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ABSTRACT

Outsourcing data to remote storage servers has become more and
more popular, but the related security and privacy concerns have
also been raised. To protect the pattern in which a user accesses
the outsourced data, various oblivious RAM (ORAM) construc-
tions have been designed. However, when existing ORAM designs
are extended to support multi-user scenarios, they become vulner-
able to stealthy privacy attacks targeted at revealing the data access
patterns of innocent users, even if only one curious or compro-
mised user colludes with the storage server. To study the feasibility
and costs of overcoming the above limitation, this paper proposes a
new ORAM construction called Multi-User ORAM (MU-ORAM),
which is resilient to stealthy privacy attacks. The key ideas in the
design are (i) introduce a chain of proxies to act as a common inter-
face between users and the storage server, (ii) distribute the shares
of the system secrets delicately to the proxies and users, and (iii)
enable a user and/or the proxies to collaboratively query and shuffle
data. Through extensive security analysis, we quantify the strength
of MU-ORAM in protecting the data access patterns of innocent
users from attacks, under the assumption that the server, users, and
some but not all proxies can be curious but honest, compromised
and colluding. Cost analysis has been conducted to quantify the
extra overhead incurred by the MU-ORAM design.

1. INTRODUCTION

Recent development of cloud computing has witnessed the conve-
nience of remote storage services. Nowadays, many cloud storage
providers [1,8,18] are offering large amount of inexpensive storage
space to individual and enterprise users. Users can outsource their
data and access them remotely from their resource-constrained de-
vices in a pay-per-use manner.

Although a user may encrypt outsourced data to protect confiden-
tiality of the data content, the user’s data access pattern remains
unprotected and can still reveal the user’s private information [20].
To address this issue, various oblivious RAM (ORAM) construc-
tions [13-17, 21,29, 33, 34,40, 42, 43] have been proposed to pro-
tect a user’s data access pattern against a semi-honest remote stor-
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age server, who honestly hosts the data and serves the user, but is
curious to find out the data access pattern of the user.

Most of existing ORAM constructions assume only a single user to
interact with the storage server; therefore, the user’s device holds
all the system secrets about how the outsourced data are encrypted,
placed and scrambled in the server’s storage. As it is also pop-
ular for multiple users to share outsourced data, such construc-
tions [11,17,23,42] have been proposed to extend the single-user
ORAM to support parallel accesses from multiple users. In these
proposals, however, the users essentially work together as a single
user, because either the users need to go through a single proxy
which holds the system secrets and interacts with the server on be-
half of all users, or each of the users should hold the same system
secrets and interacts with the server directly. In either case, the
single proxy or any one user becomes a single point of security
failure. If it is malicious or compromised, attacks can be launched
from the inside, and the security of the whole system can be eas-
ily brought down. Observable attacks (e.g., illegitimate deletion or
modification of data) launched by the insider attacker can be de-
tected, and the attacker can be identified with some accountability
mechanisms (e.g., auditing the logs), but detecting stealthy attacks
targeted at privacy is much more difficult. A curious or compro-
mised user can collude with the storage server (if the server is also
curious or compromised) to reveal the access patterns of all other
users; meanwhile, the attackers can keep their attacks stealthy, be-
cause they still follow the ORAM protocols without extending any
anomaly observable by others.

For instance, a hospital may wish to export the encrypted informa-
tion of all its patients, to a remote storage organized as an ORAM.
To allow each doctor to access the data of any patient who has vis-
ited the hospital, all the doctors should share the same secret keys.
With such a system, if a doctor is curious or the account of a doc-
tor is compromised by an attacker, the adversary (i.e., the curious
doctor or the attacker) may be able to observe the accesses made by
all other doctors, through colluding with the storage server which
is also curious or compromised, without launching any observable
attack to the ORAM.

To study the feasibility and cost of overcoming the above limitation
of existing ORAM constructions, we propose, design, and analyze
anew ORAM construction called Multi-User ORAM (MU-ORAM).
The construction has two design goals. First, it shall support mul-
tiple users to share data outsourced to a remote storage. Second, it
shall be resilient to the afore-described stealthy privacy attacks, in
which the curious or compromised insider attackers do not extend
observable misbehaviors, but collude stealthily to reveal the data



access patterns of innocent users. To the best of our knowledge,
this is the first effort aiming to attain these goals.

To tolerate stealthy privacy attacks, the basic principle is to dis-
tribute the shares of the system secrets among the users, instead of
letting every user to hold all the system secrets. This way, any sin-
gle user alone will not have sufficient secrets to locate and decrypt
a data block of interest to access; collaboration between the users
is required. However, when a user needs to access a data block,
it is not realistic to require other users to be online and available
for collaboration. Hence, the key idea in our design is to introduce
a chain of collaborative but mutually independent proxies between
users and the storage server. These proxies are always online, like
the storage server. The shares of the system secrets are distributed
delicately to the proxies and the users. When a user needs to query
a data block, its request and the storage server’s replies shall pass
through and be processed by the proxies before they reach the des-
tination.

In practice, the proxies can be implemented as mutually indepen-
dent hardware components (e.g., computers) or software compo-
nents (e.g., virtual machines) provided in public or private domains.
For instance, in the afore-mentioned “hospital” example, the prox-
ies can be implemented as several physical/virtual machines run-
ning in the premise of the hospital or some cloud providers inde-
pendent of the remote storage server.

Within this architecture, (i) users do not need to hold all the system
secrets as they do not interact directly with the storage server; (ii)
each user can set up a secure and logically isolated communica-
tion channel with the chain of proxies; (iii) multiple proxies, with
each holding an independent share of the system secrets, work to-
gether to act as a common interface between users and the storage
server. They also take non-user-specific workload (e.g., data shuf-
fling). Due to the above features, users are securely isolated from
each other, and compromising some but not all proxies cannot cap-
ture the system secrets. Thus, the system becomes more resilient to
the stealthy privacy attacks.

We propose formal security definitions to quantify the security strength

of MU-ORAM in protecting an innocent user’s data access patterns
against stealthy attacks, and conduct extensive analysis:

e First, we have shown that, like existing single-user ORAMs,
MU-ORAM can fully protect the access pattern privacy of
each individual user against an semi-honest storage server
with a failure probability of O(N~'°81°¢ V) ‘where N is the
total number of exported data blocks.

e Second, assuming that the server, some users and some but
not all proxies are semi-honest and colluding, we study the
security strength of MU-ORAM under different scenarios.
Particularly, we have shown that, the collusive coalition has
an advantage of less than 2e¢ within time period ¢ to reveal
an innocent user’s access to data that the coalition is not au-
thorized to access, if the Modified Matching Diffie-Hellman
(MMDH) problem cannot be solved with an advantage of at
least € within the same time period .

Note that, as our design aims at dealing with stealthy privacy at-
tacks, the threat model of our security analysis assumes that the at-
tackers are semi-honest (i.e., the attackers honestly follow the pro-

tocols that they are expected to execute, but may take extra actions
to reveal the data access patterns of innocent users).

Cost analysis has been conducted to quantify the costs incurred to
provide the protection. The results show that, the communication
cost introduced by MU-ORAM is O(log? V') data blocks per query
for the user and O(log® N loglog V) for the proxies. Meanwhile,
MU-ORAM does not store any dummy data blocks, which makes
the server-side storage to be O(N).

The rest of the paper is organized as follows. System model, design
goal, and security definitions are introduced in Section 2. Section 3
elaborates the design details. The results of security and overhead
analysis are reported in Sections 4 and 5, respectively. Section 6
provides a brief comparison to related works. Finally, Section 7
concludes the paper.

2. PRELIMINARIES

This section presents the system model, the architecture of our pro-
posed MU-ORAM, and the formal definitions of security.

2.1 System Model

We consider a system where multiple users share N data blocks
exported to a storage server. Let F}, be a finite field with p distinct
elements, where p is a prime number and N < p. For example,
log p is usually 128 or larger, while in practice log IV is seldomly
greater than 40. Let G, be a multiplicative, cyclic group with also
p distinct elements. Each data block, denoted as D;, consists of two
components: (i) unique data ID denoted as g; which is an element
of Gp; (ii) data content that is a sequence of pieces each being an
element of G,. As the operations on each piece of the data content
are the same, we use a single element denoted as d; to represent the
sequence unless stated otherwise. Hereafter, each data block D; is
represented as

(gi, di) where g; € G and d; € Gp. (1)

Each data request from a user, which shall be kept confidential, is
one of the following two types: (i) read a data block d; of unique
ID g; from the storage, denoted as a 3-tuple (read, g;, d;); or (ii)
write/modify a data block d; of unique ID g; to the storage, denoted
as a 3-tuple (write, g;,d;).

To accomplish a confidential data request, the user may need to
access the remote storage multiple times. Each access to the remote
storage can be observed by the server and its collusive coalition,
and is one of the following two types: (i) retrieve (i.e., read) a data
block d; from a location [ at the remote storage, denoted as a 3-
tuple (read,!,d;); or (ii) upload (i.e., write) a data block d; to a
location [ at the remote storage, denoted as a 3-tuple (write, [, d; ).

Also, we assume there is a trusted system initialization server. This
server is not involved in data access, but only responsible for initial-
izing the system and providing public information for a user when
the user joins the system. Note that, once the system initialization
finishes, all system secrets are removed from this server. Therefore,
we assume the server is immune from attacks.

