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Abstract. Statistical Zero-knowledge proofs (Goldwasser, Micali and
Rackoff, SICOMP 1989) allow a computationally unbounded server to
convince a computationally limited client that an input x is in a lan-
guage Π without revealing any additional information about x that the
client cannot compute by herself. Randomized encoding (RE) of func-
tions (Ishai and Kushilevitz, FOCS 2000) allows a computationally lim-
ited client to publish a single (randomized) message, Enc(x), from which
the server learns whether x is in Π and nothing else.

It is known that SRE , the class of problems that admit statistically
private randomized encoding with polynomial-time client and computa-
tionally unbounded server, is contained in the class SZK of problems
that have statistical zero-knowledge proof. However, the exact relation
between these two classes, and, in particular, the possibility of equiva-
lence was left as an open problem.

In this paper, we explore the relationship between SRE and SZK, and
derive the following results:

– In a non-uniform setting, statistical randomized encoding with one-
side privacy (1RE) is equivalent to non-interactive statistical zero-
knowledge (NISZK). These variants were studied in the past as
natural relaxation/strengthening of the original notions. Our theo-
rem shows that proving SRE = SZK is equivalent to showing that
1RE = SRE and SZK = NISZK. The latter is a well-known open
problem (Goldreich, Sahai, Vadhan, CRYPTO 1999).

– If SRE is non-trivial (not in BPP), then infinitely-often one-way
functions exist. The analog hypothesis for SZK yields only auxiliary-
input one-way functions (Ostrovsky, Structure in Complexity The-
ory, 1991), which is believed to be a significantly weaker implication.

– If there exists an average-case hard language with perfect random-
ized encoding, then collision-resistance hash functions (CRH) exist.
Again, a similar assumption for SZK implies only constant-round
statistically-hiding commitments, a primitive which seems weaker
than CRH.

We believe that our results sharpen the relationship between SRE and
SZK and illuminates the core differences between these two classes.
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1 Introduction

Consider a “computationally-weak” client, Alice, which holds an input x ∈
{0, 1}n to a language, or promise problem, Π which is beyond her computa-
tional power. We will be interested in the following two related scenarios.

– Alice contacts a computationally-strong server Bob, and asks him to prove
that x is a yes-instance of Π. The server wishes to do so without revealing
any additional information about x that Alice cannot compute by herself.
That is, we are interested in an interactive proof system in which, for every
yes-instance, the client is able to simulate her view without any interaction
with the server.

– Alice would like to send to the server Bob a single (randomized) message
Enc(x) which allows Bob to tell whether x is a yes-instance or a no-instance
but hides any other information about x. That is, the message Enc(x) should
be private in the sense that all yes-instances (resp., no-instances) are mapped
by Enc(x) to the same universal yes-distribution Simyes (resp., no-distribution
Simno); In addition, Enc(x) should be correct (i.e., it should be possible
to decode membership in Π) and so the yes-distribution is required to be
statistically-far from the no-distribution.

The first setting is captured by the notion of zero-knowledge (ZK) proofs
introduced in [GMR89], while the second is captured by the notion of randomized
encoding (RE) of functions [IK00,AIK04]. In this paper, we model the client as a
polynomial-time machine, the server as a computationally-unbounded party, and
ask for information-theoretic security.1 Problems that admit such a statistical
zero-knowledge proofs (resp., such statistical randomized encodings) give rise to
the complexity class SZK (resp., SRE).

The class SZK and its variants were extensively studied and we have rela-
tively rich insights about its power and structure including non-trivial upper-
bounds (e.g., SZK ⊆ AM∩ co-AM [AH87]), complete problems [SV03,GV99],
and closure properties [Oka00,Vad99]. Unfortunately, the status of SRE is very
different. Although randomized encoding are extensively used in cryptography
(see the surveys [App11,Ish13]), the class SRE was left relatively unexplored.
The main known result (observed in [App14]) is that

SRE ⊆ SZK.

That is, a statistical randomized encoding for a problem Π can be transformed
into a statistical zero knowledge proof system for the same problem. The ex-
act relation between SRE and SZK, and, in particular, the intriguing possibil-
ity that these two classes are actually equivalent was left as an open prob-
lem. This question was recently addressed by Agrawal, Ishai, Khurana, and

1 The literature contains many other natural choices for security (e.g., compu-
tational [AIK05]) and efficiency (e.g., client with low parallel complexity and
polynomial-time server [AIK04]). Following Agrawal, Ishai, Khurana, and Paskin-
Cherniavsky [AIKP15], we view the current choice as a natural starting point for a
complexity-theoretic treatment.
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Paskin-Cherniavsky [AIKP15] who provided an oracle separation between the
two classes, in addition to candidates for problems in SRE that are not solvable
in (non-uniform) polynomial-time. As usual, an oracle separation tells us that
equivalence cannot be established via relativized techniques, and so it essentially
addresses the proof of equivalence (or technical barriers against it). However,
such separations tell us very little on the statement itself (SRE = SZK) and its
potential implications on the landscape of computational complexity.2

1.1 Our Results

In this paper, we continue the complexity theoretic study of SRE , as advo-
cated by [AIKP15], and further explore the exact relationship between SRE and
SZK. We study variants of these classes, prove their equivalence, and sharpen
the difference between SRE and SZK. We also point out several interesting
complexity-theoretic implications of an equivalence between SRE and SZK.
Overall, we believe that our results shed light on the causes for which SZK is
(seemingly) more powerful than SRE .

Non-interactive ZK is equivalent to Semi-private RE Zero-knowledge
proofs differ from randomized-encoding in many aspects. Most notably, the flow
of information is reversed (Server-to-Client for ZK-proofs vs. Client-to-Sever
for encodings). Let us ignore this major difference and focus on two seemingly
less important syntactic differences. First, recall that REs are non-interactive
while zero-knowledge proofs are allowed to use interaction. Secondly, the privacy
condition of REs should hold for both yes and no-instances, whereas the ZK
condition is defined only with respect to yes-instances. In an attempt to make a
“fair” comparison between these two notions, we consider non-interactive zero-
knowledge proofs (NISZK) [BFM88] and statistical randomized encoding with
one-sided privacy (1RE) [AIK04,AIK15].

The NISZK model, introduced by Blum, Feldman and Micali [BFM88], re-
stricts the prover to send a single message to the verifier at the expense of al-
lowing the parties to share a common reference string that was pre-sampled by
a trusted (efficient) dealer.3 The notion of statistical randomized encoding with
one-sided privacy was introduced by Applebaum, Ishai, and Kushilevitz [AIK04]
(under the term semi-private encoding) as a relaxation of REs in which the
privacy condition should hold only for yes-instances.

2 Moreover, there are examples for classes which are separated relative to some oracle,
but, without an oracle, are actually equal. (E.g., IP vs. PSPACE ; see the discussion
in [CCG+94]).

3 Our description corresponds to the public-parameter model, which is widely used
in the literature (see [PS05] and references therein). This setting generalizes the
original common random string (crs) model proposed by Blum et al. [BFM88], in
which the reference string is simply a uniformly random string of polynomial length.
Following [CCKV08], we use the superscripts pub and crs to distinguish between
these two variants. Observe that NISZKcrs ⊆ NISZKpub.
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We show that the corresponding complexity classes NISZKpub and 1RE are
essentially equivalent.

Theorem 1. It holds that NISZKpub ⊆ 1RE and, in the non-uniform setting,
1RE ⊆ NISZKpub.

The “non-uniform” setting refers to the case where all efficient entities (the client,
the dealer, and the RE/SZK simulators) are modeled by polynomial-size circuits.
The theorem shows that, non-uniformly, the class NISZKpub is equivalent to
the class 1RE . It is known that NISZKpub ⊆ SZK [PS05] and, by definition, we
have that SRE ⊆ 1RE . Hence, together with Theorem 1, we derive the following
interesting picture (in the non-uniform setting):

SRE ⊆ 1RE = NISZKpub ⊆ SZK.

Note that if SZK collapses to SRE then all intermediate classes also collapse.
This means that the question of putting SZK inside SRE boils down to two
separate questions: “Can statistical zero-knowledge be made non-interactive?”
(NISZKpub = SZK?) and “Can one-side privacy be upgraded to full privacy?”
(SRE = 1RE?). Nicely, each of these well motivated questions is “pure” in the
sense that it only addresses one object (either randomized encoding or zero-
knowledge proofs). We further mention that the first question (NISZK =
SZK?) is a well-known open problem that was studied before by [GSV99].4

Consequences of Randomized Encoding for Intractable Problems An-
other way to compare SZK to SRE is by asking what are the consequences of
the existence of computationally-intractable problems in the class. For example,
the following theorem was proven by Ostrovsky.

