸∈ {ψ1, . . . , ψq} or Acomp-bind breaks compu-
tational binding for trapdoor commitments when ψ∗ ∈ {ψ1, . . . , ψq}. Therefore
εEUF-CMA
SIG is bounded by sum of εEUF-XRMA

SIG0
and εcomp-bind. Hence,

εEUF-CMA
SIG ≤ εcomp-bind + εEUF-XRMA

SIG0
.

⊓⊔
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5 Discussion

The reduction loss of Böhl et al.’s signature scheme is

εCDH ≥ | 1

T (j∗)
|
(
εEUF-CMA − εPRF − Pr[d+ 1-fold]

)
,

where |T (j∗)| is the size of tag sets. In our scheme, T (j∗) = O( q
d ) since its tag

space is |T (j∗)| := ⌊(d+ 1)/e · q⌋+1. The advantage regarding PRF εPRF is 1
2O(κ) ,

which is the gap between the case in which tags are chosen uniformly and that
in which tags are generated as tj = m mod 2j . In Böhl et al.’s scheme, the key
lemma is as follows:

Pr[d+ 1 − fold] = Pr[∃i1, . . . , id+1 ∈ [q] | ti1 = · · · = tid+1
] ≤ qd+1

nd
.

Since they assumed that the size of d is constant, the evaluation was sufficient.
However, we assume d = O(κ); thus, we evaluate the probability more strictly.
According to Theorem 4, 5,

εCDH ≥ | 1

T (j∗)
|
(
εEUF-XRMA − 1

2O(κ)
− Pr[d+ 1-fold]

)
(2)

≥ O
(
d

q

)
· εEUF-XRMA

≥ O
(
d

q

)
·
(
εEUF-CMA − εcomp-binding

)
Hence,

εEUF-CMA ≤ O
( q
d

)
· εCDH + εcomp-binding. (3)

Computational binding is reduced to the discrete logarithm problem. The
whole security-reduction loss to the CDH problem, a search problem, is O(q/d).

The tag set of Böhl et al.’s scheme is chosen from a sparse tag set whose size is
2⌊c

j⌋, where c is constant. Our tag set size is 2j , which is appropriate to choose a
small T j∗ such that |T j∗ | > e·q

d+1 . On the other hand, d is constant in Böhl et al.’s
scheme, while d = O(κ) in our scheme. The size of the vk increases according to
the size of d. Hence, the vk size of our scheme is larger than that of Böhl et al.’s
scheme. That is, although the vk size is larger than that of Böhl et al.’s scheme,
our scheme achieves a constant-size signature with a tighter reduction.

6 Conclusion

The optimal security-reduction loss to the CDH problem from a constant-size
signature scheme is O(q) if signature schemes are re-randomizable. We proposed
a constant-size non-re-randomizable signature scheme that is secure under the
CDH assumption with tighter security-reduction than ever constant-size signa-
ture schemes. Particularly, its security reduction, O(q/d) is the tightest thus
far.
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Appendix

EUF-dnaCMA A SIG is said to be existentially unforgeable against distinct-
message non-adaptively chosen-message attack (EUF-dnaCMA) [6, 7], if for any
A, AdvEUF-dnaCMA

SIG,A (κ) := Pr[ExptEUF-dnaCMA
SIG,A (κ) = 1] = negl(κ). ExptEUF-dnaCMA

SIG,A
(κ) is the experiment with EUF-dnaCMA and refer to [7].

EUF-dnaCMA∗
d A tag-based signature scheme SIGt is said beEUF-dnaCMA

with d-fold tag-collisions (EUF-dnaCMA∗
d) [6, 7], if for anyA, Adv

EUF-dnaCMA∗
d

SIGt,A (κ)

:= Pr[Expt
EUF-dnaCMA∗

d

SIGt,A (κ) = 1] = negl(κ), where Expt
EUF-dnaCMA∗

d

SIGt,A (κ) is the ex-
periment with EUF-dnaCMA∗

d and refer to [7]. Note that we call d a tag-collision
parameter; it affects key and signature sizes, and the security reduction. The d-
fold tag-collisions means that the same tag ti is chosen for d different signed
messages.
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