2.2 Proposed Architecture

As stated in Section 1, MU-ORAM is designed to protect the data
access patterns of individual users against stealthy privacy attacks
launched by collusive parties in the system. To attain this goal, we
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Figure 1: System overview.

propose a new architecture (as shown in Figure 1) composed of a
hierarchical storage server, multiple users, and a chain of proxies
as a bridge between users and the storage server. In practice, prox-
ies can be implemented as mutually independent hardware compo-
nents (e.g., computers) or software components (e.g., virtual servers).
These proxies can be deployed in the premise of the users or some
cloud providers independent of the provider of the storage server.

Specifically, the introduced chain of proxies serves as a common
interface for all users to access data at the storage server as follows.

e When a user needs to access a certain data block, the re-
quest and the data replied from the storage server shall pass
through and be processed (i.e., encrypted or decrypted) by
all the proxies before they reach either the storage server or
the user.

e By introducing proxies to protect users from direct interac-
tions with the storage server, each individual user does not
need to maintain the information about storage locations or
encryption keys of the data shared with other users. With-
out exposing such knowledge to individual users, it becomes
possible to prevent a user from learning other users’ data ac-
cess patterns through colluding with the storage server or ob-
serving their interactions with the storage server.

e Such an architecture also allows each user to establish a se-
cure and logically isolated communication channel with the
chain of proxies, which makes it possible to prevent a user
from learning other users’ data access patterns through ob-
serving their interactions with the proxies.

e As all the user/server interactions must go through the entire
chain of independent proxies, the user’s access pattern pri-
vacy is protected, as long as not all of the proxies are com-
promised and collude with the storage server.

Under this proposed architecture, appropriate algorithms must be
designed to guide the interactions between the storage server, prox-
ies, and users. We will present these algorithms in Section 3.

2.3 Security Definitions

As the major goal of our design is to protect individual users’ access
pattern privacy from stealthy attacks, we assume the storage server,
users, and proxies in the system are honest but curious or called
semi-honest. Specifically:

e In response to a data query from a user, the user, the proxies
and the storage server follow the query protocol honestly to
process the query.

e At the time when data shuffling shall be conducted, we as-
sume that the storage server and the proxies all follow the
shuffling protocol honestly to shuffle the data.

e The storage server, each proxy, and each user may be curious
to find out the access pattern of other users. To do so, they
may collude. However, we assume no collusive coalition will
include all proxies.

2.3.1 Security against semi-honest storage server
As a baseline, we first consider the scenario that the storage server
does not collude with any user or proxy. Following the security
definition of ORAMs [13,36,37], we define the security of an MU-
ORAM against an honest but curious storage server as follows.

Definition 1. (Security against semi-honest storage server). Let
Z = ( (op1,i1,d1), (op2,iz,ds2), - - ) denote a private sequence
of a user’s intended data requests, where each op is either a read
or write operation. Let A(Z) = ( (opl,l1,d}), (ops,la,d3), - - -
) denote the sequence of the user’s accesses to the remote storage
(observed by the server), in order to accomplish the user’s private
data requests. MU-ORAM is said to be secure if (i) for any two
equal-length private sequences & and ¢ of intended data requests,
their corresponding observable access sequences A(Z) and A(%)
are computationally indistinguishable; and (ii) the probability that
MU-ORAM fails to operate is O(N ~°8les V),

2.3.2  Security against collusive coalition
Next, we consider the more general scenario that the storage server
colludes with some users and some (but not all) proxies.

Depending on whether the collusive users have authorized access
to the data blocks queried by an innocent user, the security strength
of MU-ORAM can be very different. This is because, when the
collusive users have access to the data accessed by the innocent
user, the collusive users can check if some data blocks have been
changed after the innocent user’s access to infer the innocent user’s
access pattern; however, this approach cannot be applied when the
collusive users are not authorized to access the data accessed by the
innocent user. Hence, we study two cases separately as follows.

Case 1: Users with same access privileges to data. Ina
system where users have the same access privileges to outsourced
data, we study the security strength of MU-ORAM in protecting an
innocent user’s access pattern to the data that can also be accessed
by the collusive users.

To facilitate the study, we define a game between an adversary (i.e.,
the collusive coalition) and a challenger (i.e., the rest of the system)
in the following. Intuitively, the game models the attacks that can
be launched by the adversary: it can launch queries and observe



how these queries are handled; it can observe the interactions be-
tween the innocent user and the server and proxies; it can compro-
mise and thus obtain the secrets of some but not all proxies; it can
inspect data stored on the storage server. The adversary is said to
have won the game (i.e., defeated the MU-ORAM) if the following
happens: the innocent user first selects two data blocks uniformly
at random to query; the user is then asked to randomly choose one
of these two data blocks to query again; the adversary is able to find
out the user’s choice.

Definition 2. A game G1 (M, p, N, m, n.q) between a challenger
and an adversary is defined as follows (Here, M denotes an MU-
ORAM construction):

o [nitialization Phase. The challenger initializes the storage
server and the chain of m proxies, according to the algorithm
of M. Here, N data blocks {(gi,d;)|i =0,--- ,N—1;g; €
Gp;d; € Gp} are exported to the storage server. The adver-
sary has access to all the data block IDs.

e Query Phase I. The adversary can make any number of queries
of the following types.

— Proxy Compromising. The adversary requests to get the
information (e.g., secrets) owned by any compromised
proxy. We restrict that at most m — 1 proxies can be
compromised.

— Proxy and Server Transcript Inspection. The adversary
requests to get the input/output of any compromised
proxy and the storage server.

— Data Query. Two types of queries can be requested:

+ Type I (controlled queries) - The adversary selects
an ID and acts as a user to start querying the data
block of this ID. In response, if the number of Type
I query has exceeds n.q, the request is denied; oth-
erwise, the proxies and the server follow the M
protocol to process the query request.

* Type II (random queries) - The adversary requests
an innocent user to start a query. In response, the
challenger secretly selects an ID from the pool of
IDs uniformly at random, and then acts as a user to
start querying the data block of this ID. The prox-
ies and the server follow the M protocol to process
the query. Note that, this selected ID is unknown
to the adversary.

— Storage Inspection. The adversary asks the storage server
to return the data blocks in a specified bucket.

e Selection Phase 1. The challenger secretly selects a data block
ID denoted as 6 from the pool of IDs uniformly at random,
and queries it. Note that, §y is known only by the challenger.

e Query Phase II. The phase is the same as Query Phase I, ex-
cept that the following rule should be added when processing
a Type I data query: the challenger aborts the game and de-
clares failure if the queried data ID is 6o, 6y was queried by
the adversary before the Selection Phase I, and there is no
Type II query for 6y between the adversary’s last and current
query for 6. This is because, when the above conditions are
satisfied, the adversary will find that the content of data block
0o was changed after the Selection Phase I, and thus find 6,

was queried in the Selection Phase I; therefore, it will know
which of 0y and 6, is selected in the later Challenge Phase
by simply querying 6y right after the Challenge Phase.

e Selection Phase II. The challenger secretly selects another
data block ID denoted as 61 (6o # 61), and queries it.

e Query Phase I11. The phase is the same as Query Phase I, ex-
cept that the following rule should be added when processing
a Type I data query: the challenger aborts the game and de-
clares failure if either (i) the queried data ID is 6o, 6y was
queried by the adversary before the Selection Phase I, and
there is no Type II query for 8y between the adversary’s last
and current query for 6o; or (ii) the queried data ID is 64, 61
was queried by the adversary before the Selection Phase II,
and there is no Type II query for 6; between the adversary’s
last and current query for 6;. This change is due to the same
reason explained in Query Phase II.

e Challenge Phase. The challenger decides a binary bit b uni-
formly at random. Then, it queries the data block of ID 6.

e Query Phase IV. The phase is the same as Query Phase I, ex-
cept that the following rule should be added when processing
a Type I query: if Oy or 0; is queried, the challenger aborts
the game and declares failure. Note that, the adversary may
or may not find out the query target chosen in the Selection
Phases if it requests to query 6 or 61. Hence, by this rule we
may under-estimate the security strength of MU-ORAM.

e Response Phase. The adversary returns a binary bit b’ as a
guess of the b.

e Result. The adversary wins the game if the challenger de-
clares failure or &’ = b; otherwise, it loses the game. The
advantage for the adversary to win the game is defined as the
probability that it wins the game minus 1/2.

An MU-ORAM construction M is considered secure against a col-
lusive coalition, if it is hard for an adversary with limited computa-
tional capability to win the above game. To quantify this notation,
we introduce the following definition:

Definition 3. ((e€,t, neq)-security against collusive coalition) An
MU-ORAM construction M, in which all users have the same ac-
cess privileges to the outsourced data, is said to be (e, ¢, ncq)-secure
against a collusive coalition of semi-honest storage server, users
and some (but not all) proxies if: no adversary can win the game
G1(M, p, N, m, n.q) with an advantage of at least € under the time
complexity of ¢ and the restriction that the adversary cannot make
more than n., Type I data queries (i.e., controlled queries) during
the game.

Case 2: Users with different access privileges to data.
In a system where users have different access privileges to data, we
study the security strength of MU-ORAM in protecting an innocent
user’s access pattern to the data blocks that cannot be accessed by
the collusive users. In the following, we present new game and
security definitions.