Theorem 2 ([Ost91]). If SZK is not in BPP, then Auxiliary-Input One-way
functions exist.5

Auxiliary-input one-way functions (ai-OWF) are keyed functions that achieve a
very weak form of one-wayness. Roughly speaking, for each adversary there exists
a set of hard keys on which the adversary fails to invert the function. (See [Gol01]
for definition.) However, it may be the case that there is no universal set of keys
which is simultaneously hard for all efficient adversaries.

For SRE we prove (Section 6) the following stronger implication:

Theorem 3. If SRE is not in BPP, then infinitely-often one-way functions
exist.

4 More precisely, [GSV99] focused on the crs model, and provided several necessary
and sufficient conditions for the equality NISZKcrs = SZK.

5 This theorem, and all the other results in this section, is formulated in the uniform
setting. If one considers a non-uniform variant of SZK, then the theorem holds by
changing BPP to P/poly and by relaxing the notion of AIOWFs to be computable by
polynomial-size circuits. Similar modifications can be applied to the other theorems
of this section.
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Infinitely-often one-way functions (io-OWFs) are essentially standard one-
way functions except that their hardness holds over a (universal) set of infinitely
many input lengths. This notion is considered to be significantly stronger than
ai-OWFs. For example, while it is possible to construct ai-OWFs based on the
worst-case hardness of graph-isomorphism (GI), it is unknown how to obtain io-
OWF from such an assumption. By Theorem 3, such a GI-based io-OWF would
follow from the equivalence of SZK and SRE . More generally, a proof of such
an equivalence would allow us to base io-OWFs on worst-case hardness in SZK
improving the 25-year old classical result of [Ost91].

Theorem 3 also explains why all the candidates of Agrawal et al. [AIKP15] for
computationally-hard problems in SRE imply the existence of one-way functions
– Such an assumption is inherently necessary to separate SRE from BPP.

We can further ask what are the implications of an average-case hard problem
in these complexity classes. Roughly speaking, a promise problem Π is average-
case hard if it is equipped with a probability distribution D such that no efficient
algorithm can classify correctly an instance x sampled from D with probability
significantly better than 1/2. Ostrovsky’s result can be used to prove that the
existence of an average-case hard language in SZK implies the existence of a
one-way function. The following (stronger) theorem is implicit in the work of
Ong and Vadhan [OV08].

Theorem 4 (implicit in [OV08]). If there exists an average-case hard lan-
guage in SZK then a constant-round statistically-hiding commitments (CRSC)
exists.

As a general primitive, CRCS implies the existence of one-way functions, and
is believed to be strictly stronger due to the black-box separation of [HHRS15].
We derive a stronger implication if we have randomized encoding for an average-
case hard problem. Specifically, we consider the class PRE of problems that
admit perfect randomized encoding [AIK04] – a stronger variant of SRE which
achieves perfect correctness (zero-decoding error), perfect privacy (the simulators
perfectly simulate the encoding) and enjoys some additional syntactic properties.
(See Section 4 for a formal definition.)

Theorem 5. If there exists an average-case hard language in PRE then collision-
resistance hash functions (CRH) exist.

The proof of the theorem is sketched in Section 7. CRH imply CRSC but the
converse is not known to be true. Hence, this implication is seemingly stronger
than the one proven in [OV08]. Extending this theorem to the case of SRE is
left as an interesting open problem.

2 Our Techniques

Let us outline the main ideas behind the proofs of Theorems 1, 3 and 5.
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Proof of Theorem 1 We begin with the equivalence of 1RE and NISZKpub.
It is instructive to note that all the complexity classes SZK,NISZK, 1RE and
SRE essentially capture different variants of “statistical-distance” problems. In-
deed, as we already saw, for a SRE-problem Π, the membership of x boils down
to determining whether the distribution Enc(x) is close to one of two distribu-
tions Simyes and Simno which are statistically-far apart from each other. Notably,
these distributions are universal and they depend only on the problem Π (and
not on the input x). The work of [SV03] also shows that, for any SZK-problem
Π, there exists an efficient mapping from an instance x to a pair of distributions
(Ax, Bx) which are statistically-close if x is a yes-instance and statistically-far
otherwise. However, in contrast to the case of SREs, the distributions (Ax, Bx)
are instance dependent. In particular, two different yes-instances x and x′ may
be mapped to completely different pairs of distributions (Ax, Bx) and (Ax′ , Bx′).

In the intermediate notion of NISZK, one of the distributions, say B, corre-
sponds to the dealer’s distribution and so it becomes universal [SCPY98,GSV99].6

Correspondingly, all yes-instances x are mapped to this single universal distri-
bution, i.e., Ax ≈ B. (Ax essentially corresponds to the simulated version of
the public-parameter). For no-instances, the distribution Ax may be instance-
dependent. Similarly, for 1RE , only yes-instances are mapped by Enc(x) to some
universal yes-distribution Simyes, whereas the encoding of a no-instance Enc(x)
may be instance-dependent. Overall, the privacy properties of 1RE and the zero-
knowledge properties of NISZK match nicely. Still, there is one technical dif-
ference with respect to the requirements on the distributions of no-instances.

In 1RE , correctness requires the existence of a single decoder that distin-
guishes between the yes-distribution Simyes and all possible no-distributions
{Enc(x)}x∈Πno

. This means that Simyes is “universally-far” from all the no-
distributions. In contrast, the soundness property of NISZK requires from ev-
ery no-distribution Ax to be “disjoint” from B in the following sense: A random

sample from the universal distribution b
R← B should fall, with high probabil-

ity, outside the support of Ax. To prove Theorem 1 we should be able to move
from “universal-farness” to “disjointness” and vice versa. While it is relatively
straightforward to convert disjointness to universal-farness (e.g., via parallel-
repetition), the converse direction requires some work.

As a concrete (and somewhat simplified) example, imagine the case where we
have a single pair of distributions X and Y , where X outputs, with probability
1−ε, a random n-bit string whose first bit is 1, and, with probability ε, a random
n-bit string whose first bit is 0. Assume that Y does exactly the opposite. These
distributions are (1− 2ε)-far in statistical distance, but they do not satisfy the
disjointness property as their supports are equal. The key observation is to note

that a typical y
R← Y value, has much larger weight under Y compared to its

weight under X. When these distributions are implemented by circuits that use
m random bits as inputs, this means that the set of preimages Y −1(y) is likely
to be significantly larger than the set X−1(y). In other words, the entropy e1

6 Interestingly, in the crs model, this distribution is simply the uniform distribution
and it is therefore also problem-independent.
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of the conditional distribution [r|Y (r) = y] is larger than the entropy e2 of the
conditional distribution [r|X(r) = y]. Following the approach of [GSV99], we can
turn these distributions to be disjoint by hashing out about e1 � e� e2 random
bits from r, and appending the result h(r) to the output. That is, we define a pair
of new distributions by X ′ = (X(r), h, h(r)) and Y ′ = (Y (r), h, h(r)) where h is
sampled from a 2-universal family of hash functions.7 One can now show that for

a typical y
R← Y (and most h’s), the conditional distribution [h(r)|Y (r) = y] is

almost uniform, whereas the conditional distribution [h(r)|X(y) = y] has small
support. This means that a random sample from Y ′ is likely to land out of the
support of X ′, as required.

The actual construction introduces some additional technicalities. Most no-
tably, it requires an estimation on the amount of entropy of the distribution
which is sampled by Simyes, the simulator of the original encoding. We over-
come this problem by treating this value as a non-uniform advice. We note that
this advice is short (of logarithmic length) and so one may hope to simply try
all possible values. The problem is that some of these values will violate the
zero-knowledge property, while others would violate soundness. Unfortunately,
we do not know how to “combine” together several faulty NISZK protocol into
a single good protocol. The question of finding a way around this problem and
achieving a fully uniform reduction is left for future research.

