
1

Efficient Lattice-based Authenticated Encryption:
A Practice-Oriented Provable Security Approach

Ahmad Boorghany, Siavash Bayat-Sarmadi, Member, IEEE, and Rasool Jalili

Abstract—Lattice-based cryptography has been received significant attention in the past decade. It has attractive properties such as
being a major post-quantum cryptography candidate, enjoying worst-case to average-case security reductions, and being supported by
efficient implementations. In recent years, lattice-based schemes have achieved enough maturity to become interesting also for the
industry. Additionally, authenticated encryption (AE) is another important topic in the community of cryptography. In this paper,
considering two above-mentioned subjects, we propose three lattice-based AEs with an acceptable practical efficiency. These
schemes are provably secure assuming the hardness of elementary lattice problems. That is in contrast to the other practical
provably-secure AEs, which are based on the hardness assumption of another cryptographic primitive, such as AES. Moreover, we
analyze the exact security of these schemes in the paradigm of practice-oriented provable security, while the security proofs of almost
all previous lattice-based schemes are asymptotic. The implementation results show that one of the proposed schemes becomes even
faster than an AES-256-GCM implementation to encrypt messages of length 64 bytes or longer. Particularly, for a 1500-byte message,
this scheme is 34% faster than AES-256-GCM.

Index Terms—Lattice-based cryptography, post-quantum cryptography, authenticated encryption, practice-oriented provable security,
exact security analysis

F

1 INTRODUCTION

LATTICE-based cryptography is one of the main candi-
dates for post-quantum cryptography [1]. The cryp-

tographic schemes based on lattice hard problems are
conjectured to resist against the attacks by a large-scale
quantum computer [2], while the schemes based on the
hardness of integer factorization, integer discrete logarithm,
and also elliptic curve discrete logarithm are completely
vulnerable in this setting [3, 4]. Other advantages of the
lattice-based schemes, in comparison to widely-used ones
based on number theory (such as RSA and ECDSA), are as
follows. Most of the state-of-the-art lattice-based schemes
enjoy a worst-case to average-case security reduction (e.g.,
[5, 6, 7]). Thus, random instances of these schemes (i.e., with
random keys and/or parameters) are provably as hard as
worst-case instances of fundamental lattice problems. Finally,
computations in the lattice-based schemes usually deal with
simple operations on small integer vectors. This way, engi-
neers become enabled to design efficient implementations
on the hardware and software, and taking more advantage
from hardware parallelism, processor pipelines, multiple
cores, and the single-instruction multiple-data (SIMD) fea-
ture. As a result, modern implementations of the lattice-
based schemes are much more efficient than the traditional
alternatives [7, 8, 9, 10, 11, 12].

• A. Boorghany and R. Jalili are with the Data and Network Secu-
rity Lab (DNSL), Department of Computer Engineering, Sharif Uni-
versity of Technology, Tehran, Iran. E-mail: boorghany@ce.sharif.edu,
jalili@sharif.edu.

• S. Bayat-Sarmadi is with the Hardware Security and Trust (HST) Lab,
Department of Computer Engineering, Sharif University of Technology,
Tehran, Iran. E-mail: sbayat@sharif.edu.

Additionally, authenticated encryption (AE) has been
recently received significant attention in the community of
cryptography. AE is a symmetric two-in-one solution for
secure communications, as it provides both confidentiality
and authenticity of the message. The CAESAR competition
[13], started in 2013, is ongoing to select the best secure,
applicable, and robust AE.

The majority of the current lattice-based schemes are
asymmetric. That is mainly due to the computational and
memory complexities of these schemes, which are usually
not acceptable in the symmetric cryptography. Specifically,
to the best of our knowledge, there is no report of any
AE based on lattices. Moreover, the security assumptions
of current practical provably-secure AEs are based on the
security of another cryptographic primitive. For instance,
AES-OCB [14] is an efficient provably-secure AE; however,
it relies on the security of AES, for which the security is
maintained heuristically.

Banerjee et al. [15] introduce a pseudorandom function
(PRF) with a security proof based on lattice problems. PRFs
are widely used in the design of symmetric cryptosystems.
Later, Banerjee et al. [16] propose an efficient instantiation
of this PRF called SPRING. They use SPRING in the counter
(CTR) mode of operation to build a lattice-based symmetric
encryption. Despite the use of the SIMD feature in high-
end processors, their report of the SPRING implementation
shows that the SPRING performance is interestingly com-
parable to the performance of AES.

In this paper, we introduce three authenticated encryp-
tion schemes with the security proofs based on the worst-
case hardness of lattice problems. The proposed schemes,
referred to as LAE1, LAE2, and LAE3, use the SPRING
pseudorandom function as a building block. These AEs have
the following particular advantages over the previous AE

2

constructions and also over other lattice-based schemes.

• Firstly, the proposed schemes are provably-secure
not based on assuming the security of another cryp-
tographic primitive, but on the hardness of well-
studied mathematical problems. As far as we know,
all previous AEs enjoying a security proof, are of the
former type.

• Secondly, the proposed AEs are resistant to quantum
attacks. The best known quantum attack to sym-
metric encryption schemes is based on the work
of Grover [17]. In this attack, any generic sym-
metric encryption with an n-bit key can be broken
in time O(2n/2) using a quantum computer. Thus,
to protect widely-used symmetric encryptions (and
AEs) against large-scale quantum computers, it is
only required to double the key size. However, the
proposed lattice-based schemes are supported by
another quantum resistance conjecture, which pre-
serves even if a better quantum attack is found
against other symmetric cryptosystems.

• Thirdly, as presented in Section 5, the performance
of the best proposed scheme is comparable with
conventional provably-secure AEs.

Finally, we analyze and prove the exact security of
these lattice-based AEs in the paradigm of practice-oriented
provable security. That is in contrast to the security proofs
of most lattice-based schemes, which are asymptotic. Exact
security analysis has important advantages. For instance,
a large security gap is common in an asymptotic analysis,
which may cause a provably secure scheme to be vulner-
able in practice. Moreover, an exact security analysis helps
practitioners to instantiate and parameterize a scheme more
reliably.

The first proposed AE scheme is an encrypt-and-MAC
(E&M) composition. On the encryption part, SPRING is
used in a nonce-based variant of CTR mode. The authentica-
tion part, which ensures the authenticity of both nonce and
message, is a CBC-MAC like XCBC [18], TMAC [19], and
OMAC [20]. There are some challenges to adopt SPRING
to be used in such cryptographic schemes. Most of these
schemes are designed to use a pseudorandom permutation
(PRP), which is the formal model of a block cipher. Some
schemes, such as OCB mode of operation [14], are funda-
mentally dependent on the bijection property of PRPs, and
cannot accept a PRF. Another challenge to utilize SPRING
in cryptosystems is that the SPRING input and output sizes
are not the same. It accepts 128 bits as input and provides
127 bits as output. That introduces a number of padding
and truncation operations, which complicates the security
proof. Moreover, the output is not a multiple of bytes and
causes some obstacles in the implementation (see Section 5).
Another challenge impacting the design of a scheme based
on SPRING is that most significant optimizations can be
achieved only by a certain configuration of SPRINGs (see
Section 3.2).

The second proposed AE scheme is an encrypt-then-
MAC (EtM) composition. The encryption part of the second
scheme is similar to the previous one; however, the use of
SPRING in the authentication part is minimized. Both of
these AEs are two-pass, i.e., they are as inefficient as running

encryption and MAC separately. The third proposed scheme
is designed to be single-pass. Until recently, all single-pass
AEs could not essentially use a PRF instead of a PRP. For
instance, IACBC, IAPM [21], OCB variants [22, 23, 14], and
stateful XECB and ECBC [24] cannot accept a PRF. The de-
sign of the third scheme is inspired by OTR [25]. Minematsu
[25] proposes two variants of OTR, which accept both PRF
and PRP. However, the third scheme cannot directly follow
the PRF-compatible version of OTR because it requires a
variable-input-length PRF (VILPRF), while the SPRING’s
input length is fixed. In this scheme, a tweakable PRF is
created using SPRING.

The implementation results on the Intel Sandy Bridge
and Haswell microarchitectures show that the second pro-
posed scheme is efficient enough to be used in practice and
compete widely-used AEs. On Sandy Bridge, although this
scheme is 12% slower than AES-256-GCM [26] for encrypt-
ing 40-byte messages, it becomes faster for the messages
of length 64 bytes or longer. Particularly, for a 1500-byte
message, this scheme is 34% faster than AES-256-GCM.
A similar result is also achieved on Haswell. The second
proposed scheme is 24% slower for 40-byte messages in
comparison with AES-256-GCM; however, it becomes faster
for 128-byte messages and longer. Additionally, its per-
formance is 15% better than AES-256-GCM for 1500-byte
messages. The main comparison is performed with AES-
256-GCM because the security of this scheme is 128 bits
in the post-quantum setting. The performance comparison
with AES-128-GCM is also presented in Section 5.

For the sake of simplicity, we have not considered com-
mon complementary AE features in the three proposed AE
schemes, such as the support of associated data (AEADs)
[27], nonce misuse-resistance [28], and online environment
requirements.

1.1 Organization
Section 2 introduces the preliminary cryptographic defini-
tions and notations used in this paper. The proposed two-
pass AE schemes and the single-pass one are described in
Section 3 and Section 4, respectively. These sections also
include the design rationale and security proofs of the
constructions. Section 5 is devoted to the implementations
of the proposed schemes. The efficiency and performance
results are also presented in this section. Finally, Section 6
concludes the paper. Some omitted proofs are presented in
Appendix A.

2 PRELIMINARIES

2.1 Notations
msb`(x) is the string consisting of ` most significant bits of
x. padn(x) is the n-bit string obtained by concatenating a 1
and optionally a few 0’s to the right of string x. The notation
n←− is the operator which splits the right-hand string into a

list of n-bit strings, except the last one which may be shorter.
The concatenation of two bit strings a and b is denoted by
a‖b. By x

$←− S , we mean a uniform sampling of x from
the finite set S . Func(n, `) is the set of all functions from
n-bit to `-bit strings. A family of functions F = {FK} is
a set of functions indexed by the key K . AOK(·,·) denotes

3

a machine A with oracle access to OK . The oracle OK(·, ·)
has two inputs under the control of A, however, she cannot
access the parameter K embedded inside.