Definition 4. A game Go(M, p, N, N', m) between a challenger
and an adversary is defined similarly to G; (in Definition 2) except
for the following differences:



e In the Initialization Phase: the adversary is given only N’
IDs from the totally N IDs.

e In the Query Phases I, II and III: there is no limitation on the
number of Type I data queries that the adversary can make.

e In the Selection Phase I and II: 6y and 6, are two distinct
IDs selected uniformly at random from the set of IDs that are
unknown to the adversary.

To quantify the security strength of MU-ORAM in Case 2, we in-
troduce the following definition:

Definition 5. ((¢, t)-security against collusive coalition) An MU-
ORAM construction M, in which users have different access privi-
leges to the outsourced data, is said to be (e, t)-secure in protecting
an innocent user’s access to the data that a collusive coalition of
semi-honest storage server, users and some (but not all) proxies are
not authorized to access, if no adversary can win the game Ga( M,
p, N, N, m), where N < N — 2, with an advantage of at least €
within time period ¢.

3. MU-ORAM

This section elaborates our proposed MU-ORAM design, which in-
cludes storage structure, system initialization, data query, and data
shuffling. Figure 2 illustrates the overall workflow of data query
and shuffling.

3.1 Storage Structure
MU-ORAM server organizes its storage as a hierarchy of buckets,
and each bucket can store up to log /N data blocks:

e The hierarchy consists of L = [log N — loglog N layers.

e Each layer [ (! = 0,---,L — 1) has n; = 27 . log N
buckets. Hence, the top layer of the hierarchy (i.e., layer 0)
has 2log N buckets, while the bottom layer of the hierarchy
(i.e., layer L — 1) has N buckets.

e Each layer [ is associated with a public hash function, de-
noted as H;(x), which maps each element of group G, to
one bucket at layer [.

e Each layer [ has a bitmap to record whether each bucket at
this layer is empty or not.

Note that, in MU-ORAM, there is no dummy data in its storage.

3.2 System Initialization

A trusted authority, which we call system initialization server, is
responsible for initializing the system. The system initialization in-
cludes proxy initialization, storage initialization, and user initial-
ization.

e The initialization server first picks z from F},\ {0} uniformly
at random.

e Suppose there are m proxies, denoted as ¢o,- -+ , pm—1 In
the system. For each ¢, (k = 0,--- ,m — 1), it is preloaded
by the initialization server with the following keys: zx (1),
yr (1) and Az (1) for each layer [ € {0,--- , L — 1}, which

are randomly picked from Fj, \ {0}. These keys are used for
encrypting data block IDs and contents. To facilitate presen-
tation, we introduce the following notations:

2y = [ w0 v = J] w0
k=0 k=0

o )
Az(l) = [ Az(D); 2(1) = 2+ Az(D).
k=0

e The initialization server exports all the N data blocks to the

bottom layer (i.e., Layer L — 1) as follows: for each data

block (gi, d; ), itis encrypted to (g= ™" (
and stored to bucket Hy,_(g"" ™).
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Figure 2: MU-ORAM Overview. The data query process in-
cludes the three phases of data request, data reply and data
uploading, which is followed by the data shuffling process.

e For each user, when s/he joins the system, the initialization
server preloads to him/her the public hash function H;(x) for
each layer [ € {0,---, L — 1}. For each data block D; that
this user is authorized to access, the user is preloaded with
tuple (gi,g; = g; %), where g; is the ID of the data block

Qe

3.3 Data Query

When a user wants to query the data block of ID g; from the storage
server, she first needs to randomly select another ID denoted as g;
and also query the data block of ID g;. Then, for each of the IDs g;
and g;, the data request, data reply and data uploading phases shall
be run sequentially for each of the non-empty layers from the top to
the bottom of the storage hierarchy. As the processes for querying
g; and g; are similar, in the following we only present how these
phases are executed for non-empty layer [ when g; is queried.

3.3.1 Phase I: Data Request

g BN g uE=D),



In this phase, the user determines a bucket on layer [ and sends a
request to retrieve data blocks from the bucket. The phase includes
the following steps.

[Q1: Obtain Encrypted ID of the Query Target Data] The goal
of this step is to compute the encrypted ID of the query target data
block. As MU-ORAM uses the product of all proxies’ secret keys
as the encryption key, [Q1] requires a collaboration between the
user and proxies, as shown in Figure 3. It consists of two sub-steps
as follows.

Figure 3: [Q1]: Obtain encrypted target data ID.

[Q1.1] In the first sub-step, the user sends the following message
to proxy ¢o:

CANANCORDE 3)
where g and r1 are two nonces randomly picked from F}, \ {0}.

[Q1.2] Upon receiving the message, each proxy ¢ (k = 0,--- ,m—
2) updates it and forwards to ¢r1:

<(9m)n’§:0 o) (g'_"o)l'li”':o Az Wne®) (g1 )1'14?:0 yt(z>> @
k3 ’ k3 ? 2 N

Note that 2 (1), yx (1) and Az (1) are secrets preloaded to ¢y. Af-
ter the message has traversed the entire proxy chain, it becomes
<(g;-0)1'[;’;51 ) (g;n)n?”;;l Azt Wye(®) ((g;)rl)ni’;:,l yt(1>>
_ <giroan(z))g:OAz(L)y(l)7 (gg)rly(l)> ,
®)

according to Equation (2). Then, the message is returned to the user
by ¢m—1. Upon receiving the message, the user can obtain

1/7
g = (g ) (©)
and

z L z 1/ro T L/
GO0 = (giOA (l>y<1)) _ ((g;) 1y<1)) G

respectively, as 7o and 1 are its self-generated nonces. Note that,
g‘f(l) is the ID of the query target data block encrypted with the

product of all proxies’ secret keys, which will be used in [Q2].
y()z(1)
9;

Reply].

is stored locally at the user and will be used in [Q5: Data

[Q2: Compute Bucket for Access] Based on gf(l), the user com-
putes the position pos of the bucket that may contain the target data
block:

pos + H, (gf(l)) .

[Q3: Bitmap Retrieval] This step is to retrieve the bitmap that
will be used by the user to decide the buckets to request. This is to
avoid the situation where the user may attempt to retrieve an empty
bucket at layer [; if this happens, the server would know for sure
that Dy is not at this layer, thus leaking the information about D;.

[Q4: Bucket Request] The user selects the bucket to request based
on the retrieved bitmap as follows:

e If D; has already been found at layer I’ < I, the user ran-
domly picks a non-empty bucket according to the bitmap.

e Otherwise, the user checks if the bucket at position pos is
empty or not. If it is empty, the user randomly picks a non-
empty bucket to access; else, the user accesses bucket pos.

Note that in [Q3], the user needs to retrieve a bitmap of 2! log N
bits; when [ is large, it is infeasible for the user to do so. To deal
with this issue, the bitmap can be stored in a recursive manner.
For example, suppose there are « bits in the bitmap. The server
can create two bitmaps instead of one. In the first bitmap, it stores
« bits and each bit indicates whether the corresponding bucket is
empty or not. The second bitmap stores /a bits and each bit i (0 <
i < y/a—1)issetto 0 if all buckets from \/a- i to /- (i4+1)—1
are empty. This way, [Q4] becomes:

e If D; has already been found at layer I’ < [, the user first
requests the second bitmap of y/a bits. According to the
retrieved bitmap, the user randomly selects a “1” bit, say, at
position P. Then, the corresponding segment indicated by P
in the first bitmap is retrieved. At last, the user randomly
picks a non-empty bucket from the segment.

e Otherwise, the user downloads the second bitmap and checks

if the bit of position P’ = Lp—\/ofj is 1. If it is O, the user
[e3

randomly picks a “1” bit (say, at position P) from the sec-
ond bitmap; else, let P = P’. Next, the user retrieves the
segment from the first bitmap that corresponds to P: (1) if
bucket at position pos is not empty, it is selected; (2) other-
wise, a non-empty bucket is randomly selected.

This way, the communication cost is reduced to O(y/«) bits. In-
deed, the communication cost can be reduced further with more
recursive levels introduced in the bitmap.

3.3.2 Phase 2: Data Reply

In response to the bucket request from the user, the storage server
returns all the data blocks at the requested buckets to the user in
two sub-steps: [Q5.1: From Server to User] and [Q5.2: From User
to Proxies and back to User], as shown in Figure 4.

Figure 4: Phase 2: Data reply.

[QS.1] The storage server returns all encrypted data blocks in the
requested buckets to the user. Each data block has the following
format:

(95(1)7(g;z(l)di/)y(l)) . ®)



If gf,(l) = gfm for a data block, it is the target data block. In
this case, the data content part d= di’m is encrypted by multiply-
ing (g;,z(l)di/)y(l) with gf(l)z(l) obtained in step [Q1.2]; then the
following step [Q5.2] is executed to decrypt d and obtain d;.

Otherwise (i.e., none of the returned data blocks is the query target),
the user randomly selects d from G, and then starts step [Q5.2] to
also pretend the decryption process.

[Q5.2] The user randomly picks 72 from F, \ {0}, and sends d"?
to proxy ¢o. Then, each proxy ¢x (k = 0,--- ,m — 2) updates it
and forwards to ¢x41:

T2
FItEETON
After the message has traversed the entire proxy train, it becomes

__ra .
Ao ve® — gty

and is then returned to the user.