Proof of Theorem 3 Recall that Theorem 3 asserts that if infinitely-often
one-way functions do not exist, then any language Π in SRE can be decided by
some BPP algorithm A. The proof is based on the following observation: Given
an instance x, one can probabilistically decide if x ∈ Π by first sampling an
encoding y = Enc(x), and then outputting “yes” if the weight of y under the
distribution Simyes is larger than its weight under Simno. Note that the latter
problem can be reduced to the following “distributional inversion” problem.
Define the function

g(r, b) =

{
Simno(r), if b = 0,

Simyes(r), if b = 1;

sample a random preimage (r, b) of y under g, and output the bit b. (I.e., when
b = 0 the instance x is classified as a no-instance, and if b = 1 then x is classified
as a yes-instance.) It can be shown, based on the privacy and the correctness
guaranties of the encoding, that b is likely to classify x correctly. By the results
of Impagliazzo and Luby [IL89], the distributional inversion problem can be
efficiecntly solved (up to small, inverse-polynomial, deviation error), assuming
that infinitely-often one-way functions do not exist.

It is instructive to compare the above to the SZK setting. The RE simulators
give rise to a universal function g (independent of the instance x) whose inver-
sion is as hard as deciding Π. In contrast, in the SZK setting, the correspond-
ing distributions depend on x, and so deciding x ∈ Π reduces to inverting an

7 More generally, we could use any seeded randomness extractor that extracts e almost
uniform bits from any e2-bit source.
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instance-dependent function gx. Correspondingly, the intractability of Π yields
only auxiliary-input one-way functions.

Proof of Theorem 5 In Theorem 5 we show that if an average-case hard
language Π admits a prefect RE then CRH exist. The notion of perfect encoding
guarantees that the image of the encoder Enc can be partitioned into two equal
sets Y and N and that for any yes-instance (resp., no-instance) x, the mapping
Enc(x; r) is a bijection from the randomness space to Y (resp., N). Similarly
both simulators, Simyes(r) and Simno(r), form a bijective mapping from the
randomness space to Y and N , respectively. Let us define a pair of functions,
keyed by instances x, y,

h0x(r, b) =

{
g(x; r), if b = 0,

Simno(r), otherwise;
h1y(r, b) =

{
g(y; r), if b = 0,

Simyes(r), otherwise;

Since the encoding is perfect, h0x and h1y are permutations if x is a yes-instance
and y is a no-instance; on the other hand, if x is a no-instance and y is a yes-
instance the images of the functions are disjoint. Suppose that there exists an
efficiently samplable distribution Y over yes-instances which is indistinguishable
from some efficiently samplable distribution N over no-instances. Then, we can

sample a pair of yes/no instances (x, y)
R← Y × N which is indistinguishable

from a pair of no/yes instances (x′, y′)
R← N ×Y. This means that, although the

functions h0x, h
1
y are permutations with identical images, it is computationally

hard to find a pair (u, v) which forms a “claw”, i.e., h0x(u) = h1y(u). (Indeed, a
claw-finder can be used to distinguish (x, y) from (x′, y′).) Such claw-free per-
mutations [Dam87,GMR88] imply the existence of CRH. The argument extends
to the case where there exists only a single “hard” distribution over yes/no in-
stances of Π (as opposed to a pair of “pure” distributions). In this case, we get
claw-free pseudo-permutations [Rus95], whose existence still implies CRH.

2.1 A Broader Perspective

So far we emphasized the differences between SRE and SZK, however, from
a broader point of view, our results may be interpreted as saying that the two
classes are actually close variants of each other. This is similar in spirit to a
recent result [AR16] that reveals a close connection between private simultaneous
message protocols (PSM) [FKN94] and Zero-Information Arthur-Merlin (ZAM)
protocols [GPW15]. PSMs and ZAMs can be viewed as the communication-
complexity analog of Randomized Encodings and Zero-Knowledge proofs, where
instead of limiting the computational power of the client, we split it into two
non-communicating (computationally-unbounded) parties Alice and Bob each
holding different parts of the input x = (xA, xB). It is shown in [AR16] that the
communication complexity of ZAM protocols is closely related to the randomness
complexity of (variants of) PSMs, and vice versa. This is conceptually similar to
some of the current results (e.g., 1RE = NISZKpub) though the computational
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setting introduces different technical challenges, and correspondingly it requires
a significantly different approach.

Organization. We begin with some standard preliminaries in Section 3. In Sec-
tion 4 we provide formal definitions of statistical zero knowledge proofs, statis-
tical randomized encoding and their variants. Theorem 1 is proved in Section 5,
Theorem 3 in Section 6 and Theorem 5 in Section 7.

3 Preliminaries

Basic Definitions. For a finite set S, let s
R← S denote an element that is

sampled uniformly at random from S, and let U(S) denote the corresponding
random variable. The uniform distribution over n-bit strings is denoted by Un.
The support of a random variable X is the set supp(X) := {x | Pr[X = x] >
0}. The Shannon entropy of X is H(X) := −

∑
z Pr[X = z] log Pr[X = z].

For a distribution D, we let ⊗kD be the probability distribution over k-tuples
where each element is sampled independently according to D. Similarly, for
a randomized algorithm F (x), we let ⊗kF (x) be a k-tuple of k independent
samples of F (x). We sometimes make the coins of a randomized algorithm F

explicit by writing F (x; r) where r
R← Us(x) denotes the random coins used on

an input x and s(x) denotes the randomness complexity of F on an input x,
which, by default, is assumed to solely depend on the length of x.

Statistical Distance. The statistical distance between a pair of random variables
X and Y distributed over the set Z is defined as

∆(X;Y ) :=
1

2

∑
z∈Z
|Pr[X = z]− Pr[Y = z]| .

Equivalently, ∆(X;Y ) = maxA |Pr[A(X) = 1]− Pr[A(Y ) = 1]| where the maxi-
mum ranges over all Boolean functions A : Z → {0, 1}. We write

∆
x1

R←D1,...,xk
R←Dk

(F (x1, . . . , xk);G(x1, . . . , xk))

to denote the statistical distance between two random variables obtained as
a result of sampling xi’s from Di’s and applying the functions F and G to
(x1, . . . , xk), respectively. We will use the following properties of statistical dis-
tance and entropy.

Fact 1. Let X and Y be a pair of random variables. Then the following holds:

1. [Vad99, Fact 3.2.2] For every (possibly randomized) function F , we have that

∆(F (X);F (Y )) ≤ ∆(X;Y ).
2. [Vad99, Fact 3.3.9] Let D be the range of X and Y , then |H(X)−H(Y )| ≤

(log |D|) ·∆(X;Y ) + 1.
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3. [Vad99, Lemma 3.1.15] For any integer q > 0, we have that
1− 2 exp(−q(∆(X;Y ))2/2) ≤ ∆(⊗qX;⊗qY ) ≤ q∆(X;Y ).

4. [SV03, Fact 2.5] Suppose that X = (X1, X2) and Y = (Y1, Y2) are dis-
tributed over a set D × E such that: (a) X1 and Y1 are identically dis-

tributed; and (b) with probability greater than 1 − ε over x
R← X1, we have

∆(X2|X1=x, Y2|Y1=x) ≤ δ. Then ∆(X,Y ) ≤ ε+ δ.
5. (cf. Appendix A.1) If ∆(X;Y ) ≥ 1 − ε, then, for any t > 1, it holds that

Pr
x

R←X
[Pr[X = x] < t · Pr[Y = x]] ≤ εt.

Flattening. We will use the following notion of∆-flat distributions from [GSV99].

Definition 1 (Flat Distributions). Let X be a distribution. An element x of
supp(X) is called ε-typical if |log(1/Pr[X = x])−H(X)| ≤ ε. We say that X
is ∆-flat if for every t > 0 the probability that an element chosen from X is
(t ·∆)-typical is at least 1− 2−t

2+1.

A 0-flat distribution is uniform on its support, and is simply referred to as a flat
distribution. A natural way to flatten a distribution is via parallel repetition.

Lemma 1 (Flattening Lemma [Vad99,GSV99]). Let D be a distribution
such that for all x from supp(D) we have that D(x) ≥ 2−m. Then, for any
k ∈ N, the distribution ⊗kD is (

√
k ·m)-flat.

Hashing. A family H of functions mapping a domain D to a range R is 2-
universal [CW79] if for every two elements x 6= y from D and a, b from R it
holds that Pr

h
R←H

[h(x) = a ∧ h(y) = b] = 1
|R|2 . We write Hn,m to denote a

2-universal family from {0, 1}n to {0, 1}m. There are efficient constructions of
2-universal families of hash functions Hn,m that can be evaluated and sampled
in poly(n,m) time [CW79].