Polynomial additions and multiplications in GF(2128)
and GF(2127) are performed modulo x128 + x127 + x126 +
x121 + 1 and x127 + x126 + 1, respectively, which are typical
irreducible polynomials. The elements of GF(2n) may be
represented in three ways and be interchanged frequently.
An n-bit string Y = yn−1...y1y0 is equivalent to the poly-
nomial yn−1xn − 1 + ... + y1x + y0 in GF(2n), and is also
equivalent to the number obtained by base-2 interpretation
of Y . For instance, 2Y , 3Y , and 4Y are the multiplication
of polynomials x, x + 1, and x2, respectively, with the
polynomial equivalent to the string Y . Multiplication of a
small constant with a field element can be performed very
efficiently using a few shift and XOR operations.

The success probability or advantage of an adversary
A is denoted by AdvG

S[F](A), where S is the cryptographic
scheme being attacked byA,F is the (family of the) building
block used in S, and G is the security model or security
game in whichA is modeled. $(·) and $(·, ·) are oracles that,
on each query, return a fresh random bit string of specified
length.

2.2 Pseudorandom Functions and Message Authenti-
cation Codes
For the integers n ≥ ` ≥ 1, a family of functions
F =

{
FK : {0, 1}n → {0, 1}`

}
is a pseudorandom function

(PRF) if for any adversary A, with ordinary number of
queries and resources, the following advantage is small:

Advprf
F (A) = Pr[K

$←− K : AFK(.) ⇒ 1]−

Pr[ρ
$←− Func(n, `) : Aρ(.) ⇒ 1]. (1)

A pseudorandom permutation (PRP) is a kind of
PRF containing one-to-one and onto functions with
the same input and output length. A variable-input-
length pseudorandom function (VILPRF) family F ={
FK : {0, 1}∗ → {0, 1}`

}
is an special PRF in which the

input can be a string of arbitrary length.
A message authentication code (MAC)MA = (K, T ,V)

consists of a randomized key generation algorithm K, and
two functions TK(N,M) : {0, 1}w × {0, 1}∗ → {0, 1}τ and
VK(N,M, T) : {0, 1}w×{0, 1}∗×{0, 1}τ → {true, false}
for message tagging and tag verification, respectively. Un-
forgeability under chosen message attack (uf-cma) is the
model to define the security ofMA. This scheme is a secure
MAC if for any adversary A, with ordinary number of
queries and resources, the following advantage is small:

Advuf-cma
MA (A) = Pr[K

$←− K : ATK(.,.),VK(.,.,.) forges]. (2)

A forgery is successful when A makes a query to VK with
two conditions. Firstly, the inputs N , M , and T given to VK
have not been appeared before in any query-response pair
of TK . Secondly, VK does not return false on the query.

2.3 Authenticated Encryption
An authenticated encryption scheme AE = (K, E ,D) is a
tuple of three algorithms. K is the key generation algorithm.

The encryption function E(K,N,M) : {0, 1}k × {0, 1}ω ×
{0, 1}∗ → {0, 1}∗ × {0, 1}τ receives the key, nonce, and
message, and returns the ciphertext and tag (C, T). The
decryption function D(K,N,C, T) : {0, 1}k × {0, 1}ω ×
{0, 1}∗ × {0, 1}τ → {0, 1}∗ ∪ {⊥} performs the inverse
functionality, and returns the plaintext. D may also returns
⊥ in the case of an error. EK(N,M) and DK(N,C, T) are
the same functions, considering the key as a parameter. The
AEs referred in this paper are nonce-based. Therefore, an
extra parameter N is given to E and D as the nonce.
AE should have two security properties, privacy and

authenticity. Formally, a secureAE should provide the indis-
tinguishability under chosen plaintext attack (ind-cpa) and
maintain the integrity of the ciphertext (int-ctxt). No nonce
value N should be repeated in the inputs of the encryption
function E . Otherwise, the privacy or authenticity may not
be guaranteed. Note that a repeated nonce in the inputs of
D, or between the inputs of E and D, is fine. Without loss
of generality, we can assume that all adversaries are nonce-
respecting, i.e., they never send same nonce value to E . The
privacy advantage of an adversary A is defined as follows.

Advind-cpa
AE (A) = Pr[K ← K : AEK(·,·) = 1]−

Pr[A$(·,·) = 1]. (3)

$(·, ·) is an oracle which returns a fresh random string of
length |EK(·, ·)|. Note that $(·, ·) is not queried twice on an
exact input, as A is nonce-respecting.

The authenticity advantage of an adversary A is defined
as follows.

Advint-ctxt
AE (A) = Pr[K ← K : AEK(·,·),DK(·,·,·) forges]. (4)

A forgery is successful when A makes a query to DK with
two conditions. Firstly, the inputs N , C , and T given to
DK have not been appeared before in any query-response
pair of EK . Secondly, DK does not return ⊥ on the query. If
both Advind-cpa

AE (A) and Advint-ctxt
AE (A) are small respecting

any adversary A, with ordinary number of queries and
resources, then AE is a secure authenticated encryption
scheme.

3 TWO-PASS LATTICE-BASED AUTHENTICATED
ENCRYPTION

3.1 Using a CBC-MAC Variant
The first proposed authenticated encryption scheme, re-
ferred to as LAE1, is illustrated in Fig. 1. It is obtained by
an encrypt-and-MAC (E&M) composition of a nonce-based
symmetric encryption scheme and a message authentication
code (MAC). The encryption part is built using SPRING in
the CTR mode, in which the indices given to the SPRINGs
has two segments. The first segment is the nonce N , which
is fixed for all SPRINGs of the encryption part. The second
segment is the block number encoded with a gray-code. The
input and output of SPRING are n and ` bits, respectively.
The length of the nonce is fixed to w bits. The SPRING
functions of the encryption part use K1 as the key. The
authentication part is a variant of CBC-MAC [29]. The
concatenation of the nonce and message are fed into a CBC-
chain of SPRINGs. The SPRINGs in the authentication part
use a different keyK2, in order to ensure a safe composition.

4

𝑁 ∥ gray(1)

SPR𝐾1

𝑀[1]

𝐶[1]

𝑁 ∥ gray(2)

SPR𝐾1

𝑀[2]

𝐶[2]

𝑀[𝑚]

SPR𝐾2

𝑇

𝑁 0ℓ−𝑤 𝑀[2]

SPR𝐾2 SPR𝐾2 SPR𝐾2

𝐾3

(non-full-last-block)

𝑀 𝑚 10∗

𝑇

𝜏 bits

𝑁 ∥ gray(𝑚)

SPR𝐾1

𝑀 𝑚

𝐶[𝑚]

m
sb…

…

𝑀 𝑚

𝑀[1]

SPR𝐾2

𝑀[2]

SPR𝐾2 SPR𝐾2
…

𝑀[1]

SPR𝐾2

2𝐾3

𝜏 bits

𝑁 0ℓ−𝑤

LAE1−Enc

LAE1−MAC

(full-last-block)

Fig. 1: The flow diagram of LAE1 authenticated encryp-
tion procedure; Top is the encryption part (LAE1-Enc), and
bottom is the authentication part (LAE1-MAC), which is
divided into full-last-block and non-full-last-block modes.

In the processing of the last block, another parameter is
XORed with the input of SPRING, which depends on a
third short key K3. The multiplication of 2 by K3, in the
full-last-block case, is performed in GF(2`) using at most
one shift and one XOR. The encryption procedure of LAE1
is shown in Scheme 1. The decryption procedure is easily
obtained by XORing the given ciphertext C with X[i]’s to
obtain M∗, and computing the expected tag T ∗ from M∗

in the forward direction. If T ∗ is the same as the given tag
T , then the successfully decrypted message M∗ is returned.
Otherwise, only a ⊥ is returned.

Design Rationale. The authentication part of LAE1 is
a stand-alone MAC based on SPRING as the underlying
primitive. It is similar to TMAC [19] with a few differences.
TMAC uses a block cipher instead of a PRF. Also, TMAC
does not have a parameter τ to adjust the tag length.
The input and output lengths of the underlying function
in TMAC (i.e., the block cipher) are the same, while the
SPRING output is shorter than its input. There are some
alternatives to be used as a base to construct a SPRING-
based MAC. A structure similar to OMAC [20] may seem
to be advantageous as it requires only one key for the au-
thentication (LAE1 uses two keys K2,K3 for this purpose);
however, it needs an extra invocation of SPRING which is
relatively heavy. Moreover, the length of the extra key K3 is

Scheme 1 (LAE1)
1: procedure AUTHENCRYPT(N,M)
2:

(
M [1], ...,M [m]

) `←−M
3: // LAE1-Enc
4: for i← 1 to m− 1 do
5: Z[i]← SPRK1

(
N‖ gray(i)

)
6: C[i]←M [i]⊕ Z[i]

7: Z[m]← msb|M [m]|

[
SPRK1

(
N‖ gray(m)

)]
8: C[m]←M [m]⊕ Z[m]
9: C ← C[1] ‖...‖C[m]

10: // LAE1-MAC
11: X[0]← N‖ 0`−w

12: Y [0]← SPRK2

(
X[0] ‖ 0n−`

)
13: for i← 1 to m− 1 do
14: X[i]←M [i]⊕ Y [i− 1]
15: Y [i]← SPRK2

(
X[i] ‖ 0n−`

)
16: if

∣∣M [m]
∣∣ = ` then

17: X[m]←M [m]⊕X[m− 1]⊕ 2K3

18: else
19: X[m]← pad`

(
M [m]

)
⊕X[m− 1]⊕K3

20: Y [m]← SPRK2

(
X[m] ‖ 0n−`

)
21: T ← msbτ

(
Y [m]

)
22: return

(
C, T

)

n bits, which is much smaller than the size of the SPRING
keys K1,K2 (see Section 5 for the efficiency results). Similar
to [16], to achieve a better performance, the SPRING input
in the encryption part is designed to be a gray-code counter,
consisting of a fixed part N and the gray-code encoding of
the block number.