Ifd = df(l), the returned message is d;2 and the user can obtain
d; and access it. Otherwise, the returned message is simply dis-
carded.

3.3.3 Phase 3: Data Uploading

In Phase 2, one bucket is downloaded from each non-empty layer
of the storage server. After data access, only one data block from
each bucket, which must include the query target, need to be up-
loaded to the shuffling buffer, while other downloaded data blocks
are discarded. The storage server updates the corresponding buck-
ets and the bit map to reflect the changes. Note that, the content
of the query target data block may have been changed after access.
For simplicity, the following description will still use d; to denote
each data block. The data uploading phase uploads each of the
selected data blocks, denoted as (g°", (g7 d;)*®), to a tem-
porary buffer at the storage server as follows.

Each proxy ¢ (k = 0,--- ,m — 1) picks 2™, 3™ and Az™
randomly from F, \ {0}. We introduce 2™, 3™, Az'*™ and
2™ as follows:

m—1 m—1
temp __ temp temp __ temp
r = | | LT 5 Y = | | Yr 3
k=0 k=0

9
1 ©))
h¢
Aztemp _ I I Azkemp; Zlemp =24 Aztemp‘
k=0

The user sends <g:3’“j(l)7 dt = (g;*Wa)rav®, Ad:5> o proxy
¢o, which updates it to

plemp . temp
B e R
zg (1) zg (1) 10
<9i s 9; ) (10)
raay 2 2D fomo
@x T, Yy,
g; 0 , dp 0 (AdP)Ye ),

and sends it to ¢1. Here, r3, r4 and 75 are three random numbers
picked by the user from F,, \ {0} and Ad; = d;/d; if d; is the
target data block (where d, denotes the content of the target data
after the access ), otherwise, Ad; is randomly selected from Gp.

Upon receiving the message, each proxy ¢ (k = 1,--- ,m — 2)
updates it and forwards the following to ¢gy1:

k_temp B Az, (1)yemP
(9 =T =, an
*Hk— Azlcmpylcmp Hk_ ,y‘C"'P
raw(l) — LS . -
1 X 1 k temp
g, M=o = () , di M=o vt () , (Adlﬁ%)nt:o Yt >

After proxy ¢.,—1 updates, the message becomes:

m—1 _temp m—1 temp
x Azy(l
ng(l),nt:[) t r3z(l)<nt:0 t(Dyy

M2 () 7, = ()
(9 = . 9 = . (12)
rpa(ty —Mimo A= TG
725" ¢ (1) 5 I e () P T[T temp
9i = ,dy o Y (Adp)i=on v,

which is equal to
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temp temp
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Then, the message is sent to the user and the user removes r3, r4
and 5 and calculates

Az (l) temp _ A ztemp, temp —z (l) temp
p g (g, ")y (14)
— (gz_ Zlemp dz ) ylemp

If the computed entry is the target data block, the user will further
multiply Ad;™ to the data content field to get

_ptemp . temp

(9 di)?
Without loss of generality, we still use d; to denote the content of
each data block including the target data block.

Then, the user uploads
lemp temp

( gi

_temp

) (gz d’b)y

to the shuffling buffer at the storage server.

) 5)

3.4 Data Shuffling

After every data query, data shuffling is performed. First, the layer
which data blocks should be shuffled to needs to be determined. As
a rule, data should be shuffled to layer I’ > 0 if the total number
of data blocks in the temporary buffer and at layers 0, - - - , I’ — 1 is
greater than or equal to the total number of buckets at layer I’ — 1,
but less than the total number of buckets at layer I’. Otherwise,
shuffling should be performed at layer O only. For simplicity, we
use !’ to denote the layer that data blocks are shuffled to.

Data shuffling in MU-ORAM is conducted in the following main
steps: (i) Scrambling Round I (oblivious scrambling data blocks
that have been uploaded during Phase 2 and thus are already in
the temporary buffer before data shuffling); (ii) Data Updating and
Appending (updating data blocks at layers 0, - - - , I’ that also need
to be shuffled and appending them to the temporary buffer); (iii)
Scrambling Round II (oblivious scrambling all the data blocks);
and (iv) Data Mapping (assigning all the data blocks in the tempo-
rary buffer to layer I’ according to a hash function). The first three
steps are performed through the collaborations between the proxies
while the last step is conducted only by the storage server.



To facilitate data shuffling, each proxy maintains a cache that can
store ¢ - /NN log N - log p bits, where ¢ > 1 is a system parameter
and log p bits is the size of each data block ID or each piece of the
data content. Also, each proxy ¢ (k =0, --- ,m —1) selects keys
2, Y™ and Az} (') for layer I, as well as 3™ and y™ for
the temporary buffer. All these keys are selected from F), \ {0}
uniformly at random.

3.4.1 Scrambling Round I

The purpose of this round is to re-encrypt and obliviously scram-
ble the data blocks that are in the server’s temporary buffer im-
mediately after the data uploading phase ends. Let ny denote the
number of these data blocks. As the total number of layers is L
and at most two data blocks are moved from each non-empty layer
to the temporary buffer during the query process, at most 2L data
blocks need to be re-encrypted and scrambled in this round. Hence,
nr S 2L.

Firstly, each proxy ¢ (k = 0,--- ,m — 1) determines a permu-
tation function 7,7 that permutes a sequence of n; elements. The
proxy also prepares a local cache with size 3n; log p bits; note that
log p bits is the size of each data block ID or each piece of data
block content.

Secondly, the proxies collaborate in scrambling and re-encrypting
the IDs of the data blocks in the temporary buffer of the server. The
process is as follows.

Proxy ¢o fetches the encrypted IDs of all the data blocks in the
server’s temporary buffer, to its own cache and scrambles these IDs
using permutation function 75’ . Then, each encrypted ID, denoted

as gflemp, is updated (i.e., re-encrypted) to tuple

temy S| g]
A ZmPshu S A )yt

(¢ mg‘“ t
[em| [em|
glemp. 20 plemp.

(9 o

ptemp
LD Semp

7g¢ 7gqj >7
and sent to proxy ¢ .

Upon receiving the n; tuples from proxy ¢r_i, each proxy ¢y
(k=1,---,m — 2) scrambles the tuples using permutation func-
tion 7,7, and then updates each tuple to the following and forwards
it to dp41:

shuf k temp  shuf
temp_ Ilt—0 ap emp, =0 22y ¥i
T G femp x NG femp
< t=0 "t t=0 Tt (16)
9; »9; ’
temp | — H?:o Az?c‘” (l/)yihur
z k temp
M¥—o =4 >
9; .

After proxy ¢m,,—1 scrambles the tuples that it has received and
updates them, each tuple becomes:

m—1 _shuf m—1 temp  shuf
temp | [My—g =% lemp [My—g Az p7/t
m—1 _temp m—1 _temp
< M=o =¢ M=o 7¢ (17)
gi 7gi )

1 .
temp 71_[;”:0 Azgew(Ll)y;th
b . HWL71 temp

t=0 Tt
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which is equal to

shuf Azlempyshuf AW (ll)yshuf
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where ™, 4™ Az*“™ and Az"" (1) are defined as

m—1 m—1
shuf shuf | shuf shuf |
z - T 5 Y - Yk 5
k=0 k=0
18
m—1 m—1 ( )
t
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k=0 k=0

Proxy ¢..—1 saves the sequence of re-encrypted IDs (i.e., gfsm)

back to the server’s temporary buffer, but stores the sequence of

temp _ A ,new (7/yy, shuf .
{ggAz ALy } to its local cache.

Thirdly, the proxies scramble and re-encrypt the contents of the n;
data blocks, piece by piece. As the operations for pieces are similar,
we only present the operations on the first piece of the data blocks
in the following.

Proxy ¢o fetches the first pieces of all the data blocks from the
server’s buffer to its own cache, and scramble these pieces using

ermutation function 7 7. Then, each piece, denoted as d; =
0

shuf

Yo

(9, S di)ylemp, is updated (i.e., re-encrypted) to d; o, and sent
to the next proxy ¢1. The following proxies conduct the similar
scrambling, re-encryption, and forwarding. After scrambling and
re-encryption have been completed in ¢,,,—1, each of the n pieces
in the sequence is in the form of
Mg v
di HL'L:GI yllsmp s

which is equal to

shuf shuf
Y temp Shu

~Y temp | Y~ _ tem shuf
4, v — (g;z di)y P g; (z4AzZTP)y ) 19)

Finally, proxy ¢.,,—1 multiplies the piece with its locally-stored

AP A neW (17, shuf . _mew  shuf i
(A YT (o obtain (g; 7 d)¥™, and saves it

back to the server’s temporary buffer.

3.4.2 Data Updating and Appending
For each data block D; on layer ! (I = 0,--- ,1’), which needs to
be shuffled to layer I, it should be updated to

shuf

(l’)di)y ).

pshuf

( gi

_pnew

’ (gz

The updating is performed collaboratively by the proxies, similar to
Phase 2 (Data Uploading). Different from Phase 2, no any user is
involved in the process. Hence, the first proxy ¢o directly updates
based on (g7, d; = (g; 7" d;)* D). After the last proxy ¢, 1
has completed its update, it appends the updated data block to the
server’s temporary buffer. Therefore, at the end of this step, all
the data blocks that should be shuffled to layer [’ are stored in the
server’s temporary buffer.