Lemma 2 (Leftover Hash Lemma [ILL89,GSV99]). Let H be a 2-universal
family of hash functions mapping a domain D to a range R. Let X be a flat
distribution on D such that for all x ∈ supp(X) we have that Pr[X = x] ≤ α/|R|.
Then

∆
h

R←H
((h, h(X)); (h, U(R))) ≤ O(α1/3).

Sampling distributions via circuits. Let X be a circuit with m input and n out-
put gates. We will sometimes abuse notation and use X to denote the random
variable X(Um) which corresponds to the output distribution of the circuit in-
duced by “feeding” a uniformly chosen n-bit input. We let X−1(x) denote the set
of preimages of x under X, i.e., X−1(x) := {r ∈ {0, 1}m | X(r) = x}. Observe
that Pr[X = x] = 2−m · |X−1(x)|.

4 NISZK and SRE

A promise problem [ESY84] Π is a pair of two non-intersecting sets of strings
(Πyes, Πno). The strings in Πyes are called yes-instances and the strings in Πno
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are called no-instances. Let χΠ(x) be the characteristic function of Π which
outputs 1 on yes-instances and 0 on no-instances. Note that a promise problem
is a generalization of a language L ⊆ {0, 1}∗, i.e., L is translated into a promise
problem ΠL where L corresponds to the set of yes-instances and {0, 1}∗ \ L
corresponds to the set of no-instances. (See [Gol06] for a survey.)

Definition 2 (statistical randomized encoding [IK00,AIK04]). We say
that an efficient randomized algorithm Enc is a ε-private and δ-correct statistical
randomized encoding of a promise problem Π = (Πyes, Πno) (abbreviated (ε, δ)-
SRE), if the following holds:

ε-privacy for yes-instances: There exists an efficient simulator Simyes such
that for every yes-instance xyes of length n from Π,

∆(Simyes(1
n);Enc(xyes)) ≤ ε(n).

ε-privacy for no-instances: There exists an efficient simulator Simno, such
that for every no-instance xno of length n from Π,

∆(Simno(1n);Enc(xno)) ≤ ε(n).

δ-correctness: There exists a computationally-unbounded decoder Dec, such
that for every instance x ∈ (Πyes ∪Πno) of length n,

Pr[Dec(Enc(x)) 6= χΠ(x)] ≤ δ(n).

By default, ε(n) and δ(n) are required to be negligible functions.

Perfect Encoding [AIK04]. A randomized encoding which is 0-private (resp.,
0-correct) is called perfectly private (resp., perfectly correct). For an input of
length n, let s(n) denote the length of the random strings used by Enc and let
t(n) be the output length of the encoding. A perfectly private and perfectly
correct randomized encoding whose simulators Simyes and Simno use s(n) coins,

supp(Simyes(1
n)) ∪ supp(Simno(1n)) = {0, 1}t(n), and 1 + s(n) = t(n) is called

perfect. (See [AIK04] for an intuitive explanation of these requirements.)

One-sided Encoding [AIK04,AIK15]. A randomized encoding which is ε-private
on yes-instances and δ-correct is called one-sided (or semi-private) randomized
encoding (denoted with (ε, δ)-1RE)[AIK04,AIK15]. Clearly, any (ε, δ)-SRE is also
(ε, δ)-1RE, though the converse does not necessarily hold. A disjoint one-sided
randomized encoding is an encoding which is ε-private on yes-instances and,
instead of standard correctness, it satisfies the following ρ-disjointness property:
For every no-instance xno of length n from Π, it holds that Pr[Simyes(1

n) ∈
supp(Enc(xno))] ≤ ρ(n). We refer to such an encoding as (ε, ρ)-D1RE.

Definition 3 (non-interactive statistical zero-knowledge [BSMP91]). A
non-interactive statistical zero-knowledge proof system (NISZK) for a promise
problem Π = (Πyes, Πno) is defined by probabilistic algorithms Prov (prover),
Deal (dealer), Sim (simulator), and a deterministic algorithm Ver (verifier), such
that for every n-bit instance x the following holds

11



α-Completeness: If x ∈ Πyes then Pr[Ver(x, σ,Prov(x, σ)) 6= 1] ≤ α(n), where

σ
R← Deal(1n).

β-Soundness: If x ∈ Πno then Pr[∃p = p(x, σ) : Ver(x, σ, p) = 1] ≤ β(n), where

σ
R← Deal(1n).

γ-Zero-Knowledge: If x ∈ Πyes then the pair (σ, p) is γ(n)-close in statistical

distance to the pair (σ′, p′) where σ
R← Deal(1n), p

R← Prov(x, σ) and (σ′, p′)
R←

Sim(x).

The algorithms Ver,Deal, and Sim are required to be efficient, while the prover’s
algorithm Prov is allowed to be computationally unbounded. By default, α, β and
γ are assumed to be negligible in n.

Variants. In the special case where the dealer Deal(1n) samples σ uniformly from
the set of all strings of length r(n) (for some polynomial r(·)), the proof system is
called an interactive zero-knowledge proof system in the common random string
model and is denoted by (α, β, γ)-NISZKcrs [BFM88]. We will focus on the more
general setting (defined above) where the dealer is allowed to use any arbitrary
(polynomial-time samplable) distribution. This setting is referred to as the public
parameter model and protocols in the model are denoted by (α, β, γ)-NISZKpub.8

Remark 1 (Efficiency: Uniformity vs. Non-Uniformity). Randomized encodings
and non-interactive statistical-zero knowledge proof systems can be defined ei-
ther in the uniform setting where all efficient entities (encoder, RE-simulator,
verifier, dealer, and NISZK-simulator) are assumed to be probabilistic polynomial-
time algorithms, or in the non-uniform setting where these entities are repre-
sented by probabilistic polynomial-time algorithms which take a non-uniform
advice. We will emphasize this distinction only when it matters (Theorem 6),
and otherwise, (when the results are insensitive to the difference) ignore it.

Definition 4 (Complexity classes). The complexity class SRE (resp., 1RE,
NISZKpub) is the set of all the promise problems that have an SRE (resp., 1RE,
NISZKpub).

5 NISZKpub = 1RE

In this section we will prove Theorem 1. We start by showing that the notions
of 1RE and D1RE are equivalent in Section 5.1. Then, based on this equivalence
we prove that NISZKpub = 1RE . In the first part of the proof we show that
NISZKpub ⊆ 1RE (cf. Section 5.2). In the second part of the proof we show
that 1RE ⊆ NISZKpub (cf. Section 5.3).

8 The class NISZKpub was implicitly considered in [BDLP88], and was later referred
to as NISZK in the auxiliary string model [Dam00] and as protocol-dependent NISZK
by [GB00]. Our terminology (NISZK in public parameter model) is taken from [PS05].
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5.1 Equivalence of 1RE and D1RE

We start by showing how to convert a 1RE F for a promise problem Π into a
D1RE G for the same problem. The construction is inspired by the techniques
of [GSV99]. The encoding G consists of sufficiently many independent copies
of F together with a hash of the randomness used to generate the copies. In
order to achieve disjointness, while keeping privacy, the length of the hash is
chosen such that for yes-instance the hash is close to uniform and in the case of
no-instances the support of the hash output is relatively small.

We note that this construction is non-uniform. That is, the length of the
hash is chosen using a non-uniform advice that depends on the entropy of the
encoding distribution on yes-instances. It is an interesting open question whether
one can give a uniform construction achieving disjointness.

Theorem 6. If the promise problem Π has a (possibly non-uniform) 1RE F ,
then it also has a non-uniform D1RE G. Moreover, if F is uniform then G can
be implemented based on F and an advice of O(log n) bits.

Proof. Let Π be a promise problem that has an ε-private and δ-correct 1RE F ,
where ε and δ are negligible. Let SimF be the simulator showing the privacy of
F on yes-instances. For an input length of n, let m = m(n) = poly(n) denote
the maximum bit-length of the randomness used by SimF and F . We define a
D1RE G(x) for Π as follows:

1. Parameters: q = 106nm2, m′ = qm.
2. Non-uniform advice ` := dm′ −H(Sn)−√qn ·m− 2ne.
3. Input: x ∈ {0, 1}n.

4. Sample randomness r = (r1, . . . , rq)
R← {0, 1}m

′
(where |ri| = m), and a

pair-wise independent hash function h
R← Hm′,`.