A SPRING-based parallel MAC can be built using a
structure similar to PMAC [30]. This makes the authen-
ticated encryption scheme parallel (the encryption part is
already parallel). However, the overall performance is not
so different than LAE1, as the SPRING inputs are again non-
gray-code. As mentioned before, the type of the composition
used in LAE1 is encrypt-and-MAC (E&M). Instead of the
encrypt-then-MAC (EtM) technique in which the ciphertext
is given to the MAC algorithm, E&M allows parallel pro-
cessing of the ciphertext and tag. To build an AE using
the EtM generic composition, Bellare and Namprempre [31]
claim that perfoming a MAC only on the ciphertext is
sufficient. However, Namprempre et al. [32] show that their
results cannot be applied directly to the nonce-based au-
thenticated encryption. Thus, we cannot save one SPRING
invocation by using the EtM technique.

Secure E&M generic compositions are proposed by
Namprempre et al. [32]. LAE1 has some differences with
the proposed constructions in [32]. Mainly, the authors of
this paper insisted on the use of a single key, and derived
subsequent keys via a PRF. However, LAE1 has three differ-
ent keys for the sake of running time efficiency.

3.1.1 Security of LAE1

Theorem 1 and Theorem 2 show the security of LAE1.

Theorem 1 (Privacy of LAE1). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of functions.
For any adversary A to attack the privacy of LAE1[F],
who runs in time t and asks q oracle queries with a
maximum length of m blocks for each query, there exists

5

an adversary P against the pseudorandomness ofF , and
we have

Advind-cpa
LAE1[F](A) ≤ 2Advprf

F (P) +
(4m2 + 1)q2

2`+1
+

q2

2n+1
.

(5)

Moreover, adversary P asks q′ = 2σ + q oracle queries,
and runs in time t′ = 2t + σtF + αn(σ + q), where tF
is the time to compute F , and α is a constant depending
on the model of the computation.

To prove Theorem 1, the following lemmas are required.

Lemma 1 (Privacy of LAE1-Enc). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of func-
tions. For any adversary B to attack the privacy of
LAE1-Enc[F], who asks q queries with total message
length of σ blocks, there exists an adversary P1 against
the pseudorandomness of F , and we have

Advind-cpa
LAE1-Enc[F](B) ≤ Advprf

F (P1). (6)

Moreover, adversary P1 asks q′ = σq oracle queries, and
runs in time t′ = t + αn(σ + q), where α is a constant
depending on the model of the computation.

The proof of Lemma 1 is relevant to the security proof of
[33, Theorem 13].

Lemma 2 (Ideal LAE1-MAC is pseudorandom). Let R =
Func(n, `). For any adversary A asking q queries, each
of which at most m blocks, we have

Advvilprf
LAE1-MAC[R](A) ≤ (4m2 + 1)q2

2`+1
+

q2

2n+1
. (7)

Note that this result is independent of the computational
resources of A.

Proof of Lemma 2. Suppose T is the MAC part of the
LAE1 scheme. We introduce fFCBC as a variant of FCBC
[18], which uses pseudorandom functions. fFCBC[F1, F2, F3]
is a CBC-MAC which calls F1 on the intermediate blocks
and calls either F2 or F3 on the last block, depending on
being a full or partial block. By the definition of the VILPRF
advantage, we have

Advvilprf
LAE1-MAC[R](A) =

Pr[ρ
$←− Func(n, `),K3

$←− {0, 1}n : AT [ρ,K3](·) = 1] −

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) = 1] +

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) = 1] −

Pr[ρ
$←− Func(∗, `) : Aρ(·) = 1].

(8)
We now consider each of these two pairs of probabilities.
The second pair is the information-theoretic security of
fFCBC, which is analyzed in Appendix A.1 and bounded
as follows:

Adv
vilprf
fFCBC[ρ1, ρ2, ρ3](A) ≤ (4m2 + 1)q2

2`+1
. (9)

Note that T [ρ,K3](·) is equivalent to fFCBC[ρ(·), ρ(· ⊕
K3), ρ(· ⊕ 2K3)]. Thus, the first pair of probabilities can be
written as

Pr[ρ
$←− Func(n, `),K3

$←− {0, 1}n : Bρ(·),ρ(·⊕K3),
ρ(·⊕2K3)

= 1] −

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : Bρ1(·),ρ2(·),ρ3(·) = 1],

(10)
where B simply simulates A to distinguish the two sets
of oracles. Computing the advantage of such adversary is
straightforward and it is bounded by q2/2n+1.

Lemma 3 (LAE1-MAC is a VILPRF). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of functions.
For any adversary D to attack the pseudorandomness
of LAE1-MAC[F], there exists an adversary P2 against
pseudorandomness of F , and we have

Advvilprf
LAE1-MAC[F](D) ≤ Advprf

F (P2) +

(4m2 + 1)q2

2`+1
+

q2

2n+1
. (11)

Moreover, adversary P2 asks q′ = (σ+q)q oracle queries,
and runs in time t′ = t+αn(σ+q), where α is a constant
depending on the model of the computation.

Lemma 3 is the complexity-theoretic counterpart of
Lemma 2, which can be proven in a standard way (for
example, see [29, Section 3.2]).

Proof of Theorem 1. Suppose E and T are the Enc and
MAC parts of LAE1, respectively. We derive two adversaries
B and D from A. Both simulate an ind-cpa game for A.
Meanwhile, B tries to break the privacy of LAE1-Enc and
D attempts to distinguish LAE1-MAC from a random func-
tion. B forwards the A’s request to its own oracle to obtain
C . Then, generates a fresh random T and outputs (C, T).
Furthermore, D generates a random key K1. Then, D itself
computes C and invokes its oracle to obtain T . Thus, we
have

Advind-cpa
LAE1[F](A) =

= Pr[AE(·,·),T (·,·) ⇒ 1]− Pr[A$(·,·),T (·,·) ⇒ 1] +

Pr[A$(·,·),T (·,·) ⇒ 1]− Pr[A$(·,·),$(·,·) ⇒ 1]

= Advind-cpa
LAE1-Enc[F](B) + Advvilprf

LAE1-MAC[F](D)

≤ 2Advprf
F (P) +

(4m2 + 1)q2

2`+1
+

q2

2n+1
, (12)

where P can be either P1 or P2 whichever has more
advantage. Additionally, the last inequality is provided by
Lemma 1 and Lemma 3.

Theorem 2 (Authenticity of LAE1). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of func-
tions. For any adversary A to attack the authenticity
of LAE1[F], who runs in time t and asks qe encryption
and qd decryption queries, there exists an adversary P
against the pseudorandomness of F , and we have

Advint-ctxt
LAE1[F](A) ≤ Advprf

F (P) +

(4m2 + 1)q2 + 2

2`+1
+

q2

2n+1
+
qd
2τ
, (13)

where q = qe+qd. Moreover, adversary P asks q′ = σ+q
oracle queries, and runs in time t′ = t+σtF +αn(σ+q),

6

Scheme 2 (LAE2)
1: procedure AUTHENCRYPT(N,M)
2:

(
M [1], ...,M [m]

) `←−M
3: // LAE2-Enc
4: for i← 1 to m− 1 do
5: Z[i]← SPRK1

(
N‖ gray(i)

)
6: C[i]←M [i]⊕ Z[i]

7: Z[m]← msb|M [m]|
[
SPRK1

(
N‖ gray(m)

)]
8: C[m]←M [m]⊕ Z[m]
9: C ← C[1] ‖...‖C[m]

10: // LAE2-MAC
11: Y [0]← 0n

12: for i← 1 to m− 1 do
13: Y [i]←

[
Y [i− 1]⊕

(
C[i] ‖ 0n−`

)]
⊗K2

14: Y [m]←
[
Y [m− 1]⊕

(
C[m] ‖ 0n−|C[m]|)]⊗K2

15: Y [m+ 1]←
(
Y [m]⊕ len(C)

)
⊗K2

16: Y [m+ 2]← msb`
(
Y [m+ 1]

)
⊕ SPRK1

(
N‖ gray(0)

)
17: T ← msbτ

(
Y [m+ 2]

)
18: return

(
C, T

)

where tF is the time to compute F , and α is a constant
depending on the model of the computation.

The proof of Theorem 2 is presented in Appendix A.2.

3.2 Using a Carter-Wegman MAC
LAE1 calls SPRING twice per message block. Moreover,
the performance results in Section 5 show that computing
SPRING is the most time consuming part of the execution.
The idea to design a more efficient scheme is to reduce the
number of SPRING invocations in the authentication part.
We have used the technique of Wegman and Carter [34]
to build a MAC using a universal class of hash functions
and the lattice-based PRF SPRING. In order to apply this
technique, the ciphertext is given to a secret function from
an XOR-universal class of hash functions, and the output is
masked with the PRF output on a fresh and unique input.

Scheme 2 and Fig. 2 show the second proposed lattice-
based AE, referred to as LAE2, using the Carter-Wegman
method [34]. Multiplications in this scheme are performed in
GF(2n). The encryption part is the same as before in LAE1.
The universal class of hash functions utilized in LAE2 is
defined as follows:

Ha(C) = C[1]am+1 + C[2]am + ...+ C[m]a2 + len(C)a.

Here, m = |C|` and the polynomial a ∈ GF(2n) is the
function index. All the operations are performed in GF(2n).

Using an XOR-universal hash function built by iterative
multiplications of a secret polynomial a ∈ GF(2n) is similar
to the NIST-recommended GCM mode of operation [26].
However, GCM encrypts a constant block (zero block) to
derive the second key for authentication, while LAE2 uses
another key K2 to save one SPRING invocation (see the
more detailed discussion in Section 3.1 on a similar case).
Moreover, there are many pad and msb functions involved
because of asymmetry between the input and output length
of SPRING, which should be handled carefully in the secu-
rity proof.