3.4.3 Scrambling Round I1

This round is to re-encrypt and scramble all the data blocks in the
server’s temporary buffer. Let nr; denote the total number of these
data blocks. As the total number of data blocks stored at the server
is N, itholds that ny; < N. Our proposed algorithm for this round
is based on the idea of piece-wise shuffling proposed by Zhang et
al. [45] and the data scrambling algorithm proposed by Williams et
al. [41]. Our algorithm requires the capacity of each proxy’s local
cache to be ¢/ N log N log p bits and incurs the communication
cost of O(N loglog V) data blocks on average.



When n;; < VN , the scrambling round operates as follows.

Initially, each proxy ¢ for k = 0, --- ,m — 1 determines a secret

permutation function 7, /7 which permutes a sequence of nyy ele-

ments; therefore, the storage requirement of this functionis nyr lognrr.

The proxy also randomly picks new keys zj" (I') and y;™ (1) for
layer I’

Then, proxy ¢o downloads the encrypted IDs of the n;; data blocks,
and performs the following steps sequentially:

shuf
e Re-encryption. Each encrypted ID denoted as g  is re-
$ncw(l/>

uf S
) y;chuf

encrypted to (g'fSh

e Scrambling. All the n; re-encrypted data IDs are scrambled
nrr

using permutation function

e Forwarding. The encrypted IDs are forwarded to the next
proxy, which also performs the re-encryption and scrambling
using its own key and secret permutation function, and for-
wards them to its next proxy. The last proxy stores the en-
crypted IDs back to the server’s temporary storage.

In a similar way, the data contents of the n;; blocks are also re-
encrypted using key 3" (') and scrambled using permutation func-

tion 7’7 sequentially by each proxy ¢y, piece by piece.

Whenn;r > VN, , the data blocks are also re-encrypted and scram-
bled sequentially by all the proxies, piece by piece. As different
pieces of the same data block are processed in the similar way
(the only difference is, the first piece, i.e., the encrypted ID, is re-

new

encrypted with key ™ (I") while the content pieces are re-encrypted
with key yi" (I') by each proxy ¢y), we present only the process-
ing of the first pieces (i.e., encrypted IDs) of all the n;; data blocks.
Furthermore, the processing by different proxies are also similar,
except that they use different keys and permutation functions for
re-encryption and permutation. Hence, in the following we only
elaborate how proxy ¢o processes the encrypted IDs of the data

blocks.

As formally presented in Algorithms 1 and 2 (Appendix IV), the
data blocks are processed through multiple sub-rounds. In the first

sub-round, each of the nr; data blocks in the server’s temporary

buffer forms a single-element group, and every n}f groups are

randomly merged together, re-encrypted, and uploaded back to the
server’s temporary buffer. In the second sub-round, these data blocks

form n}f groups with n%z pieces in each group. Then, every

n%4 of such groups are randomly merged together, re-encrypted,

and uploaded back to the server. Such merging and re-encryption
repeat until all the pieces are merged together.

3.4.4 Data Mapping

In this step, the server assigns each of the nr; data blocks, which is
II!C\V

in the form of (g; @, d;) into bucket Hy/ (gfnew(l/)) of layer I’

4. SECURITY ANALYSIS

This section presents the security analysis of the proposed MU-
ORAM. First, we show that MU-ORAM is secure against honest
but curious storage server. Then, we show that MU-ORAM is se-
cure against a collusive coalition of honest but curious server, prox-
ies and users.

4.1 Security against Curious Server

MU-ORAM follows the framework of hash-based ORAMs [13]
with the following major differences: (i) no dummy data block in
the system; (ii) during each query process, two data blocks from
each non-empty level are removed from its bucket and uploaded to
the top layer; (iii) empty bucket will never be accessed due to the
bitmap. In the following, we first find the upper bound of the fail-
ure probability (i.e., bucket overflow probability) and then prove
that MU-ORAM is secure against an honest but curious server ac-
cording to Definition 1.

LEMMA 1. (Probability of bucket overflow). V0 <1 < L —1,
Pr[A bucket overflows on layer [] < O(N ™ log log N). (20)

Please refer to Appendix I for the proof.

THEOREM 1. MU-ORAM is secure against an honest but curi-
ous server.

PROOF. Given any two equal-length sequence & and ¥ of data
requests, their corresponding observable access sequences A(Z)
and A(%) are computationally indistinguishable, because of the fol-
lowing reasons:

e Firstly, according to the query algorithm, sequences A(Z)
and A(y) should have the same format; that is, they contain
the same number of accesses, and each pair of corresponding
accesses have the same format.

e Secondly, all data blocks in MU-ORAM are randomly en-
crypted and each data block is re-encrypted after each access.
Hence, the two sequences could not be distinguished based
on the appearance of data blocks.

e Thirdly, according to the query algorithm, the j-th accesses
G =1,--,|A(@))) of the A(Z) and A(Y) are from the same
non-empty layer of the storage. Also, according to the MU-
ORAM design, the buckets accessed from each layer are ei-
ther selected uniformly at random, or determined by a hash
function (which is also uniformly random); hence, they are
uniformly random in both sequences.

Furthermore, according to Lemma 1, a bucket overflows (i.e., MU-
ORAM fails) with probability O(N ~ 818 V) Therefore, accord-
ing to Definition 1, MU-ORAM is secure against an honest but
curious storage server. [

4.2 Security against Collusive Coalition

To quantify the security strength of MU-ORAM against a collusive
coalition, we first introduce the Modified Matching Diffie-Hellman
(MMDH) problem as follows:

Definition 4. (Modified Matching Diffie-Hellman (MMDH) Prob-
lem). Let G, be a multiplicative cyclic group of order p and gener-
ator g. The MMDH problem is defined as: given g?°, g®*, ¢, and
(g**¢, g*1—?°), for some unknown ag, a1 and ¢ randomly picked
from F}, and an unknown binary bit b randomly picked from {0, 1},
find out the value of b



Similar to the proofs in [2, 19], it can be shown that MMDH is a
computational hard problem as the Decisional Diffie-Hellman and
Matching Diffie-Hellman problems.

We study the security strength of MU-ORAM in the following two
cases, as described in Section 2.3.2.

Case 1: Users with same access privileges to data. For
this case, we study the security strength of MU-ORAM in protect-
ing an innocent user’s access pattern to the data that can also be
accessed by the collusive users. Specific, we have proved the fol-
lowing theorem based on the game Gy and the (e, ¢, ncq)-security
notion defined in Section 2.3.2:

THEOREM 2. Ifthe MMDH problem is (¢, t)-hard (i.e., there is
no algorithm can solve the MMDH problem with an advantage of
at least € within time period t), MU-ORAM is (1.5ncq/N + (1 —
3ncq)2€¢/N, t, neq)-secure against a collusive coalition of semi-
honest storage server, users and some (but not all) proxies, in the
scenario that the collusive users can access all the data accessed
by any innocent user.

PROOF. (sketch) The proof includes two parts: In the first part,
we develop an algorithm B to play as the challenger in game G;.
Note that, there can be two consequences of the game:

e Consequence I: I3 aborts the game and claims failure because
adversary A succeeds in finding an ID chosen in a Selection
Phase through discovering that the data content of this ID has
been changed after the Selection Phase.

e Consequence II: B does not “abort the game and declare fail-
ure”. In this case, B will attempt to solve the MMDH prob-
lem if A succeeds in the end of the game.

In the second part, we analyze the probabilities of the above two
consequences respectively, and the probability for B to succeed
in solving the MMDH problem when Consequence II occurs. We
show that, Consequence I occurs with a probability less than 374 /N.
When Consequence II occurs, the advantage for A to win the game
is no greater than 2¢ if the MMDH problem is (e, t)-hard. Based
on the above two results, we can finally prove this theorem.

Details of the proof can be found in Appendix II. [

This theorem reveals the following intuition: As the collusive at-
tackers have the access privileges to all data that an innocent user
can access, they can attack the access pattern privacy of an inno-
cent user through checking if some randomly selected data blocks
have been changed after innocent user accessed a data block. How-
ever, to make such attack effective, the attackers need to make a
number of queries that is proportional to N; specifically, to gain an
advantage A, the attackers need to make A - N/3 queries on aver-
age. Note that, this will further require the adversary to incur O(A-
Nlog? Nloglog N - B) bits communication cost as the per query
communication cost of MU-ORAM is O(log? N - loglog N - B)
bits as shown in Section 5.

Case 2: Users with different access privileges to data.
For this case, we study the security strength of MU-ORAM in pro-
tecting an innocent user’s access pattern to the data that cannot be
accessed by the collusive users. To quantify the strength, we have
proved the following theorem based on the game G> and the notion
of (e, t)-security defined in Section 2.3.2:

THEOREM 3. If the MMDH problem is (e,t)-hard (i.e., there
is no algorithm can solve the MMDH problem with an advantage
of at least € within time period t), MU-ORAM is (2¢,t)-secure in
protecting an innocent user’s access pattern to the data that cannot
be accessed by a collusive coalition of semi-honest storage server,
users and some (but not all) proxies.

As the proof of Theorem 3 is a subset of the proof of Theorem 2,
we provide the sketch of the proof in Appendix III, but skip the
details.