5. Output ((F (x; r1), . . . , F (x; rq)), h, h(r)).

To simplify notation, we let Jx(r) = (F (x, r1), . . . , F (x, rq)) and write Jx

to denote the distribution induced by a uniform choice of r
R← Um′ . We let

Sn = ⊗qSimF (1n), and let H denote the family Hm′,`.

We proceed with an analysis of the encoding G, starting with privacy. We
define the simulator SimG(1n) to generate the random variable (Sn, U(H), U`).
Fix some yes-instance x of length n from Π. Our goal is to show that the
statistical distance ε′(n) between SimG(1n) and G(x) is upper-bounded by some
negligible function. First observe that, by the triangle inequality, ε′ is upper-
bounded by

∆(SimG(1n) ; (Jx, U(H), U`)) + ∆((Jx, U(H), U`) ; G(x)). (1)
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By the ε-privacy of the original encoding and by Fact 1 item 3, the first summand
satisfies

∆(SimG(1n) ; (Jx, U(H), U`)) = ∆((Sn, U(H), U`) ; (Jx, U(H), U`))

≤ ∆(Sn, Jx)

≤ qε(n) = neg(n).

It is left to analyze the second summand in (1), i.e., to upper-bound the quantity

∆
r

R←{0,1}m′
,h

R←H
((Jx(r), h, U`) ; (Jx(r), h, h(r))). (2)

Since the first entry is identically distributed in both distributions, it suffices
to analyze the statistical distance between the two tuples conditioned on the
outcome of the first entry Jx. Indeed, we prove the following claim.

Claim 1. With probability 1− 2−Ω(n) over z
R← Jx, it holds that

∆
r

R←{0,1}m′
,h

R←H
([Jx(r), h, U`|Jx(r) = z] ; [Jx(r), h, h(r)|Jx(r) = z]) < 2−Ω(n).

(3)

It follows (by Fact 1 item 4) that (2) is upper-bounded by 2−Ω(n).

Proof (Proof of Claim 1). Recall that on any input x the encoding F uses at
most m random bits, and so any element in its support has weight at least
2−m. Hence, due to the Flattening Lemma 1, the distribution Jx is ∆-flat for

∆ =
√
qm. Since z

R← Jx is (
√
n∆)-typical with probability at least 1−O(2−n),

it suffices to show that (3) holds for every (
√
n∆)-typical z.

Fix some (
√
n∆)-typical z from Jx and consider the distribution (Jx(r), h, h(r))

conditioned on Jx(r) = z. The conditional distribution of r is uniform over the
set J−1x (z). We will show below that

log(|J−1x (z)|) ≥ `+ n (4)

Therefore we can apply the Leftover Hash Lemma 2 to the distribution of r
R←

J−1x (z) with R = {0, 1}` and α = 2−n, and conclude that the distribution of
(Jx(r), h, h(r)) conditioned on Jx(r) = z is O(2−n/3)-close to the distribution
(z, U(H), U`).

It remains to prove (4). First, we show that the entropies H(Jx) and H(Sn)
are close. Indeed, by the privacy of F , we have that ∆(SimF (1n);F (x)) ≤ ε(n)
and therefore (by Fact 1 item 3) ∆(Jx;Sn) ≤ qε(n). Hence, by Fact 1 item 2,
we get that, for all sufficiently large n’s,

|H(Jx)−H(Sn)| ≤ m′qε(n) + 1 ≤ 2, (5)

where the second inequality follows by noting that ε(n) is negligible in n, and
m′, q are polynomials in n. Now, recall that z is (

√
n∆)-typical, and therefore
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log(|J−1x (z)|) ≥ m′ −H(Jx)−
√
n∆. Plugging in (5) we conclude that

log(|J−1x (z)|) ≥ m′ −H(Sn)− 2−
√
n∆

≥ dm′ −H(Sn)−
√
n∆− 2ne︸ ︷︷ ︸

=`

+(n− 3) + n

≥ `+ n,

where the last inequality holds for n ≥ 3. ut

We move on to prove the disjointness property. Fix some no-instance x. Our
goal is to upper-bound

Pr [SimG(1n) ∈ supp(G(x))] = Pr [(Sn, U(H), U`) ∈ supp(G(x))] (6)

by some negligible function. For z
R← Sn, let E = E(z) be the event that

|J−1x (z)| ≤ 2`−n. By marginalizing the probability, we can upper-bound (6) by

Pr
z

R←Sn,h
R←H,w R←{0,1}`

[(z, h, w) ∈ supp(G(x)) | E(z)] + Pr
z

R←Sn

[¬E(z)].

We will show that both the first and second summand are negligible in n.

Claim 2. Pr
z

R←Sn,h
R←H,w R←{0,1}`

[(z, h, w) ∈ supp(G(x)) | E(z)] ≤ 2−n.

Proof. By definition supp(G(x)) = {(Jx(r), h, h(r)) | r ∈ {0, 1}m
′
, h ∈ H}.

Therefore, for any fixed z and h the probability, over w
R← {0, 1}`, that the

triple (z, h, w) lands in supp(G(x)) is exactly

|h(J−1x (z))|
2`

≤ |J
−1
x (z)|
2`

,

which is upper-bounded by 2`−n/2` = 2−n when we condition on E(z). ut

We conclude the proof by showing that for z
R← Sn the event E(z) happens

almost surely.

Claim 3. Pr
z

R←Sn
[log |J−1x (z)| ≤ `− n] ≥ 1− 2−Ω(n).

Proof. Call z good if

z is (
√
n∆)-typical, where ∆ =

√
qm, (7)

and
Pr[Sn = z] ≥ 2q/10 Pr[Jx = z]. (8)

We begin by showing that, except with probability 2−Ω(n), a random z
R← Sn is

good. First, recall that SimF (1n) uses at most m random bits, and so any element
in its support has weight at least 2−m. Hence, due to the Flattening Lemma 1,
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the distribution Sn is ∆-flat for ∆ =
√
qm which implies that a random z

R← Sn
satisfies (7) with probability at least 1−2−Ω(n). Next, we show that, except with

probability 2−Ω(n), a random z
R← Sn satisfies (8). Indeed, due to the correctness

property of F , we have that ∆(SimF (1n);F (x)) ≥ 1/2 which implies (by Fact 1
item 3) that ∆(Sn, Jx) ≥ 1− 2 exp(−q/8). Applying Fact 1 item 5, we conclude
that

Pr
z

R←Sn

[Pr[Sn = z] < tPr[Jx = z]] ≤ t · 2 exp(−q/8),

for any t ≥ 1. Taking t := 2q/10, and noting that

t · 2 exp(−q/8) ≤ 2t · 2−q/8 = 2 · 2q/10 · 2−q/8 = 2−q/40+1 = 2−Ω(n),

we conclude that (8) holds for all but 2−Ω(n)-fraction of the z
R← Sn. It follows,

by a union-bound, that, except with probability 2−Ω(n), a random z
R← Sn is

good.
Finally, we prove that for any good z it holds that log |J−1x (z)| ≤ `− n. By

definition
|J−1x (z)| = 2m

′
· Pr[Jx = z]

and by (8) the latter is upper-bounded by

2m
′−q/10 · Pr[Sn = z].

Recalling that Pr[Sn = z] ≤ 2−H(Sn)+
√
n∆ (since z is

√
n∆-typical) we conclude

that
|J−1x (z)| ≤ 2m

′−q/10−H(Sn)+
√
n∆.

Hence, we get that

log |J−1x (z)| ≤ m′ −H(Sn) +
√
n∆− q/10

≤ d(m′ −H(Sn)−
√
n∆− 2n)e︸ ︷︷ ︸

=`

−n+ (3n+ 3
√
n∆− q/10)︸ ︷︷ ︸
T

.

Since q = 106nm2 the expression T is always negative, and the claim follows.
ut

This completes the proof of Theorem 6. ut

Now we show that if we repeat a D1RE polynomially many times we preserve
the privacy of the encoding on yes-instances and gain the correctness security
property of 1RE.

Theorem 7. Let Π be a promise problem that has an ε-private and ρ-disjoint
D1RE F , where ε and ρ are negligible. Then, there exists G a 1RE for Π that is
ε′-private and δ-correct, where ε′ and δ are negligible.