Design Rationale. Although LAE2 is considered as a two-
pass authenticated encryption scheme, the multiplications

𝑁 ∥ gray(0)

𝑁 ∥ gray(1)

SPR𝐾1

𝑀[1]

𝐶[1]

𝑁 ∥ gray(2)

SPR𝐾1

𝑀[2]

𝐶[2]

𝑁 ∥ gray(𝑚)

SPR𝐾1

𝑀 𝑚

𝐶[𝑚]

m
sb…

𝑀 𝑚

…

𝐾2 𝐾2

pad

𝑇

𝜏 bits

SPR𝐾1

𝐾2

LAE2−Enc

LAE2−MAC

𝐾2

len(𝐶)

padpad

m
sb

ℓ

Fig. 2: The flow diagram of LAE2 authenticated encryption
procedure. Top is the encryption part (LAE2-Enc), and bot-
tom is the authentication part (LAE2-MAC).

in GF(2n) can be computed very efficiently. Thus, the au-
thentication part is much more efficient than LAE1. Typical
high-end processors have instruction set extensions to per-
form this operation in a few clock cycles (see Section 5 for
more details on the ones used in our benchmarks). More-
over, when an old or constrained processor is required, or
in the case of hardware implementations, this multiplication
can also be performed efficiently using a moderate-size pre-
computed lookup table. Nevertheless, both LAE1 and LAE2
are not fully parallel, and their authentication part should
be computed sequentially.

It is worth mentioning that replacing the majority
of SPRING functions with polynomial multiplications in
GF(2n) does not introduce any new security assumption
in LAE2. The hardness of lattice problems is still the only
supporting assumption. Thus, many SPRING invocations in
the authentication part of LAE1 are reduced to only one in
LAE2, without any loss in the security level.

3.2.1 Security of LAE2
Theorem 3 and Theorem 4 show the security of LAE2.
Theorem 3 (Privacy of LAE2). Fix n ≥ ` ≥ 1. Let F =
{F : {0, 1}n → {0, 1}`} be a family of functions. For any
adversary A to attack the privacy of LAE2[F], who runs
in time t and asks q oracle queries, each of which has
at most m < 2n−w blocks, there exists an adversary P
against the pseudorandomness of F , and we have

Advind-cpa
LAE2[F](A) ≤ Advprf

F (P). (14)

Moreover, adversary P asks q′ = σ + q oracle queries,
and runs in time t′ = t+(σ+q)t⊗+αn(σ+q), where t⊗
is the time to compute a GF(2n) multiplication, and α is
a constant depending on the model of the computation.

7

Game 1 (G0 for LAE2)
1: procedure AUTHENCRYPT(N,M)
2:

(
M [1], ...,M [m]

) `←−M
3: for i← 1 to m− 1 do
4: if N‖ gray(i) /∈ Dom(F) then
5: F

(
N‖ gray(i)

) $←− {0, 1}`

6: Z[i]← F
(
N‖ gray(i)

)
7: C[i]←M [i]⊕ Z[i]

8: if N‖ gray(m) /∈ Dom(F) then
9: F

(
N‖ gray(m)

) $←− {0, 1}`

10: Z[m]← msb|M [m]|
[
F
(
N‖ gray(m)

)]
11: C[m]←M [m]⊕ Z[m]
12: C ← C[1] ‖...‖C[m]
13: Y [0]← 0n

14: for i← 1 to m− 1 do
15: Y [i]←

[
Y [i− 1]⊕

(
C[i] ‖ 0n−`

)]
⊗K2

16: Y [m]←
[
Y [m− 1]⊕

(
C[m] ‖ 0n−|C[m]|)]⊗K2

17: Y [m+ 1]←
(
Y [m]⊕ len(C)

)
⊗K2

18: if N‖ gray(0) /∈ Dom(F) then
19: F

(
N‖ gray(0)

) $←− {0, 1}`

20: Y [m+ 2]← msb`
(
Y [m+ 1]

)
⊕ F

(
N‖ gray(0)

)
21: T ← msbτ

(
Y [m+ 2]

)
22: return

(
C, T

)
23: procedure AUTHDECRYPT(N,C, T)
24: (C1, ..., Cm)

`←− C
25: Y [0]← 0n

26: for i← 1 to m− 1 do
27: Y [i]←

[
Y [i− 1]⊕

(
C[i] ‖ 0n−`

)]
⊗K2

28: Y [m]←
[
Y [m− 1]⊕

(
C[m] ‖ 0n−|C[m]|)]⊗K2

29: Y [m+ 1]←
(
Y [m]⊕ len(C)

)
⊗K2

30: if N‖ gray(0) /∈ Dom(F) then
31: F

(
N‖ gray(0)

) $←− {0, 1}`

32: Y [m+ 2]← msb`
(
Y [m+ 1]

)
⊕ F

(
N‖ gray(0)

)
33: T ∗ ← msbτ

(
Y [m+ 2]

)
34: if T = T ∗ then
35: wins← true; return true

36: return ⊥

The proof sketch of Theorem 3 is as follows. The problem in
the information-theoretic setting, i.e., when F $←− Func(n, `),
is simple. Both ciphertext C and tag T are XORed with the
output of F . In addition, a nonce-respecting adversary A
always queries with a fresh nonce N . Thus, the distribution
of (C, T) is perfectly uniform. Transition from information-
theoretic to complexity theoretic setting is also standard.

Theorem 4 (Authenticity of LAE2). Fix n ≥ ` ≥ 1. Let F =
{F : {0, 1}n → {0, 1}`} be a family of functions. For any
adversary A to attack the authenticity of LAE2[F], who
runs in time t and asks qe encryption and qd decryption
queries, each of which with a total length of σe and σd
blocks, there exists an adversary P against the pseudo-
randomness of F , and we have

Advint-ctxt
LAE2[F](A) ≤ Advprf

F (P) +
q

2` − q2`−τ
+
qd
2τ
, (15)

where q = qe + qd. Moreover, adversary P asks q′ =
σeqe + qd oracle queries and runs in time t′ = t + (σ +
q)t⊗ + αn(σ + q), where σ = σe + σd, t⊗ is the time

Game 2 (G1,G2 for LAE2)
1: procedure AUTHENCRYPT(N,M)
2:

(
M [1], ...,M [m]

) `←−M
3: for i← 1 to m− 1 do
4: Z[i]

$←− {0, 1}`
5: if N‖ gray(i) ∈ Dom(F) then
6: bad1 ← true; Z[i]← F

(
N‖ gray(i)

)
7: F

(
N‖ gray(i)

)
← Z[i]

8: C[i]←M [i]⊕ Z[i]

9: Z[m]
$←− {0, 1}`

10: if N‖ gray(m) ∈ Dom(F) then
11: bad1 ← true; Z[m]← F

(
N‖ gray(m)

)
12: F

(
N‖ gray(m)

)
← Z[m]

13: Z[m]← msb|M [m]|
[
Z[m]

]
14: C[m]←M [m]⊕ Z[m]
15: C ← C[1] ‖...‖C[m]
16: Y [0]← 0n

17: for i← 1 to m− 1 do
18: Y [i]←

[
Y [i− 1]⊕

(
C[i] ‖ 0n−`

)]
⊗K2

19: Y [m]←
[
Y [m− 1]⊕

(
C[m] ‖ 0n−|C[m]|)]⊗K2

20: Y [m+ 1]←
(
Y [m]⊕ len(C)

)
⊗K2

21: if N‖ gray(0) /∈ Dom(F) then
22: F

(
N‖ gray(0)

) $←− {0, 1}`

23: Y [m+ 2]← msb`
(
Y [m+ 1]

)
⊕ F

(
N‖ gray(0)

)
24: T ← msbτ

(
Y [m+ 2]

)
25: return

(
C, T

)
26: procedure AUTHDECRYPT(N,C, T)
27: (C1, ..., Cm)

`←− C
28: Y [0]← 0n

29: for i← 1 to m− 1 do
30: Y [i]←

[
Y [i− 1]⊕

(
C[i] ‖ 0n−`

)]
⊗K2

31: Y [m]←
[
Y [m− 1]⊕

(
C[m] ‖ 0n−|C[m]|)]⊗K2

32: Y [m+ 1]←
(
Y [m]⊕ len(C)

)
⊗K2

33: if N‖ gray(0) /∈ Dom(F) then
34: F

(
N‖ gray(0)

) $←− {0, 1}`

35: Y [m+ 2]← msb`
(
Y [m+ 1]

)
⊕ F

(
N‖ gray(0)

)
36: T ∗ ← msbτ

(
Y [m+ 2]

)
37: if T = T ∗ then
38: bad2 ← true; wins← true; return true

39: return ⊥

to compute a GF(2n) multiplication, and α is a constant
depending on the model of the computation.

Theorem 4 can be proven in a standard way from Lemma 4.

Lemma 4 (Authenticity of Ideal LAE2). Fix n ≥ ` ≥ 1.
Let R = Func(n, `). For any adversary A asking qe
encryption and qd decryption queries, we have

Advint-ctxt
LAE2[R](A) ≤ q

2` − q2`−τ
+
qd
2τ
, (16)

where q = qe + qd.

Proof of Lemma 4. We use the technique of sequences of
games [35] to prove this result. Game 1 (G0) simulates the
environment of Lemma 4 for the adversary A. There is an
exception that the AUTHDECRYPT procedure in G0 returns
true instead of the message in the case that the forgery is

8

successful. However, this difference can be ignored because
the following equation always holds.

Advint-ctxt
LAE2[R](A) = Pr[GA0 ⇒ wins]. (17)

Note that, without loss of generality, we can assume that
the adversary A is deterministic. Therefore, the probability
is taken only over the random function sampled from R.