Theorem 3 reveals the intuition that, MU-ORAM is more effec-
tive in protecting an innocent user’s access pattern to the data that
cannot be accessed by the collusive attackers; specifically, if the ad-
vantage is negligible to solve the MMDH problem in a certain time
period ¢, the chance for the collusive attackers to reveal the above
data access pattern within time period ¢ is also negligible.

Comparing the security strength of MU-ORAM in the above two
cases, we can see that, MU-ORAM is more effective to protect data
access pattern in Case 2 than in Case 1.

S. COST ANALYSIS

In this section, we analyze the storage and communication costs of
the MU-ORAM with the following assumptions:

e We assume the data block size B > +/N bits. Note that this
is reasonable in practice. For example, if N < 232, B is just
required to be at least 32 bytes.

e We assume the bitmap recursion depth is 4. Hence, for a
layer with n buckets, the total size of the bitmap in bits is:

bitmap(n) = n + Vnd + Vn2 + ¥n < 2n, [©3))
where the inequality holds as long as n > 2.

e For simplicity, the size of a piece is set to b = 2048 bits.

5.1 Storage Costs

We analyze the storage costs for the storage server, each proxy, and
each user, respectively.

Storage cost at the server. The storage cost at the server is
no more than N - (2+ B) bits, which is O(N - B) because: (i) there
is no dummy data stored on the server; (ii) the size of the bitmap in
bits is

L—1 L1 L1
Z bitmap(n;) < Z 2.0 = Z R log N
1=0 1=0 (22)

=0

=2log N - (2" —1) < 2log N - 2" < 2N.



Storage cost at each proxy. Due to the need to perform data
shuffling, the storage cost at each proxy is O(v/N log N - b) bits,
where b is the size of each data piece. Note that, in practical set-
tings [36] where N < 232 the cost is no larger than 2 GB.

Storage cost at each user. For each user, the storage cost is
only O(B + v/N) bits, which is O(B) due to the assumption that
B > V/N bits.

5.2 Communication Costs
The communication costs of each user, each proxy and the server
are studied in this subsection.

Communication cost of each user. Each user is involved
only in the query process. For step [Q3], the user needs to retrieve
the bitmap from each layer. To retrieve the bitmap from layer [,
4 Yy bits will be transferred between the server and the user. Thus,
the total number of transferred bits for the bitmap is

L—1 L—1
> 4= 4y/24 g N = 4\/210gNZ2l/4
=0 =0
_4\/210gN21/4 L g9 2log N - 2/* = 22V/N.
(23)

Because there are at most L non-empty layers, the cost of bitmap is
at most 22L v/N bits. For step [Q4], the user needs to retrieve two
buckets from each non-empty layer. In step [Q5], since each bucket
may contain up to log N data blocks, the maximum number of data
blocks retrieved is 2L log N (i.e., 2L log N - B bits). During data
uploading phase, at most 2L data blocks are uploaded to the proxy
chain and then uploaded to the server, which incurs 2L - B bits
communication cost. Therefore, the total number of bits transferred
to the user during each data query is no more than O(log? N - B +
log N - v/N) bits. According to the assumption of B > v/N bits,
the cost is O(log® N - B) bits.

Communication cost of each proxy. During data query pro-
cess, each data block needs to go through each proxy. Thus, each
proxy’s communication cost for query is the same as a user’s com-
munication cost, which is O(log® N - B).

Next, we analyze the communication cost for data shuffling. First
of all, as the proxies local storage is large enough to scramble all
data blocks from the first layer, the communication cost for data
scrambling I on the first layer is 2log NV - B.

Data shuffling for layer [ is triggered when the total number of data
blocks on layers 0 to [ — 1 exceeds the total number of buckets on
layer I —1. Also, each query process moves up to log /N data blocks
to the top layer. Hence, the frequency for data shuffling occurring
for layer [ is at most once per n;/ log N queries.

The communication cost incurred to each proxy during a query pro-
cess is

S(ni) = ni([loglogn;| + 1) - B. (24)

Therefore, the amortized communication cost for data shuffling is

bounded by:

L—1
log N - ([log1 1)-B
an/logN Z og N - ([loglogni] + 1)

L-1
< Z log N - (loglog N +1) - B
=0 25)
log N
< Z log N - (loglog N +1) - B
1=0
= O(log® Nloglog N - B).

Overall, data shuffling communication cost is O(log® N log log N -
B) bits.

Communication cost of the storage server. The commu-
nication cost of the storage server is no more than the sum of the
costs of each user and each proxy. Hence, the communication cost
of the server is O(log® N loglog N - B) bits.

5.3 Cost Comparison

Table 1 compares MU-ORAM with a couple of representative ORAM
constructions, namely, B-ORAM [21] and P-ORAM [37]. B-ORAM
is the most communication-efficient hash-based ORAM construc-
tion; P-ORAM is the most communication-efficient index-based
ORAM that does not require the server to conducte intensive com-
putation. Note that, other ORAM constructions have been briefly
introduced and compared to MU-ORAM in Section 6.

Table 1: Cost Comparison. N is the total number of data blocks
outsourced to the storage server, B is the size of a data block
(B> v/N ), and b is the size of a data piece.

[ Overhead | B-ORAM | P-ORAM | MU-ORAM |
Query | User | O(B léZ%OENN ) | 0(Blog N)w(1) O(Blog? N)
Comm. [ Proxy N/A N/A O(Blog” N)
Shuffle| User | O(BR28L) | o(Blog Nyw() N/A
Comm. Mproxy N/A N/A O(Blog” N loglog N)
Client Storage O(B) O(B log N)w(1) O(B)

Proxy Storage N/A N/A O(by/Nlog N)
Server Storage > 4N - B 20N - B (B+2)N

As shown in Table 1, MU-ORAM incurs higher communication
overhead compared to both B-ORAM and P-ORAM, which is the
cost to support multi-user ORAM model and deal with the stealthy
privacy attacks.

6. RELATED WORK

Since Goldreich and Ostrovsky [13] proposed the first ORAM con-
struction, this model has been extensively explored in the past decade.
Though it was proposed for single user and single server setting, it
has been recently extended to more general settings.

6.1 Single-user and Single-server ORAM

Based on the data lookup techniques used, the single-user and single-
server ORAMs can be roughly classified into two categories: hash-
based ORAMs and index-based ORAM:s.

Index-based ORAMs, such as Tree-ORAM [33] and Partition ORAM [36],
use index to locate outsourced data. Tree-ORAM stores outsourced



data as a binary tree, while Partition ORAM splits the server stor-
age into multiple smaller ORAM partitions each organized as hi-
erarchies of layers. Two major operations, data query and evic-
tion, are performed obliviously to hide the user’s access pattern.
Derived from these constructions, numerous variants [3-6, 9, 10,
12,24,26-28,30-32, 35, 38, 39, 44] have been proposed to further
improve the performance, especially the communication perfor-
mance. Among them, P-ORAM [37], which incurs the commu-
nication cost of O(log N)w(1) data blocks per query in the general
mode (i.e., index is exported to the server) is the most efficient one
that does not require the storage server to conduct intensive compu-
tation; the most recently-proposed Constant ORAM [7,27] incurs
only constant communication cost and thus is the most efficient,
but it requires the server and the user to conduct homomorphic en-
cryption operations on data. As our proposed MU-ORAM scheme
shares the same assumption about storage server, we only compare
MU-ORAM to P-ORAM in Section 5.

Hash-based ORAMs [13-17, 29, 40, 40, 43] use traditional hash,
Bloom Filter, Cuckoo hash, etc., to locate outsourced data in the
remote storage. Among them, B-ORAM [21], which is the most ef-
ficient hash-based ORAM scheme, incurs the communication cost
of O(log® N/ loglog N) data blocks per query, and hence is com-
pared to our proposed MU-ORAM in Section 5.

6.2 Single-user and Multiple-server ORAM

As it is popular for a user to utilize multiple cloud servers simul-
taneously, some ORAM constructions [22, 34, 36] were proposed
based on the idea of having two or more cloud servers to store the
data and collaborate in performing data shuffling. These proposals
also need to assume that the servers do not collude with each other.
Different from them, our proposed MU-ORAM assumes only one
cloud storage server.

6.3 Multiple-user and Single-server ORAM

Most of the existing multi-user, single-server ORAMs assume all
the users trust each other, and thus they do not collude with the
storage server and they only need to protect their data access pat-
terns from the storage server (without the need to protect one user’s
access pattern from other users). Based on such assumption, all
stateless ORAMs (i.e., ORAMs that do not require local storage of
data) [11,13-17,23,25,29,33,40,42,45] can be extended to support
such scenarios. Particularly, PrivateFS [42] has been proposed to
further support parallel accesses from multiple users. As discussed
in Sections 1 and 2, MU-ORAM has different security assumptions
from these works.

The recently proposed G-ORAM [23] is more relevant to MU-
ORAM, which considers the following scenario: A data owner out-
sources a dataset to a semi-honest cloud storage server, via which
the data is shared with a group of untrusted users who may be ma-
licious. The storage server is assumed not to collude with any user.
The design goal is to employ the storage server to enforce that a
user can only access the data it is authorized to, and meanwhile pre-
serve the obliviousness of the users’ access from the server. Among
the issues G-ORAM tries to solve, the most relevant issue to MU-
ORAM is data access obliviousness. The obliviousness property
for G-ORAM is defined as follows: Assuming the server is not al-
lowed to collude with any users in the system, the access pattern
of any user is protected against the server. Due to the assumption
of non-collusion, it significantly differs from the problem studied
in this paper. Also, MU-ORAM considers the scenario where all
users are peers obliviously sharing the outsourced data, while G-

ORAM assumes a hierarchical model where a data owner (as a
central point of control) utilizes the storage server to oversee the
data sharing among multiple data users. This architectural differ-
ence also makes the designs to be significantly different.