Proof. For an instance x of length n, we define a randomized encoding G(x) to
be ⊗nF (x). Since F is efficient, the encoding G is also efficient. We prove that
G is a 1RE for Π.
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privacy for yes-instances: Let SimF be the simulator showing the privacy
of F on yes-instances. Define SimG(1n) := ⊗nSimF (1n). Take any yes-instance
x from Π. We have that

∆(SimG(1n);G(x)) = ∆(⊗nSimF (1n);⊗nF (x)) ≤ n · ε(n),

where the last inequality holds due to Fact 1 item 3. Since ε(n) is negligible, we
have that ε′(n) := n · ε(n) is also negligible.

Correctness: Let Z =
⋃
x∈Πno

supp(G(x)). The decoder Dec on input s out-
puts 0 if s ∈ Z; and outputs 1, otherwise. Clearly, a no-instance is always decoded
correctly. For a yes-instance x, we upper-bound the decoding error by showing
that Pr[G(x) ∈ Z] is negligible. Since G is ε′-private on yes-instances, we have
that

Pr[G(x) ∈ Z] ≤ Pr[SimG(1n) ∈ Z] + ε′(n).

By ρ-disjointness, it holds that Pr[SimF (1n) ∈ supp(F (xno))] ≤ ρ(n), for any
no-instance xno. This implies that if we repeat this experiment n times we get
that Pr[SimG(1n) ∈ supp(G(xno))] ≤ ρ(n)n. By a union bound, we conclude
that Pr[SimG(1n) ∈ Z] ≤ 2nρ(n)n, which implies that

Pr[G(x) ∈ Z] ≤ 2nρ(n)n + ε′(n) ≤ neg(n).

The theorem follows. ut

5.2 From NISZKpub to 1RE

In this section we prove that NISZKpub ⊆ 1RE .

Theorem 8. NISZKpub ⊆ 1RE.

Proof. Let Π be a promise problem with (α, β, γ)-NISZKpub proof system con-
sisting of (Prov,Ver,Deal,Simzk), where α, β, γ are negligible. By Theorem 7, it
suffices to show that Π has a (ε, ρ)-D1RE Enc for some negligible ε and ρ. For
an n-bit string x, we define a randomized encoding Enc(x) as follows:

1. Compute (σ, p) = Simzk(x).
2. Compute the bit b = Ver(x, σ, p).
3. If b = 1 output σ, otherwise output a fixed string zn 6∈ supp(Deal(1n)).9

Observe that Enc is efficient because Simzk and Ver are efficient. We prove that
Enc is a D1RE.

Privacy: We define Simyes(1
n) = Deal(1n) and prove that for any yes-instance

x the distribution Simyes(1
n) is ε(n)-close to Enc(x) where ε(n) = α(n)+2·γ(n) =

9 For example, such a z(n) can be efficiently constructed by appending a trailing 1 to
the output of Deal(1n) and setting z(n) to the all-zero string.
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neg(n). Fix some yes-instance x of length n. Due to the zero-knowledge property
of NISZK, we have that

∆
σ

R←Deal(1n)

(Simzk(x), (σ,Prov(x, σ))) ≤ γ(n).

By the definition of the statistical distance, this implies that∣∣∣∣∣ Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) 6= 1]− Pr
(σ,p)

R←Simzk(x)

[Ver(σ, x, p) 6= 1]

∣∣∣∣∣ ≤ γ(n).

Because of the correctness property of NISZK, we have that

Pr
σ

R←Deal(n)

[Ver(σ, x,Prov(x, σ)) 6= 1] ≤ α(n).

This implies that

Pr
(σ,p)

R←Simzk(x)

[Ver(σ, x, p) 6= 1] ≤ α(n) + γ(n).

The latter inequality means that in the execution of Enc(x) the bit b equals
to 1 except with the probability α(n) + γ(n). Hence, ∆(Enc(x);Simzk(x)[1]) ≤
α(n) + γ(n), where Simzk(x)[1] denotes the first component of the tuple output
by the simulator. Because of the zero-knowledge property of NISZK and due to
Fact 1 item 1, we have that ∆(Simzk(x)[1];Deal(1n)) ≤ γ(n). Finally, combining
the last two inequalities, we get that

∆(Enc(x);Deal(1n)) ≤ α(n) + 2 · γ(n) = neg(n).

Disjointness: Let x be a no-instance of Π. Let E ⊆ supp(Deal(1n)) denote
the set of the strings admitting a proof for the no-instance x, i.e., E := {σ ∈
supp(Deal(1n)) | ∃p : Ver(σ, x, p) = 1}. By Enc’s construction we have that
supp(Enc(x)) ⊆ E ∪ {zn}. This implies that

Pr[Deal(1n) ∈ supp(Enc(x))] ≤ Pr[Deal(1n) ∈ E ∪ {zn}]
(?)
= Pr[Deal(1n) ∈ E]

≤ β(n),

where the last inequality follows from the soundness property of NISZK, and the
equality (?) holds because zn 6∈ supp(Deal(1n)).

ut

5.3 From 1RE to NISZKpub

Theorem 9. If the promise problem Π has a (possibly non-uniform) 1RE F ,
then it also has a non-uniform NISZKpub proof system. Moreover, if F is uniform
then the NISZKpub proof system can be implemented based on F and an advice
of O(log n) bits.
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Proof. Let Π ∈ 1RE . Due to Theorem 6, there exists a non-uniform (ε, ρ)-D1RE
Enc for Π such that ε and ρ are negligible. Let s(n) denote the randomness
complexity of the encoding Enc when it is applied to an n-bit input x, and let
Simre be the simulator showing the privacy of Enc on yes-instances. We construct
a proof system (Prov,Ver,Deal,Simzk) for Π as follows:

– Deal: Given 1n, the dealer outputs Simre(1n).
– Prov: Given an n-bit input x and a string σ from Deal, the prover samples

a random r ∈ {0, 1}s(n) subject to Enc(x, r) = σ, and sends it to the
verifier. If no such r exists the prover sends some arbitrary message.

– Ver: Given (x, σ, r), the verifier accepts if Enc(x, r) = σ, and other rejects.
– Simzk: Given x, the simulator Simzk samples a random r and outputs the

pair (Enc(x, r), r).

We show that (Prov,Ver,Deal,Simzk) forms a NISZK for Π.

Completeness: Consider some yes-instance x of length n. Recall that, by the
privacy of D1RE, the simulator’s distribution Simre(1n) is ε(n)-close to Enc(x),
which implies that

Pr[Simre(1n) ∈ supp(Enc(x))] ≥ 1− ε(n).

Hence, except with probability ε(n), for a string σ generated by Simre(1n), the
prover Prov can find r, such that Enc(x, r) = σ.

Soundness: For all no-instances x of Π, we have that

Pr
σ

R←Deal(1n)

[∃p : V (x, σ, p) = 1] = Pr
σ

R←Simre(1n)

[σ ∈ supp(Enc(x))] ≤ δ(n),

where the last inequality follows from the disjointness property of Enc.

Zero Knowledge: For all yes-instances x of Π, we have that

∆
σ

R←Deal(1n)

(Simzk(x) ; (σ,Prov(x, σ))) =

∆
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r), r) ; (σ,Prov(x, σ))) =

∆
σ

R←Simre(1n),r
R←{0,1}s(n)

((Enc(x, r),Prov(x,Enc(x, r))) ; (σ,Prov(x, σ))) ≤

∆
σ

R←Simre(1n),r
R←{0,1}s(n)

(Enc(x, r);σ) ≤

ε(n),

where the second equality follows by recalling that Prov(σ) samples a random
r subject to Enc(x, r) = σ and so (Enc(x, r), r) is identically distributed to
(Enc(x, r),Prov(x,Enc(x, r))), and the first inequality follows from Fact 1 item 1.

ut
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6 If SRE is non-trivial then one-way functions exist

In this section we prove Theorem 3:

Theorem 3 (Restated). If SRE is not in BPP, then infinitely-often one-way
functions exist.

Proof. Assume that infinitely-often one-way functions do not exist. Impagliazzo
and Luby [IL89] showed that in this case every efficiently computable function
g(x) can be “distributionally-inverted” in the following sense: For every inverse
polynomial α(·), there exists an efficient adversary A such that, for random
x ∈ {0, 1}n, the pair (x, g(x)) is α(n)-close to the pair (A(g(x)), g(x)). In other
words, for most x’s, A finds an almost uniform preimage of g(x). We refer to α
as the deviation of the inverter and set it to 1/10.