G0 models the random function ρ using the lazy sam-
pling technique. The games G1 and G2 are specified in
Game 2. The underlined statements exist only in game G1

and are removed in G2. From the A’s point of view, G0 and
G1 are identical. Thus, the winning probability ofA remains
unchanged from G0 to G1. On the other hand, G1 and G2

are identical until bad. That is, as long as no bad flags (bad1

or bad2) are set to true, these two games are identical for A.
Thus, according to the fundamental lemma of game playing
[36], we have

Pr[GA1 ⇒ wins]− Pr[GA2 ⇒ wins] ≤
Pr[GA2 sets bad1 or bad2]. (18)

However, as the AUTHDECRYPT procedure of G2 always
returns ⊥, we have

Pr[GA2 ⇒ wins] = 0. (19)

Thus, we can conclude

Advint-ctxt
LAE2[R](A) ≤ Pr[GA2 sets bad1 or bad2]

≤ Pr[GA2 sets bad1] + Pr[GA2 sets bad2].
(20)

Note that bad1 never occurs because A is nonce-respecting
and never provides repeated nonces to the AUTHENCRYPT
oracle. This is true even if the nonce value N , given to
AUTHENCRYPT, has been repeatedly used in previous AU-
THDECRYPT queries. We define Pr[GA2 sets bad2 on qi] as
the probability that bad2 is set to true on the i-th query for
the first time. As these probabilities are disjoint, we have

Pr[GA2 sets bad2] =

q∑
i=1

Pr[GA2 sets bad2 on qi]. (21)

Now, we bound Pr[GA2 sets bad2 on qi].
Let Ni, Ci, Ti, and T ∗i be the values appeared in the

AUTHENCRYPT or AUTHDECRYPT procedure of the i-th
query in G2 (not all of them may be defined for each i).
The probability of setting bad2 is zero for the encryption
queries because A is nonce-respecting. For the decryption
queries, we have

Pr[GA2 sets bad2 on qi] = Pr[Ti = T ∗i]. (22)

We claim that the event Ti = T ∗i is independent of all
the previous queries qj (j < i) with Nj 6= Ni. If qj is an
encryption query, the returned Cj is uniformly random and
independent, and Tj is deterministically calculated from Cj .
If qj is a decryption query, the returned ⊥ only reveals that
Tj 6= T ∗j , where T ∗j is independent of the event Ti = T ∗i .

Now, we assume that the adversary A uses the same
nonceN for all the queries prior and include qi, to maximize
the probability of setting bad2 on qi. There are two cases in
this setting:

Case 1: All the previous queries are AUTHDECRYPT,
and are responded by a ⊥. In this case, for j < i, it is

revealed toA that Tj 6= T ∗j = msbτ
(
HK2

(Cj)
)
⊕N∗, where

N∗ = msbτ
(
ρ
(
N‖ gray(0)

))
and is common between all

the queries. Thus, at most 2`−τ choices ofK2 become invalid
after each query. On the other hand, only one of the choices
makes Ti = T ∗i . Therefore, the following equation holds.

Pr[Ti = T ∗i] =
1

2` − (i− 1)2`−τ
. (23)

Case 2: Exactly one of the previous queries is AUTHEN-
CRYPT. Assume that qk (1 ≤ k < i) is that encryption
query. The other queries are all AUTHDECRYPT and are
responded by a ⊥. Thus, A has a tuple (Mk, Ck, Tk) for
which Tk = msbτ

(
HK2

(Ck)
)
⊕ N∗ holds. Due to the fact

that N∗ is an independent and uniformly-random value
(random function F evaluated on fresh nonce N), Tk has
also this property. Hence, the pair (Ck, Tk) causes at most
2`−τ choices of K2 become invalid, and similar to Case 1
equation 23 holds.

Moreover, another strategy is to perform exhaustive
search on the correct tag with an advantage of qd/2τ . Finally,
we can conclude as follows.

Advint-ctxt
LAE2[R](A) ≤

q∑
i=1

1

2` − (i− 1)2`−τ
+
qd
2τ

≤ q

2` − q2`−τ
+
qd
2τ
. (24)

4 SINGLE-PASS LATTICE-BASED AUTHENTICATED
ENCRYPTION

LAE1 and LAE2 perform the encryption and authentica-
tion processes separately, running the underlying primitive
twice per message block. A single-pass AE performs these
tasks in a single processing. To be more specific, it calls the
primitive function or permutation once per input block, in
addition to a few constant number of calls. Firstly, Julta
[21] introduces the first secure single-pass authenticated
encryption IAPM. Rogaway et al. [22] extend this idea to
build OCB, which is a fast and well-featured AE [23, 14].

Scheme 3 is the third proposed AE scheme, referred to
as LAE3. It is derived from a recent AE from Minematsu
[25] called OTR. OTR is an extension to OCB, which uses
a Feistel structure to replace each pair of block ciphers in
OCB with a pair of PRFs. Figure 3 shows the structure
and data flow of LAE3. In this scheme, similar to the last
block of LAE1, a whitening value is XORed with the input
of SPRING to obtain a tweakable PRF. The polynomial
operations in this scheme are performed in GF(2`). Note
that the multiplication of small constants, for instance in
4δ and 2L, are easily computed by some shifts and XORs.
The input of SPRING is truncated to ` bits in LAE3. The
remaining least significant (n−`) bits are padded with zero.

There are two differences between LAE3 and OTR.
Firstly, the block cipher is replaced with a PRF. Although
[25] introduces a PRF-capable version of OTR; however,
there were technical issues about the integration of SPRING
in this scheme. The proposed scheme does not use the OTR
technique to obtain a tweakable PRF from SPRING. Instead,
some whitening value is XORed with the input of SPRING.
The other difference is that the input and output length

9

𝑀[1] 𝑀[2]

SPR𝐾 𝛿 𝐿

SPR𝐾

𝐿

SPR𝐾

δ ⊕ 𝐿

𝐶[1] 𝐶[2]

𝑀[𝑚 − 1] 𝑀[𝑚]

SPR𝐾

2𝑚/2𝐿

SPR𝐾

δ ⊕ 2𝑚/2𝐿

𝐶[𝑚 − 1] 𝐶[𝑚]

𝑁 0ℓ−𝑤

× 4

p
ad

m
sb

𝑀[𝑚]

SPR𝐾

𝐶[𝑚]

m
sb

2 𝑚/2 𝐿

(if 𝑚 is even) (if 𝑚 is odd)

Σ SPR𝐾

3𝐿∗

(if non-full-last-block)
𝑇

𝜏 bits

3𝐿∗⊕𝛿
(if full-last-block)

…

𝑀[3] 𝑀[4]

SPR𝐾

2𝐿

SPR𝐾

δ ⊕ 2𝐿

𝐶[3] 𝐶[4]

Fig. 3: The flow diagram of LAE3 authenticated encryption procedure. For the description of L∗ and Σ, refer to Scheme 3.

Scheme 3 (LAE3)
1: procedure AUTHENCRYPT(N,M)
2: Σ← 0`

3: δ ← SPRK(N ‖ 0`−w)
4: L← 4δ
5:

(
M [1], ...,M [m]

) `←−M
6: for i← 1 to dm/2e do
7: C[2i− 1]← SPRK

(
L⊕M [2i− 1]

)
⊕M [2i]

8: C[2i]← SPRK

(
L⊕ δ ⊕ C[2i− 1]

)
⊕M [2i− 1]

9: Σ← Σ⊕M [2i]
10: L← 2L
11: if m is even then
12: L∗ ← L⊕ δ
13: Z ← SPRK

(
L⊕M [m− 1]

)
14: C[m]← msb|M [m]|(Z)⊕M [m]

15: C[m− 1]← SPRK

(
L∗ ⊕ pad`

(
C[m]

))
⊕M [m− 1]

16: Σ← Σ⊕ Z ⊕ pad`
(
C[m]

)
17: if m is odd then
18: L∗ ← L
19: C[m]← msb|M [m]|

(
SPRK(L∗)

)
⊕M [m]

20: Σ← Σ⊕M [m]

21: if
∣∣M [m]

∣∣ 6= n then
22: T ← msbτ

(
SPRK

(
3L∗ ⊕ Σ

))
23: else
24: T ← msbτ

(
SPRK

(
3L∗ ⊕ δ ⊕ Σ

))
25: C ← C[1] ‖...‖C[m]
26: return

(
C, T

)

of SPRING are not equal. We use only ` bits of SPRING
input (padding it with zeroes) to make the input and output
length the same.

Design Rationale. There are few proposals for single-pass
non-lattice-based authenticated encryption in the literature.
The methods of IAPM [21] and OCB [22, 23, 14] cannot
be followed in the case of SPRING. In these schemes,
the plaintext is directly fed into the underlying primitive

function and the output becomes a part of the ciphertext.
PRFs are not useful in this setting because a PRF is not
necessarily a bijection; hence, it has data loss. Only a pseu-
dorandom permutation (e.g., a block cipher) can be used
in such designs. Minematsu [25] introduces OTR as a PRF-
capable single-pass AE. OTR utilizes the tweak-prepending
technique to construct a tweakable PRF from a normal one.
Unfortunately, this technique cannot be applied to SPRING.
That is because SPRING has a fixed and short input length
n, while tweak-prepending requires a variable-input-length
PRF or one with a large-enough input length. Alternatively,
the input whitening technique is used in LAE3. In this case,
the outputs of some functions of an XOR-universal class is
XORed with the input of SPRINGs to make a tweakable
PRF. As a final note, LAE3 requires a fresh δ for each nonce
N . Thus, we cannot save a SPRING invocation, similar to
LAE1, by introducing a second key.

4.1 Security of LAE3

Theorem 5 and Theorem 6 show the security of LAE3.

Theorem 5 (Privacy of LAE3). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of functions.
For any adversary A to attack the privacy of LAE3[F],
who runs in time t and asks q encryption queries, with
a maximum total length of σ blocks, there exists an
adversary P against the pseudorandomness of F , and
we have

Advind-cpa
LAE3[F](A) ≤ Advprf

F (P) +
6(q + σ)2

2`
. (25)

Moreover, adversary P asks q′ = σ + 2q oracle queries,
and runs in time t′ = t+α`(σ+q), where α is a constant
depending on the model of the computation.