7. CONCLUSION

This paper proposes MU-ORAM, a new ORAM construction to
deal with stealthy privacy attack in the application scenarios where
multiple users share a data set outsourced to a remote storage server
and meanwhile want to protect each individual’s data access pat-
tern from being revealed to one another. We propose new security
definitions for MU-ORAM, design data storage, query and shuf-
fling algorithms, and conduct extensive security and cost analysis
to evaluate the security properties as well as the communication
and storage costs of the design.
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Appendix I: Proof of Lemma 1
Detailed proof of Lemma 1 is as follows.

In MU-ORAM, there are at most n; = 27! log N data blocks to
be distributed into n; buckets. Then, according to a standard balls
and bins model, we could have the following analysis:

Let us consider a particular bucket buc;, and for each data block,
define X1, - -+, X, as random variables such that

X; = { 1 the i™data block mapped to bucy,

0  otherwise. 26)

Note that, X1,--- , Xy, are independent of each other, and hence
for each X;, Pr[X; = 1] = L. Then, the probability that buc;

ny "
has more than ¢ data blocks is:

Pr[# data blocks in buc; > t]
n 1\* e-n\*/ 1\t
(O =) () @)
e t
()
Note that the second inequality of Equation 27 is due to (}) <
(%)k for all k < n. Further considering the fact that n; < N and

t = log N, we apply the union bound of all buckets on layer [:
Pr[ 3 a bucket with more than ¢ data blocks]
log N 28)
e\t e —loglog N (
<n-(-) <N- = O(N~ 88,
= (t) - (10gN) ( )

Therefore, we have for any layer [ in MU-ORAM, the probability
of any buckets to have more than log N data blocks is negligible in




N, which is Oi ~ loglog V)

Appendix II: Proof of Theorem 2

The proof includes two parts: In the first part, we develop an algo-
rithm B to play as the challenger in game G;. Note that, there can
be two consequences of the game: (i) Consequence I: I3 aborts the
game and claims failure because adversary A succeeds in finding a
data ID chosen in a Selection Phase. (ii) Consequence II: 3 does
not “abort the game and declare failure”. In this case, 5 will at-
tempt to solve the MMDH problem if A succeeds in the end of the
game. In the second part, we analyze the probabilities of the above
two consequences respectively, and the probability for 5 to succeed
in solving the MMDH problem when Consequence II occurs.

Part (1): Algorithm B.

B acts as the challenger in the game G1(M,p, N,m,neq). Bis
given g, g%, g1, g, and (g?*°, g?1-*°), where b € {0, 1} and ao,
a1 and c are randomly picked from Fj,.

Initialization Phase - B simulates to construct and initialize m
proxies and the data storage of N encrypted data blocks accord-
ing to Sections 3.1 and 3.2: A hierarchical storage structure as
described in Section 3.1 is constructed and initialized. Three in-
tegers are randomly selected from F, \ {0}, and denoted as z, «
and S respectively. For each layer I € {0,---,L — 1} in the hi-
erarchical structure, a random oracle (hash function) H; is intro-
duced to map encrypted data block IDs to buckets. Each proxy ¢y
(k=0,---,m—1)is preloaded with keys zx (1), yx (!) and Az(l)
for ! € {0,---,L — 1}, which are all randomly selected from
F, \ {0}. N data blocks are initialized as IV distinct (ID, content)
pairs as follows: Let u and v be two distinct integers selected from
{0,- -+, N — 1} uniformly at random. Data blocks D,, and D,, are
setto (g, g¥*) and (g**, g¥”) respectively, where y,, and y, are
randomly selected from F}, \ {0}. For each of the rest data blocks
D; = (gi,d;) where ¢ € {0,--- ,N — 1} \ {u, v}, i = ¢*¢ and
d; = g% where z; and y; are randomly selected from F}, \ {0}.
The IDs, i.e., g; fori = 0,--- , N — 1, are provided to .A. Each
D; is then encrypted into (g"" ™ (g7 > d;)vED), where
2(L—1) = z24+Az(L—1), and uploaded to bucket Hy, (g7~ ")
of layer L — 1.

Query Phase I - This phase consists of multiple requests that can be
made by A. We describe 5’s response to each type of .A’s requests
as follows:

e Data Query - Depending on the type of query requests made
by A, the responses are different.

— For Type I query (i.e., controlled query), if the num-
ber of such type of query exceeds n.q, the game aborts.
Otherwise, A simulates the behavior of the user, and
B simulates the behavior of the proxies and the server.
They both follow MU-ORAM’s query and shuffling al-
gorithms.

— For Type II query (i.e., random query), B simulates the
querying user, the proxies and the server, following MU-
ORAM’s algorithms. Note that, A does not know which
ID is selected by B to query, but it can observe the pro-
cess through requesting transcripts from the server and
compromised proxies.

Without loss of generality, in this proof we assume that the
content of the queried target data block is always changed
before it is uploaded.

o Proxy Compromise - Upon A queries to compromise a proxy,
the secret keys zx (1), yx (1) and Az (1), wherel = 0,--- , L—
1, are returned to A.

e Proxy and Server Transcript Checking - Upon A queries to
check the transcript of a proxy’s or the server’s certain oper-
ations, the input and the output of the operations are returned

to A.

e Storage Inspection - A may request to inspect the bitmap of a
particular layer or the content of a particular bucket of some
layer. As a result, the bitmap and/or the content of a bucket
are returned.

Selection Phase I - In this phase, I3 launches the process of query-
ing data block D,,, i.e., the data block of ID g“°.

A new game instance (which we call Game Instance 1) is forked
from the current game (which we call Game Instance 0). In both
game instances, the query for data block D,, is executed following
the querying and shuffling algorithms described in Sections 3.3 and
3.4. However, the data content of D,, is changed differently in these
instances:

e In Game Instance 0, after D,, is queried, the content of D,,,
i.e., dy, is changed from its current value to g* where w is
randomly selected from F), \ {0}.

e In Game Instance 1, after D, is queried, d,, is changed to
gztecgf . Also, from this point, the Az used in the uploading
phase and the shuffling phase should always follow the format
of Az = a- ¢+« where v € F, \ {0} and can vary. This
way, the data content of D,, will be encrypted into

gu CTA g g’ = g0,
which can be computed without knowing the answer to the
MMDH problem.

Query Phase II - In this phase, the requests are handled in the same
way as in the Query Phase I in both instances of the game, except
for the following scenarios. (i) When data block D,,, which was
queried in the Selection Phase I, is queried by A as Type I query
request: The rule specified in the definition of G; is applied, and
B will abort the game and declare failure if the specified condi-
tions are satisfied. (ii) When data block D, is queried again in
the response to Type II query request: The current Game Instance
1 is aborted, and the current Game Instance 0 forks a new game
instance which we call Game Instance 1. In both instances, the
query for D, is processed following the querying and shuffling al-
gorithms described in Sections 3.3 and 3.4, but the content of D,,
is changed differently:

e In Game Instance 0, after D,, is queried, d,, is changed from
its current value to g* where w is randomly selected from
£, \ {0}

o In Game Instance 1, after Du is queried, d,, is changed from
its current value to g”“ “g”. And, from this point, the Az
used in the uploading phase and the shuffling phase should
always follow the format of Az = a-c+v where v € F,,\{0}
and can vary. Note that, this is the same as in Selection Phase
L

Selection Phase II - In this phase, B launches the process of query-
ing data block D,,, i.e., the data block of ID g“*, in both instances



of the game. Then, each of the current game instance forks a new
game instance. Game Instance 0 forks a new Game Instance 2, and
Game Instance 1 forks a new Game Instance 3. All these four game
instances follow the same data querying and shuffling algorithms as
above, but the content of D,, is changed differently:

e In Game Instances 0 and 1, after D,, is queried, d, is changed
from its current value to g* where w is randomly selected
from I}, \ {0}.

e In Game Instances 2 and 3, after D,, is queried, d, is changed

to gf,“”gﬁ.

Furthermore, in Game Instance 3, if D, and D, are in the same
bucket when the query is launched, the game aborts; otherwise, the
following operations should be conducted:

o In the data query phase, both D,, and D, (i.e., the buckets that
contain these two data blocks) should be selected to down-
load. Note that this is attainable because the querying algo-
rithm downloads two buckets from each layer that has two or
more buckets, and D,, and D, are in different buckets. Also
this process is oblivious because both blocks are randomly
distributed to the buckets.

e In the data uploading phase, both D,, and D, should be se-
lected to upload to the temporary buffer of the server. This is
attainable because the uploading algorithm uploads one data
block from each downloaded bucket.

e In the data shuffling phase immediately after the query, D,,
and D, are scrambled during the Scrambling Round I, in
which Az™ (1) (note: I’ is the layer that the data blocks
should be shuffled to) is set to rg - ¢ and 2" issettory - ¢
where ro and r; are randomly selected from F}, \ {0}. Hence,
D, and D,, are encrypted to

(gaoc-rl7 (gfaoo(rofa)gﬁ)yf‘huf)
and
ajc-r —atrc(ro—a shuf
(gurem (gt ™y

respectively; further after random scrambling, they become
((gmey, (gmoveyromev™™ o)
and
(tgmreys, (gmeroeyromerw ™ g™

where b is either O or 1 with the same probability.

e In the rest lifetime of this game instance, the key z(l) should
always be some r - ¢, where r is selected randomly from Fj, \
{0} and can vary.