We will show that such an inverter allows to put SRE in BPP. Let Π be
a promise problem in SRE with ε-private δ-correct statistical encoding Enc for
some negligible ε and δ. Let Simyes and Simno be the simulators of the encoding
and define Sim(b, r) to be a “joint” simulator which takes as an input a single bit
b ∈ {0, 1} and random string r and outputs a sample from Simyes(r) if b = 1 and
from Simno(r) if b = 0.10 We decide Π via the following BPP procedure B: Given

a string x ∈ {0, 1}n, sample an encoding y
R← Enc(x) and α-distributionally

invert the simulator Sim on the string y. Take the resulting preimage (b, r) (where
r is the coins of the simulator) and output the bit b. We analyze the success
probability of deciding Π with this procedure.

Claim 4. The procedure B decides Π with error probability of at most 1/6 +
5δ + ε+ α.

Proof. Let us focus on the case where x ∈ {0, 1}n is a yes-instance (the other case
is symmetric). First consider an “ideal” version B′ of the algorithm B in which
(1) the string y is sampled from Simyes(r) and (2) the distributional inversion
algorithm is perfect and has zero deviation. Observe that the gap between the
error probability of the real algorithm B to the error probability of the ideal
algorithm B′ is at most ε + α (this is due to ε-privacy and to α-deviation of
the actual inverter). Hence, it suffices to show that the ideal version errs with
probability of at most 1/6 + 5δ.

For a given encoding y, the ideal algorithm outputs the right answer b =

1 with probability p1(y)
p0(y)+p1(y)

where p0(y) denotes the weight of y under the

distribution sampled by Simno and p1(y) denotes the weight of y under Simyes.
By the δ-correctness of the encoding and by Fact 1 item 5 (instantiated with

10 We omit the unary input 1n of the simulators, and assume that the randomness com-
plexity m(n) of the simulators uniquely determines the instance length n. Similarly,
we assume that the output of Sim(b, r) uniquely determines n. Both requirements
can be achieved without loss of generality via standard padding conventions. (E.g.,
pad the randomness r and concatenate the input length 1n to the encoding and to
the output of Sim.)
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t = 5), it holds that, except with probability at most 5δ over y
R← Simyes, we

have that p1(y) ≥ 5p0(y). It follows, by a union bound, that the ideal algorithm
errs with probability of at most 5δ + 1/6, as required. ut

It remains to notice, that since δ and ε are negligible and α is an inverse polyno-
mial, we have that Π can be decided with success probability at least 2/3. ut

7 If PRE is hard on the average then CRH exist

In this section we will study the consequences of the existence of an average-case
hard problem Π ∈ PRE .

Definition 5. We say that a promise problem Π = (Πyes, Πno) is hard on
average if there exists an efficient sampler S that given 1n outputs an n-bit
instance of Π such that for every non-uniform efficient algorithm A,∣∣∣∣∣ Pr

x
R←S(1n)

[A(x) = χΠ(x)]− 1/2

∣∣∣∣∣ < neg(n).

We say that the problem has efficient Yes/No samplers if it is possible to effi-
ciently sample from the conditional Yes distribution Yn = [S(1n)|S(1n) ∈ Πyes]
and from the conditional No distribution Nn = [S(1n)|S(1n) ∈ Πno].

A collection of claw-free pseudo-permutations (CFPP) [Dam87,GMR88,Rus95]
is a set of pairs of efficiently computable functions f0, f1 : {0, 1}n → {0, 1}n for
which it is hard to find a pair (u, v) which forms a claw, i.e., f0(u) = f1(v),
or a collapse, i.e., f b(u) = f b(v) and u 6= v for some bit b. Collections of claw-
free permutations (CFPs) correspond to the special case where f0 and f1 are
permutations and so collapses simply do not exist.

Definition 6 (claw-free functions). A collection of pairs of functions consists
of an infinite set of indices, denoted I, finite sets Di for each i ∈ I, and two
functions f0i and f1i mapping Di to Di, respectively. Such a collection is called a
claw-free pseudo-permutations if there exist three probabilistic polynomial-time
algorithms I, D, and F such that the following conditions hold:

Easy to sample and compute: The random variable I(1n) is assigned val-

ues in the set I ∩{0, 1}p(n) for some polynomial p(·). For each i ∈ I, the random
variable D(i) is distributed uniformly over Di. For each i ∈ I, b ∈ {0, 1} and
x ∈ Di, F (b, i, x) = f bi (x).

Hard to form claws: A pair (x, y) satisfying f0i (x) = f1i (y) is called a claw
for index i. Let Ci denote the set of claws for index i. It is required that for every
probabilistic polynomial-time algorithm A,

Pr
i
R←I(1n)

[A(i) ∈ Ci] < neg(n).
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Hard to form collapses: A pair (x, y) satisfying f bi (x) = f bi (y) is called a
collapse for an index i and a bit b. Let Ti,b denote the set of collapses for (i, b).
It is required that for every probabilistic polynomial-time algorithm A and every
b ∈ {0, 1},

Pr
i
R←I(1n)

[A(i) ∈ Ti,b] < neg(n).

If the last item holds for unbounded adversaries, i.e., f0i and f1i are permutations
over Di, then the collection is called a collection of claw-free permutations.

It is known that CFPP’s imply Collision-Resistant Hash functions (CRH) [Rus95].
We will show that the existence of an average-case hard problem Π ∈ PRE im-
plies the existence of CFPPs. We begin with the simpler case in which Π has an
efficient Yes/No samplers and show that, in this case, we obtain a collection of
claw-free permutations.

Theorem 10. If there exists an average-case hard language in PRE with effi-
cient Yes/No samplers then CFPs exist.

We will need the following simple claim.

Claim 5. Let Π be a promise problem with perfect randomized encoding g whose
simulators are Simyes and Simno. Define the functions h0x, h

1
y which are indexed

by a pair of instances (x, y) of Π as follows:

h0x(r, b) =

{
g(x; r), if b = 0,

Simno(r), otherwise;
h1y(r, b) =

{
g(y; r), if b = 0,

Simyes(r), otherwise;
(9)

Then the following holds for any n-bit strings x and y:

1. If x ∈ Πyes, then h0x is a permutation.
2. If y ∈ Πno, then h1y is a permutation.

3. If (x, y) ∈ Πno ×Πyes then Im
(
h0x
)
∩ Im

(
h1y
)

= ∅.

Proof. Let R0 and R1 denote Im(Simno) and Im(Simyes), respectively. Let s(n)
denote the randomness complexity of g and let t(n) denote the output length
of g. Since g is a perfect randomized encoding, we have that R0 ∩ R1 = ∅,
R0 ∪ R1 = {0, 1}t(n), and t(n) = s(n) + 1. Consider the case where x ∈ Πyes.

Then h0x(·, 0) : {0, 1}s(n) → R1 is a bijection and h0x(·, 1) : {0, 1}s(n) → R0. Since

R0 ∩ R1 = ∅, the function h0x(·, ·) is a permutation on R0 ∪ R1 = {0, 1}t(n).
Similarly, if y ∈ Πno, the function h1y(·, ·) is a permutation on {0, 1}t(n).

In order to prove the third item, we observe that if x ∈ Πno, then Im
(
h0x
)

=

R0; and if y ∈ Πyes, then Im
(
h1y
)

= R1. This implies that for all (x, y) ∈
Πno ×Πyes it holds that Im

(
h0x
)
∩ Im

(
h1y
)

= R0 ∩R1 = ∅. ut

We can now prove Theorem 10.
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Proof (Proof of Theorem 10). Let Π be an average-case hard language with
efficient Yes/No samplers (Yn, Nn), and let g be a perfect randomized encoding
for Π. For a pair of inputs (x, y) from Π, we say that (x, y) is a (yes,no)-
instance (resp., (no,yes)), if x is a yes-instance and y is a no-instance (resp., if
x is a no-instance and y is a yes-instance).

We construct a CFP family which is indexed by pairs (x, y) ∈ Πyes ×Πno.

Given a security parameter 1n, an index (x, y) is chosen by sampling x
R← Yn

and y
R← Nn. For each index (x, y) we let f0(x,y) ≡ h0x and f1(x,y) ≡ h1y, where

h0x and h1x are defined as in (9). Recall that the domain and range of f bx,y are

{0, 1}t(n) where t(n) is the output length of g’s output. Clearly this collection
is efficiently samplable and efficiently computable. Moreover, since our sampler
always samples a (yes,no)-instance (x, y), it holds, due to Claim 5, that f0(x,y) ≡
h0x and f1(x,y) ≡ h1y are permutations on {0, 1}t(n). We complete the proof by
showing that claws are hard to find.