Theorem 6 (Authenticity of LAE3). Fix n ≥ ` ≥ 1. Let
F = {F : {0, 1}n → {0, 1}`} be a family of func-
tions. For any adversary A to attack the authenticity of
LAE3[F], who runs in time t and asks qe encryption and

10

qd decryption queries, with a maximum total length of
σe and σd blocks, respectively, there exists an adversary
P against the pseudo-randomness of F , and we have

Advint-ctxt
LAE3[F](A) ≤ Advprf

F (P) +

6(qe + qd + σe + σd)
2

2`
+
qd
2τ
. (26)

Moreover, adversaryP asks q′ = qe+qd+σe+σd number
of oracle queries, and runs in time t′ = t+ α`(σe + σd +
2qe+2qd), where α is a constant depending on the model
of the computation.

The proof of Theorem 5 and Theorem 6 are similar to the
privacy and authenticity proofs of OTR [25, Theorems 1 and
2]. The main difference is that the associated data is not
involved in the proof because LAE3 does not support it.

5 COMPARISON AND PERFORMANCE RESULTS

In this section, the efficiency and performance results of
the proposed schemes are reported. These schemes are
implemented with moderate optimizations. The target of the
implementations are high-end processors because single-
instruction multiple-data (SIMD) instructions are utilized to
speed up polynomial operations of the lattice-based AEs.
The source code of the implementations are integrated
into the OpenSSL framework to be benchmarked along
with the optimized implementation of AES-128-GCM and
AES-256-GCM in OpenSSL. GCM [26] is an efficient and
widely-used authenticated encryption mode of operation.
AES-128-GCM and AES-256-GCM are two instantiations
of GCM using 128-bit and 256-bit AES, respectively. The
implemented lattice-based schemes are parameterized with
n = 128, ` = 127, and w = 96 to claim 128-bit security
in the pre- and post-quantum setting. Consequently, AES-
256-GCM is also included in the comparison which is 128-
bit secure in the post-quantum setting. The three proposed
schemes LAE1, LAE2, and LAE3 are implemented based
on the SPRING implementation provided by its designers
[16]. The implementation of the SPRING function in LAE3
and in the authentication part of LAE1 cannot make use of
the optimizations introduced in [16, Section 3] regarding the
gray-code input.

The proposed schemes are implemented in C++ and
integrated with the benchmark of OpenSSL version 1.0.1i.
The OpenSSL benchmark is modified to feed more variable
sizes of input, and use the “rdtsc” instruction to count the
processor clocks. The instruction set of the Intel Carry-Less
Multiplication (CLMUL) is used to multiply polynomials
in GF(2128). The benchmarking process is executed one
CPU core. The source code is compiled using GCC version
4.8.2. Two compiler options “-O3” and “-march=native” are
specified in order to configure the compiler to generate
optimized codes according to the targeted processors. Thus,
the source code is recompiled on each targeted machine.
The Intel SSE2 instruction set is utilized indirectly by using
vector processing features of GCC. OpenSSL, as well as
the integrated new schemes, were built into a 64-bit binary
executable. The benchmark is run on a 64-bit Linux machine
with kernel version 3.13.30. Two Intel CPUs are used in
the experiments. The first one is Intel Core i3-2120 running

TABLE 1: The percentage increase or decrease of the encryp-
tion clock cycles of the proposed schemes LAE1, LAE2, and
LAE3 in comparison to AES-256-GCM on the Sandy Bridge
microarchitecture.

Scheme Sample input lengths (byte)
16 40 64 128 1500

LAE1 450% 205% 186% 135% 87%
LAE2 74% 12% -3% -19% -34%
LAE3 367% 146% 119% 72% 28%

AES-128-GCM -23% -22% -25% -27% -29%
AES-256-GCM 0% 0% 0% 0% 0%

TABLE 2: The percentage increase or decrease of the en-
cryption clock cycles of the proposed schemes LAE1, LAE2,
and LAE3 in comparison to AES-256-GCM on the Haswell
microarchitecture.

Scheme Sample input lengths (byte)
16 40 64 128 1500

LAE1 470% 222% 206% 156% 114%
LAE2 80% 24% 9% -2% -15%
LAE3 374% 151% 123% 76% 36%

AES-128-GCM -23% -27% -25% -28% -26%
AES-256-GCM 0% 0% 0% 0% 0%

at 3.30GHz with Sandy Bridge microarchitecture, and the
second one is Intel Core i7-4770 running at 3.4GHz with
Haswell microarchitecture.

Figure 4 shows the processor clock cycles on Intel Sandy
Bridge and Haswell microarchitectures, running the encryp-
tion procedure of LAE1, LAE2, and LAE3. The lengths
chosen for the plaintexts are powers of 2 and 10 bytes in
order to cover both complete and incomplete last blocks,
as well as common IP packet sizes 40, 576, 1300, and 1500
bytes. Note that OpenSSL is configured not to use AES-NI
instruction set of Intel CPUs for AES-128-GCM and AES-
256-GCM.

Although LAE3 is single-pass, it is not more efficient
than the two-pass LAE2. That is due to the optimiza-
tion techniques applied on the lattice-based PRF SPRING.
SPRING is very efficient if it runs multiple times given
the values of a gray-code counter. In this environment,
the aggregated computation of each SPRING is reduced
significantly. In the case of LAE1, only the encryption
part enjoys the optimization for the gray-code input. As
an improvement, the authentication part of LAE2 utilizes
GF(2128) multiplications instead of a chain of SPRINGs.
There is only one SPRING invocation in the authentication
part, which is also in the sequence of the encryption gray-
code counter. Therefore, SPRING computation is highly
optimized in LAE2. The authentication pass is removed in
LAE3, though, the SPRING’s inputs are no longer from a
gray-code counter, resulting to a less efficient scheme than
LAE2. All the three proposed schemes are computationally
heavy for very short plaintexts (e.g., less than 40 bytes). Only
LAE2 becomes good for larger inputs. This phenomena
is common in symmetric encryption schemes, however, it
is a more considerable issue in the case of the proposed

11

0

50

100

150

200

250

300

350

C
lo

ck
 c

yc
le

s
/

b
yt

e

LAE1 LAE2 LAE3 AES-128-GCM AES-256-GCM

0

50

100

150

200

250

300

350

C
lo

ck
 c

yc
le

s
/

b
yt

e

20

30

40

50

60

70

80

90

100

110

Sandy Bridge

Message length (byte)

Haswell

0

50

100

150

200

250

300

350

C
lo

ck
 c

yc
le

s
/

b
yt

e

20

30

40

50

60

70

80

90

100

110

Fig. 4: Performance results of the proposed schemes LAE1, LAE2, and LAE3 (encryption procedure), compared with AES-
128-GCM and AES-256-GCM. The implementations are executed on one core of Intel Core i3-2120 with Sandy Bridge
microarchitecture, and on one core of Intel Core i7-4770 with Haswell microarchitecture.

lattice-based schemes because the saving in the aggregated
computation of SPRINGs is substantial.

Table 1 and Table 2 present the percentage increase or
decrease of the clock cycles of LAE1, LAE2, and LAE3 in
comparison to the clock cycles of AES-256-GCM, for the
Sandy Bridge and Haswell microarchitectures, respectively.
LAE2 becomes faster than AES-256-GCM from the messages
of length 64 bytes and 128 bytes for Sandy Bridge and
Haswell microarchitectures, respectively. It is noted that,
on the Sandy Bridge processor the performance of LAE2
advances above AES-128-GCM for 512-byte and longer mes-
sages. For a message of length 1500 bytes, LAE2 encryption
performs 8% faster than AES-128-GCM. Table 3 also shows
the comparison of key sizes between the proposed schemes

and the two references AES-128-GCM and AES-256-GCM.
Like most lattice-based cryptographic schemes, the key sizes
of the proposed AEs are very large. These sizes are for the
key before applying the fast Fourier transform (FFT).

6 CONCLUSION

In this paper, we have proposed three authenticated en-
cryption (AE) schemes LAE1, LAE2, and LAE3, which
enjoy a security proof based on hard lattice problems.
These AE schemes have an important property that they
are based on the hardness of a mathematical problem (a
lattice basic problem). That is in contrast to the previous
practical provably-secure AEs based on the heuristic hard-
ness of a cryptographic primitive, such as a block cipher.

12

TABLE 3: Key sizes of the proposed schemes LAE1, LAE2,
and LAE3 in comparison with AES-128-GCM and AES-256-
GCM.

Scheme Key Size (bits)

LAE1 98431 (2× 49152 + 127)

LAE2 49280 (49152 + 128)

LAE3 49152

AES-128-GCM 128
AES-256-GCM 256

Moreover, inheriting the conjectured quantum-resistance of
lattice problems, the proposed schemes are secure against
quantum attacks. In addition, we have analyzed and proved
the exact security of these schemes in the practice-oriented
provable security paradigm. This approach is not common
in lattice-based cryptography; however, mitigates many
security risks that provably-secure schemes have in prac-
tice. The implementation results on the Intel Sandy Bridge
and Haswell microarchitectures show that LAE2 is efficient
enough to be used in practice and to compete widely-used
AEs. For instance, LAE2 becomes faster than AES-256-GCM
on Sandy Bridge to encrypt messages of length 64 bytes or
longer. Particularly, for a 1500-byte message, this scheme
is 34% faster than AES-256-GCM. The main comparison
is performed with AES-256-GCM because this scheme and
LAE2 are both 128-bit secure in the post-quantum setting.

ACKNOWLEDGMENTS

The authors would like to thank Banerjee et al. [16] for
providing the source code of their SPRING implementation.
They also thank Mohammad Razeghi for his help in the
implementation of the proposed schemes.

REFERENCES

[1] D. J. Bernstein, “Introduction to post-quantum cryptog-
raphy,” in Post-Quantum Cryptography, D. J. Bernstein,
J. Buchmann, and E. Dahmen, Eds. Springer Berlin
Heidelberg, 2009, pp. 1–14.

[2] C. Peikert, “A Decade of Lattice Cryptography,” ePrint
IACR, Tech. Rep. 939, 2015.