Recall that we assume that the distribution ensemble {Yn} is computationally
indistinguishable from {Nn}. By a standard hybrid argument, it follows that
the pair (Yn, Nn) is computationally indistinguishable from the pair (Yn, Yn)
which, in turn, is computationally indistinguishable from the pair (Nn, Yn). Now
assume, for the sake of contradiction, that there exists an efficient algorithm A

that given (x, y)
R← (Yn, Nn) can find claws with non-negligible probability ε.

We can use A to distinguish (Yn, Nn) from (Nn, Yn) as follows: Given (x, y) call
A(x, y) and output 1 if A’s output (u, v) forms a collision under h0x and h1y. By

assumption, the resulting distinguisher outputs 1 when (x, y)
R← (Yn, Nn) with

probability ε. In contrast, when (x, y)
R← (Nn, Yn), the distinguisher never finds

a claw since claws do not exist (due to Claim 5). Hence the distinguisher has a
noticeable advantage of ε, in contradiction to our assumption. ut

We continue by considering the more general case where Π is hard on average
but does not admit efficient Yes/No samplers, and obtain, in this case, claw-
free pseudo-permutations (whose existence still implies collision-resistance hash
functions).

Theorem 11. If there exists an average-case hard language in PRE then claw-
free pseudo-permutations (CFPP) exist.

Proof. The construction is identical to the one presented in Theorem 10, except
that the index (x, y) ∈ Π×Π is chosen by sampling both x and y independently
from the distribution S(1n) over which Π is average-case hard. By definition,
the collection f b(x,y) = hbx, where h is defined as in (9), is efficiently samplable
and efficiently computable. We verify that it is CFPP.

We begin by showing that f0(x,y) = h0x is a pseudo-permutation (the case

of f1(x,y) is analogous). Assume for the sake of contradiction that there is an

algorithm A that can find collapses for f0(x,y) with a non-negligible probability

ε. Using A we construct a new algorithm A′ that has a non-negligible advantage
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in guessing χΠ(x) for x
R← S(1n). Given an input x

R← S(1n), the algorithm
A′ samples y ← S(1n), and then invokes A(x, y) to find a collapse (u, v) for
f0(x,y) = h0x. If A finds a valid collapse (i.e., u 6= v and h0x(u) = h0x(v)), the

algorithm A′ classifies the input x as a no-instance and outputs 0; otherwise A′

outputs a random bit. Recall that when x is a yes-instance the function h0x is
a permutation, and so it does not have collapses. Hence, A′ outputs a correct
answer whenever A finds a collapse. Also, when a collapse is not found, the
success probability of A′ is 1/2. Hence, the overall success probability of A′ is

Pr
x

R←S(1n)
[A′(x) = χΠ(x)] = 1/2 · (1− ε) + 1 · ε = 1/2 + ε/2,

in contradiction to the average-case hardness of Π.
We move on to show that it is hard to find claws. Assume for the sake of

contradiction that there exists an efficient algorithm A that finds claws with a
non-negligible probability ε. We construct a new algorithm A′ that has a non-

negligible advantage in guessing χΠ(x) for x
R← S(1n). Let

p = Pr
x

R←S(1n),y R←S(1n)
[A(x, y) finds a claw |x ∈ Πno].

We distinguish between two cases based on the value of p.
First, consider the case where p ≥ ε/2. Then, by an averaging argument,

there exists some fixed no-instance x0 for which

Pr
y

[A(x0, y) finds a claw ] ≥ ε/2.

Recall that when the index is a (no,yes) pair there are no claws and so when A
finds a claw, y must be a no-instance We can therefore construct a non-uniform

algorithm that decides y
R← S(1n) as follows: Call A(x0, y) and output zero

(“no”) if a collision is found and otherwise toss a random coin. The success
probability is at least ε/2 + (1− ε/2)/2 = 1/2 + ε/4.

Second, consider the case where p < ε/2. In this case, we determine whether

x
R← S(1n) is a yes-instance or a no-instance via the following procedure A′.

Sample y
R← S(1n), and call A(x, y) if A returns a valid claw, outputs 1 (classify

x as a yes-instance); otherwise, output a random bit. The success probability of
A′ can be marginalized as follows:

Pr
x

[A′(x) succeeds ] = Pr
x,y

[A′(x) succeeds |A(x, y) finds a claw ] · ε

+ Pr
x,y

[A′(x) succeeds |A(x, y) doesn’t find a claw ] · (1− ε)

= Pr
x

[x ∈ Πyes|A(x, y) finds a claw ] · ε+ (1− ε)/2,

Therefore, it suffices to show that

Pr
x

[x ∈ Πyes|A(x, y) finds a claw ] ≥ 2/3 (10)
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since this implies that A′ succeeds with probability of at least 2/3 · ε + (1 −
ε)/2 = 1/2 + ε/6. To prove (10), we upper-bound by 1/3 the probability of the
complementary event:

Pr
x

[x ∈ Πno|A(x, y) finds a claw] =

Prx,y[A(x, y) finds a claw|x ∈ Πno] · Prx[x ∈ Πno]

Pr[A(x, y) finds a claw ]
≤

(ε/2) · (2/3)

ε
=

1

3
,

where the inequality follows by our assumption (p < ε/2) and by the fact that
Prx[x ∈ Πno] < 2/3 (since otherwise the trivial adversary that always outputs 0
breaks the average-case hardness of Π over S(1n)). The proof follows. ut
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A Omitted Proofs

A.1 Proof of Item 5 of Fact 1

We prove that if ∆(X;Y ) ≥ 1−ε, then, for any t > 1, it holds that Pr
x

R←X
[Pr[X =

x] < t · Pr[Y = x]] ≤ εt.

Proof. We start by proving an additional claim:

Claim 6. For any two distributions X,Y and a subset S of their domain, it holds
that:

∆(X;Y ) ≤ 1−
∑
x∈S

min(Pr[X = x],Pr[Y = x]).
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Proof.

2 ∆(X;Y ) =
∑
x

|Pr[X = x]− Pr[Y = x]|

=
∑
x 6∈S

|Pr[X = x]− Pr[Y = x]|+
∑
x∈S
|Pr[X = x]− Pr[Y = x]|

≤
∑
x 6∈S

Pr[X = x] +
∑
x 6∈S

Pr[Y = x] +
∑
x∈S
|Pr[X = x]− Pr[Y = x]|

=
∑
x

Pr[X = x] +
∑
x

Pr[Y = x]−∑
x∈S

(Pr[X = x] + Pr[Y = y]− |Pr[X = x]− Pr[Y = x]|)

= 2− 2
∑
x∈S

min(Pr[X = x],Pr[Y = x]).

The last equality holds because
∑
x Pr[X = x] = 1 =

∑
x Pr[Y = x], and for all

a, b we have that a+ b− |a− b| = 2 min(a, b). ut

Now we proceed to the proof of the lemma. Let S := {x | Pr[X = x] <
t · Pr[Y = x]}. Due to the claim, we have that

∆(X;Y ) ≤ 1−
∑
x∈S

min(Pr[X = x],Pr[Y = x]) (11)

We now give a lower bound for each summand min(Pr[X = x],Pr[Y = x]).
Namely, we show that

∀x ∈ S min(Pr[X = x],Pr[Y = x]) ≥ Pr[X = x]/t. (12)

By the construction of S, we have that for any x ∈ S Pr[Y = x] > Pr[X = x]/t.
Hence, min(Pr[X = x],Pr[Y = x]) ≥ min(Pr[X = x],Pr[X = x]/t). Since
t > 1, we have that min(Pr[X = x],Pr[X = x]/t) = Pr[X = x]/t. Combining
inequalities 11 and reeq:part, we get that

∆(X;Y ) ≤ 1−
∑
x∈S

min(Pr[X = x],Pr[Y = x])

≤ 1−
∑
x∈S

Pr[X = x]/t

= 1− Pr[X ∈ S]/t.

Recall that by assumption 1 − ε ≤ ∆(X;Y ), and therefore, we conclude that
ε ≥ Pr[X ∈ S]/t implying that Pr[X ∈ S] ≤ εt. ut
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