[3] P. W. Shor, “Algorithms for quantum computation:
discrete logarithms and factoring,” in Foundations of
Computer Science, 1994 Proceedings., 35th Annual Sym-
posium on. IEEE, 1994, pp. 124–134.

[4] J. Proos and C. Zalka, “Shor’s Discrete Logarithm
Quantum Algorithm for Elliptic Curves,” Quantum
Info. Comput., vol. 3, no. 4, pp. 317–344, Jul. 2003.

[5] R. Lindner and C. Peikert, “Better Key Sizes (and
Attacks) for LWE-Based Encryption,” in Topics in Cryp-
tology – CT-RSA 2011, ser. Lecture Notes in Computer
Science, A. Kiayias, Ed. Springer, 2011, no. 6558, pp.
319–339.

[6] D. Micciancio and C. Peikert, “Trapdoors for Lattices:
Simpler, Tighter, Faster, Smaller,” in Advances in Cryp-
tology – EUROCRYPT 2012, ser. Lecture Notes in Com-
puter Science, D. Pointcheval and T. Johansson, Eds.
Springer, 2012, no. 7237, pp. 700–718.

[7] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky,
“Lattice Signatures and Bimodal Gaussians,” in Ad-
vances in Cryptology – CRYPTO 2013, ser. Lecture Notes
in Computer Science, R. Canetti and J. A. Garay, Eds.
Springer, 2013, no. 8042, pp. 40–56.

[8] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and
S. Huss, “On the Design of Hardware Building Blocks
for Modern Lattice-Based Encryption Schemes,” in
Cryptographic Hardware and Embedded Systems – CHES
2012, ser. Lecture Notes in Computer Science, E. Prouff
and P. Schaumont, Eds. Springer, 2012, no. 7428, pp.
512–529.

[9] T. Oder, T. Pöppelmann, and T. Güneysu, “Beyond
ECDSA and RSA: Lattice-based Digital Signatures on
Constrained Devices,” in Proceedings of the 51st Annual
Design Automation Conference, ser. DAC ’14. New York,
NY, USA: ACM, 2014, pp. 110:1–110:6.

[10] A. Boorghany and R. Jalili, “Implementation and Com-
parison of Lattice-based Identification Protocols on
Smart Cards and Microcontrollers,” ePrint IACR, Tech.
Rep. 078, 2014.

[11] A. Boorghany, S. Bayat Sarmadi, and R. Jalili, “On
Constrained Implementation of Lattice-based Cryp-
tographic Primitives and Schemes on Smart Cards,”
IACR Cryptology ePrint Archive, vol. Report 2014/514,
2014.

[12] R. Azarderakhsh, Z. Liu, H. Seo, and H. Kim, “NEON
PQCryto: Fast and Parallel Ring-LWE Encryption on
ARM NEON Architecture,” ePrint IACR, Tech. Rep.
1081, 2015.

[13] “CAESAR: Competition for Authenticated Encryp-
tion: Security, Applicability, and Robustness,” http:
//competitions.cr.yp.to/caesar-call.html, 2013.

[14] T. Krovetz and P. Rogaway, “The Software Performance
of Authenticated-Encryption Modes,” in Fast Software
Encryption, ser. Lecture Notes in Computer Science,
A. Joux, Ed. Springer, Jan. 2011, no. 6733, pp. 306–
327.

[15] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom
Functions and Lattices,” in Advances in Cryptology –
EUROCRYPT 2012, ser. Lecture Notes in Computer Sci-
ence, D. Pointcheval and T. Johansson, Eds. Springer,
2012, no. 7237, pp. 719–737.

[16] A. Banerjee, H. Brenner, G. Leurent, C. Peikert, and
A. Rosen, “SPRING: Fast Pseudorandom Functions
from Rounded Ring Products,” in Fast Software Encryp-
tion, ser. Lecture Notes in Computer Science, C. Cid
and C. Rechberger, Eds. Springer Berlin Heidelberg,
Mar. 2014, no. 8540, pp. 38–57.

[17] L. K. Grover, “A Fast Quantum Mechanical Algorithm
for Database Search,” in Proceedings of the Twenty-eighth
Annual ACM Symposium on Theory of Computing, ser.
STOC ’96. New York, NY, USA: ACM, 1996, pp. 212–
219.

[18] J. Black and P. Rogaway, “CBC MACs for Arbitrary-
Length Messages: The Three-Key Constructions,” Jour-
nal of Cryptology, vol. 18, no. 2, pp. 111–131, Apr. 2005.

[19] K. Kurosawa and T. Iwata, “TMAC: Two-Key CBC
MAC,” in Topics in Cryptology — CT-RSA 2003, ser. Lec-
ture Notes in Computer Science, M. Joye, Ed. Springer
Berlin Heidelberg, 2003, no. 2612, pp. 33–49.

http://competitions.cr.yp.to/caesar-call.html
http://competitions.cr.yp.to/caesar-call.html

13

[20] T. Iwata and K. Kurosawa, “OMAC: One-Key CBC
MAC,” in Fast Software Encryption, ser. Lecture Notes in
Computer Science, T. Johansson, Ed. Springer Berlin
Heidelberg, 2003, no. 2887, pp. 129–153.

[21] C. S. Jutla, “Encryption Modes with Almost Free Mes-
sage Integrity,” in Advances in Cryptology — EURO-
CRYPT 2001, ser. Lecture Notes in Computer Science,
B. Pfitzmann, Ed. Springer Berlin Heidelberg, Jan.
2001, no. 2045, pp. 529–544.

[22] P. Rogaway, M. Bellare, and J. Black, “OCB: A Block-
cipher Mode of Operation for Efficient Authenticated
Encryption,” ACM Trans. Inf. Syst. Secur., vol. 6, no. 3,
pp. 365–403, Aug. 2003, oCB1.

[23] P. Rogaway, “Efficient Instantiations of Tweakable
Blockciphers and Refinements to Modes OCB and
PMAC,” in Advances in Cryptology - ASIACRYPT 2004,
ser. Lecture Notes in Computer Science, P. J. Lee, Ed.
Springer, Jan. 2004, no. 3329, pp. 16–31, oCB2.

[24] V. D. Gligor and P. Donescu, “Fast Encryption and
Authentication: XCBC Encryption and XECB Authenti-
cation Modes,” in Fast Software Encryption, ser. Lecture
Notes in Computer Science, M. Matsui, Ed. Springer
Berlin Heidelberg, Apr. 2001, no. 2355, pp. 92–108.

[25] K. Minematsu, “Parallelizable Rate-1 Authenticated
Encryption from Pseudorandom Functions,” in Ad-
vances in Cryptology – EUROCRYPT 2014, ser. Lecture
Notes in Computer Science, P. Q. Nguyen and E. Os-
wald, Eds. Springer Berlin Heidelberg, Jan. 2014, no.
8441, pp. 275–292.

[26] D. A. McGrew and J. Viega, “The Security and Perfor-
mance of the Galois/Counter Mode (GCM) of Opera-
tion,” in Progress in Cryptology - INDOCRYPT 2004, ser.
Lecture Notes in Computer Science, A. Canteaut and
K. Viswanathan, Eds. Springer, Jan. 2005, no. 3348,
pp. 343–355.

[27] P. Rogaway, “Authenticated-encryption with
Associated-data,” in Proceedings of the 9th ACM
Conference on Computer and Communications Security,
ser. CCS ’02. New York, NY, USA: ACM, 2002, pp.
98–107.

[28] P. Rogaway and T. Shrimpton, “A Provable-Security
Treatment of the Key-Wrap Problem,” in Advances in
Cryptology - EUROCRYPT 2006, ser. Lecture Notes in
Computer Science, S. Vaudenay, Ed. Springer Berlin
Heidelberg, May 2006, no. 4004, pp. 373–390.

[29] M. Bellare, J. Kilian, and P. Rogaway, “The Security
of the Cipher Block Chaining Message Authentication
Code,” Journal of Computer and System Sciences, vol. 61,
no. 3, pp. 362–399, Dec. 2000.

[30] J. Black and P. Rogaway, “A Block-Cipher Mode of
Operation for Parallelizable Message Authentication,”
in Advances in Cryptology — EUROCRYPT 2002, ser.
Lecture Notes in Computer Science, L. R. Knudsen, Ed.
Springer Berlin Heidelberg, 2002, no. 2332, pp. 384–397.

[31] M. Bellare and C. Namprempre, “Authenticated En-
cryption: Relations among Notions and Analysis of the
Generic Composition Paradigm,” Journal of Cryptology,
vol. 21, no. 4, pp. 469–491, Oct. 2008.

[32] C. Namprempre, P. Rogaway, and T. Shrimpton, “Re-
considering Generic Composition,” in Advances in
Cryptology – EUROCRYPT 2014, ser. Lecture Notes in

Computer Science, P. Q. Nguyen and E. Oswald, Eds.
Springer Berlin Heidelberg, May 2014, no. 8441, pp.
257–274.

[33] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A
concrete security treatment of symmetric encryption,”
in , 38th Annual Symposium on Foundations of Computer
Science, 1997. Proceedings, Oct. 1997, pp. 394–403.

[34] M. N. Wegman and J. L. Carter, “New hash functions
and their use in authentication and set equality,” Jour-
nal of Computer and System Sciences, vol. 22, no. 3, pp.
265–279, Jun. 1981.

[35] V. Shoup, “Sequences of games: a tool for taming
complexity in security proofs,” ePrint IACR, Tech. Rep.
332, 2004.

[36] M. Bellare and P. Rogaway, “The Security of Triple
Encryption and a Framework for Code-Based Game-
Playing Proofs,” in Advances in Cryptology - EURO-
CRYPT 2006, ser. Lecture Notes in Computer Science,
S. Vaudenay, Ed. Springer Berlin Heidelberg, May
2006, no. 4004, pp. 409–426.

Ahmad Boorghany received the B.Sc. degree
in software engineering and the M.Sc. degree
in information technology, in 2010 and 2012,
respectively, both from the Sharif University of
Technology, Tehran, Iran. He is now a Ph.D. can-
didate in computer engineering, in the Depart-
ment of Computer Engineering, Sharif University
of Technology. His research interests are lattice-
based and modern cryptography, provable secu-
rity, and building efficient cryptographic schemes
and protocols. He is a member of the Interna-

tional Association for Cryptologic Research (IACR).

Siavash Bayat-Sarmadi received the B.Sc. de-
gree from the University of Tehran, Iran, in 2000,
the M.Sc. degree from Sharif University of Tech-
nology, Tehran, Iran, in 2002, and the PhD de-
gree from the University of Waterloo in 2007,
all in computer engineering (hardware). He was
with Advanced Micro Devices, Inc. for about 6
years. Since September 2013, he has been a
faculty member in the Department of Computer
Engineering, Sharif University of Technology. He
has served on the executive committees of sev-

eral conferences. His research interests include hardware security and
trust, cryptographic computations, and secure, efficient and dependable
computing and architectures. He is a member of the IEEE.

Rasool Jalili received his B.S. degree in Com-
puter Science from Ferdowsi University of Mash-
had in 1985, and M.S. degree in Computer Engi-
neering from Sharif University of Technology in
1989. He received his Ph.D. in Computer Sci-
ence from The University of Sydney, Australia, in
1995. He then joined the Department of Com-
puter Engineering, Sharif University of Technol-
ogy in 1995. He has published more than 140
papers in international journals and conference
proceedings. He is now an associate professor,

doing research in the areas of computer dependability and security,
access control, distributed systems, and database systems in his Data
and Network Security Laboratory (DNSL).

14

APPENDIX A
OMITTED PROOFS

A.1 Security of fFCBC
In this section, the information-theoretic security of fFCBC
is presented. At first, suppose fCBC is the plain CBC mode,
instantiated with a PRF function. The collision probability
of fCBC is defined as follows.

Coln,`(m,m
′) = max

M 6=M ′

{
Pr
[
ρ

$←− Func(n, `) :

fCBCρ(M) = fCBCρ(M
′)
]}
, (27)

where the messages M,M ′ are chosen from {0, 1}m` and
{0, 1}m′`, respectively.
Lemma 5 (Collision resistance of fCBC). Fix m,m′ ≥ 1. The

following bound holds for the fCBC collision probability.

Coln,`(m,m
′) ≤ (m+m′)2 + 1

2`
(28)

The proof of Lemma 5. Fix two messages M,M ′, where |M | =
m`, |M ′| = m′`, and M 6= M ′. Moreover, assume that the
first k blocks of M and M ′ are equal (k may be zero). Now,
Game 3 presents the computation of two fCBC functions.
The collision is occurred when Ym = Y ′m′ .

Consider the case that the bad flag is never set to true.
Then, all the Yi and Y ′i variables in lines 13 and 19, are set
to uniform and independent values. Thus, if k < m and
k < m′, or if either k = m or k = m′ (but not both, because
M 6= M ′), then Ym and Y ′m′ are uniformly distributed and
independent. Thus, we have

Pr[Ym = Y ′m′ | bad = false] =
1

2`
, (29)

where the probability is taken over the random function ρ.
Moreover, the following equations hold.

Coln,`(m,m
′) = Pr[Ym = Y ′m′] =

Pr[Ym = Y ′m′ ∧ bad = false] +

Pr[Ym = Y ′m′ ∧ bad = true], (30)

Pr[Ym = Y ′m′ ∧ bad = false] ≤
Pr[Ym = Y ′m′ ∧ bad = false]

Pr[bad = false]
=

Pr[Ym = Y ′m′ | bad = false] =
1

2`
, (31)

Pr[Ym = Y ′m′ ∧ bad = true] ≤ Pr[bad = true]. (32)

Thus, we have

Coln,`(m,m
′) ≤ Pr[bad = true] +

1

2`
. (33)

Now, to bound the probability of setting the bad flag, note
that it is set to true in lines 5, 11, and 17. Just before these
lines Xi or X ′i is assigned, and if it is in the domain of ρ, the
bad flag is set. For the case that the bad flag has not been
yet set to true, the value assigned to Xi or X ′i is uniformly-
random and independent. That is because the value of Yi−1
or Y ′i−1 is uniformly-random and independent, and it is
XORed with the message to form Xi or X ′i . If there are i− 1
values in the domain of ρ, the probability of a collision for

Game 3 (The game of fCBC collision)
1: bad← false; Dom(ρ)← φ
2: for i← 1 to k do
3: if i = 1 then Xi ← X ′i ←M1

4: else Xi ← X ′i ← Yi−1 ⊕Mi

5: if Xi ∈ Dom(ρ) then bad← true

6: else ρ(Xi)
$←− {0, 1}`

7: Yi ← Y ′i ← ρ(Xi)

8: for i← k + 1 to m do
9: if i = 1 then Xi ←M1

10: else Xi ← Yi−1 ⊕Mi

11: if Xi ∈ Dom(ρ) then bad← true

12: else ρ(Xi)
$←− {0, 1}`

13: Yi ← ρ(Xi)

14: for i← k + 1 to m′ do
15: if i = 1 then X ′i ←M ′1
16: else X ′i ← Y ′i−1 ⊕M ′i
17: if X ′i ∈ Dom(ρ) then bad← true

18: else ρ(X ′i)
$←− {0, 1}`

19: Y ′i ← ρ(X ′i)

the first time for a new random value is (i−1)/2`. Thus, the
following equation holds.

Pr[bad = true] ≤
m+m′∑
i−1

i− 1

2`
≤ (m+m′)2

2`
. (34)

And finally we have

Coln,`(m,m
′) ≤ (m+m′)2 + 1

2`
. (35)

Theorem 7 (Security of fFCBC). For any adversary A who
asks q oracle queries, each of which with a maximum
length of m blocks, we have

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1] −

Pr[ρ
$←− Func(∗, `) : Aρ(·) ⇒ 1] ≤ (4m2 + 1)q2

2`+1
.

(36)

Proof of Theorem 7. Lets define Col as the event of occurring
a collision in the outputs of ρ2 or in the outputs of ρ3 (but
not between them). Thus, we can break the left side of the
theorem equation to

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1 | Col] Pr[Col]+

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1 | Col] Pr[Col]−

Pr[ρ
$←− Func(∗, `) : Aρ(·) ⇒ 1].

(37)
Using the following simple equations

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1 | Col] ≤ 1,

(38)
Pr[Col] ≤ 1, (39)

we can bound the left-hand side of the theorem equation as
follows.
Pr[Col]+

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1 | Col]−

Pr[ρ
$←− Func(∗, `) : Aρ(·) ⇒ 1].

(40)

15

If there is no collision, it is apparent that

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1 | Col] =

Pr[ρ
$←− Func(∗, `) : Aρ(·) ⇒ 1],

(41)
and therefore, we have

Pr[ρ1, ρ2, ρ3
$←− Func(n, `) : AfFCBC[ρ1,ρ2,ρ3](·) ⇒ 1] −

Pr[ρ
$←− Func(∗, `) : Aρ(·) ⇒ 1] ≤ Pr[Col]. (42)

Moreover, using the union bound,

Pr[Col] ≤ Pr[PadCol] + Pr[UnpadCol], (43)

where UnpadCol is the event of a collision in the outputs
of ρ3 for unpadded messages, and PadCol is the event of a
collision in the outputs of ρ2 for padded messages.

Now, we can break the probability of PadCol as follows.

Pr[PadCol] ≤
qpad∑
i=1

Pr[PadColi], (44)

where Pr[PadColi] is the probability that the collision is
occurred for the first time after the i-th padded query,
and qpad is the total number of padded queries. Note that
PadColi’s are disjoint. Because there is no collision in the
first i − 1 queries, the response of these queries, sent to the
adversary, are uniformly random and independent. Thus,
any adaptive strategy ofA can be changed to a nonadaptive
strategy without loos of advantage.

Using the result of Lemma 5, we have

Pr[PadColi] ≤ (i− 1)Coln,`(m,m), (45)

and the final bound on the probability of PadCol is

Pr[PadCol] ≤
qpad∑
i=1

(i− 1)Coln,`(m,m) ≤
(4m2 + 1)q2pad

2`+1
.

(46)
The same bound is also applied for UnpadCol. Finally, the
theorem result is obtained:

Pr[Col] ≤
(4m2 + 1)q2pad

2`+1
+

(4m2 + 1)q2unpad
2`+1

≤ (4m2 + 1)q2

2`+1
. (47)

A.2 Authenticity Proof of LAE1

Proof of Theorem 2. Based on the pseudorandomness of
LAE1-MAC (Lemma 3), it is standard to prove the follow-
ing equation about the unforgeability of LAE1-MAC under
chosen message attack:

Advuf-cma
LAE1-MAC[F](B) ≤ Advprf

F (P) +

(4m2 + 1)q2 + 2

2`+1
+

q2

2n+1
. (48)

Now, adversary A can be utilized to build the adversary B.
This adversary acts as follows. For any encryption queries
A makes, B uses its oracle to obtain T . Then, it generates a
random keyK1 to compute C . Moreover, upon a decryption
query from A, it decrypts C to obtain M∗, and sends

(N,M∗, T) to its forgery (decryption) oracle. As a result,
we simply have

Advint-ctxt
LAE1[F](A) ≤ Advuf-cma

LAE1-MAC[F](B), (49)

and the theorem is proved.

	Introduction
	Organization

	Preliminaries
	Notations
	Pseudorandom Functions and Message Authentication Codes
	Authenticated Encryption

	Two-pass Lattice-based Authenticated Encryption
	Using a CBC-MAC Variant
	Security of LAE1

	Using a Carter-Wegman MAC
	Security of LAE2

	Single-pass Lattice-based Authenticated Encryption
	Security of LAE3

	Comparison and Performance Results
	Conclusion
	Biographies
	Ahmad Boorghany
	Siavash Bayat-Sarmadi
	Rasool Jalili

	Appendix A: Omitted Proofs
	Security of fFCBC
	Authenticity Proof of LAE1