Query Phase III - The requests in this phase are handled in the
same way as in Query Phase I, except when D,, or D, is queried.
(i) When D,, or D, is queried by A as Type I query request, the
specified rule is checked to determine if B should abort the game
and declare failure. (i) When D,, or D, is queried as 3’s response
to Type II query request, it is handled as follows.

When D, is queried, Game Instances 1 and 3 abort; meanwhile,
Game Instance 0 forks a new Game Instance 1, and Game Instance
2 forks a new Game Instance 3. These four game instances follow

the same data querying and shuffling algorithms as above, but the
content of D,, is changed differently:

e In Game Instances 0 and 2, after D,, is queried, d,, is changed
from its current value to g where w is randomly selected
from F}, \ {0}.

e In Game Instances 1 and 3, after D,, is queried, d,, is changed

to gff‘”gﬁ.

Furthermore, in Game Instance 3, if D, and D, are in the same
bucket when the query is launched, the game aborts; otherwise, the
operations as described in the Selection Phase II should be con-
ducted as well.

When D, is queried, Game Instances 2 and 3 abort; meanwhile,
Game Instance 0 forks a new Game Instance 2, and Game Instance
1 forks a new Game Instance 3. These four game instances follow
the same data querying and shuffling algorithms as above, but the
content of D, is changed differently:

e In Game Instances 0 and 1, after D,, is queried, d,, is changed
from its current value to g* where w is randomly selected
from F, \ {0}.

e In Game Instances 2 and 3, after D,, is queried, d,, is changed

to gff""cgﬁ.

Furthermore, in Game Instance 3, if D, and D, are in the same
bucket when the query is launched, the game aborts; otherwise, the
operations as described in the Selection Phase II should be con-
ducted as well.

Challenge Phase - If Game Instance 3 does not exist, the game
will abort. Otherwise, B launches the process of querying the
data block with ID g®* in this game instance. Though B does not
know ¢g“® because b is unknown, the query can be implemented
as follows: to execute the first step of data query phase for layer
I where z(I) = rc for some r € F,, B picks 1 and v from
G, uniformly at random, and then sends out (1,71,72) to the
simulated proxies which will execute the algorithm as specified in
MU-ORAM design; no matter what are returned from the proxies,
B sets (ga, )" = (g*°). Then, the rest part of the data query and
shuffling algorithms can be implemented trivially.

Query Phase IV - The requests in this phase are handled in the same
way as in Query Phase I, except that: (i) If A requests to query ID
gu OF gy, B will abort the game and declare failure. (ii) In respond
to A’s type II query, BB will randomly select one of the IDs to query.
In this case, if the selected ID is gy, the data block with ID g®® is
queried instead; if the selected ID is g, the data block with ID
g?1=? is queried instead.

Response Phase - A responds with b’. Algorithm B uses b’ as the
solution to the MMDH problem.

Part (2): Analysis of B.

First, we analyze the probability for Consequence I to occur. Note
that, Consequence I refers to the case that B aborts the game and
declares failure according to the rules in processing Type I data
queries in Query Phase II and III. As explained in the definition
of G, such failure of B is due to that A finds the ID chosen in a



Selection Phase and thus can discover the access pattern. Specifi-
cally, there are three sub-cases for such failure to occur: Sub-case
(1): A finds the ID chosen in Selection Phase I (i.e., g, - ID of Dy,);
Sub-case (ii) A finds the ID chosen in Selection Phase II (i.e., g, -
ID of D,); Sub-case (iii): .A requests to query D,, or D, in Query
Phase IV. Sub-case (i) occurs if D, as a Type I data query is re-
quested both before and after Selection Phase I. We can compute
the probability for this to occur as follows:

e Supposing x Type I queries are made before Selection Phase
I, the probability for the query of D, to be among the =
queriesis (3 ") / (YY) = z/N.
e Suppose y Type I queries are made after Selection Phase 1. As
B has higher probability to find the target of Selection Phase
I'if it only chooses the IDs that it has queried before Selection
Phase I to query again (Note: this way it can detect the data
block whose content is changed), the probability for D,, to be
queried among the y IDs is (~1) / () = y/x.
Therefore, the probability for Sub-case (i) is (/N)-(y/z) = y/N;
further due to z + y < n¢q and y < x, the probability is at most
Neq/2N.

Similarly, the probability for Sub-case (ii) is at most nq /2N . Lastly,
the probability for Sub-case (iii) is at most 1 — (flvcf) / (,I,V . q) <
2n¢q/N. Totally, the probability for Consequence I to occur is less

than 3n.q/N.

Second, we consider Consequence II, i.e., B does not “abort the
game and declare failure”. Here, there will be two cases: (i) In
the first case, the game aborts at the beginning of Challenge Phase
because D, and D, are in the same bucket in Game Instance 3.
This case occurs with a probability of at most 57—, due to the
facts that each layer has at least 2 log N different buckets and data
blocks are randomly distributed to the buckets. (ii) In the second
case, the game finishes normally, and the adversary returns a binary
bit &". In this case, if A wins the game (i.e., b’ = b), B also obtains
the correct answer (i.e., b = b’) to the MMDH problem and thus
solve the problem.

Considering the above two cases together, if A can win the game
under Consequence IT with advantage €’ within time period ¢, B3 can
solve the MMDH problem with an advantage of at least 2108 N1 ¢/
0.5¢’ with the same time complexity. Hence, with the assumption
that the MMDH problem is (e, t)-secure, i.e., no algorithm can
solve the MMDH problem with an advantage of at least € within
time ¢, we conclude that A cannot win the game under Conse-
quence II with an advantage of at least 2e within time ¢.

To summarize the above analysis for Consequence I and I, A can-
not win the game with a probability greater than 3n.q/N + (1 —
3ncq/N) * (0.5 + 2€) (i.e., an advantage greater than 1.5n¢4/N +
(1 — 3ncq)2¢/N), if it can issue at most neq (Neg < N/3) Type 1
data queries and its overall running time is ¢. That is, MU-ORAM
is (1.5ncq /N + (1 — 3ncq)2¢/N, t, ncq)-secure.

Appendix III: Proof of Theorem 3

As the proof of Theorem 3 is actually a subset of the proof of Theo-
rem 2, we only sketch the difference from the proof in Appendix II
as follows: This proof also includes two parts: construction of al-
gorithm B’ to play as the challenger in game G with the adversary
A, and the analysis of B'.

2log N >

In the first part, as the definitions of G is different from that of
G1, we describe the major difference of B’ from B in the proof of
Theorem 2: (i) Initially, A is only provided with a subset of the
complete ID sets; that is, there are totally N IDs but A is only
given N’ < N — 2 of the IDs. (ii) The IDs of D,, and D, (i.e., the
two data blocks queried in Selection Phase I and II) are unknown
to A. (iii) B’ will not “abort the game and declare failure” in the
game.

In the second part, as 3" does not “abort the game and declare fail-
ure”, we only need to analyze the probability for B’ to solve the
MMDH problem if A wins the game. Therefore, based on the as-
sumption that the MMDH problem is (e, ¢t)-hard, we can conclude
that A’s advantage to win the game within time ¢ is at most 2e.

Appendix I'V: Data Shuffling Algorithms

Algorithm 1 Re-encrypt&Scramble({lo, - ,In,;,—1}): re-
encryption and scrambling of encrypted IDs Io, ---, In,;;—1 by
Proxy ¢o.
1: n<+nrr
2: k?old = .T?)huf
3: whilen > 1do
split {fo, - - -
n' — [/n)
split local cache evenly to n’ segments: So, - -+ , Sp/
ifn’ > 1 then
select kyew randomly from Fj, \ {0}
kold = kold * kvLew
10: else
11: knew = x5 (') /kota
12: end if
//Merge n groups into n’ larger groups
13:  fori:=0ton —1do

, In;,—1} evenly to n groups: Jo, -+ , gn—1

o nhk

14: Re-encrypt&Merge(knew, {Gixn’s 5 G(i+1)wn/—1})
15: end for
16: n<<n'

17: end while

Algorithm 2 Re-encrypt&Merge(knew, {Jo, " -
pieces in groups go, - - -
1: s+ ¢/NlogN/n /lcalculate the capacity of each segment
//ill in half of each segment
2: fori:=0ton —1do
3 for j :=0t0.S/2do
4: download one piece from g; (if any) to segment .S;
5
6

,gn—1}): merge
, gn—1 and re-encrypt them with key krew

end for
: end for
/Iscramble and re-encrypt the pieces
7: while segments are not empty do

8: if groups are not empty then

9: fori:=0ton —1do
10: download one piece from §; (if any) to .S;

11: end for
12: end if
13: fori::=0ton —1do
14: randomly select r from {j|.S; is not empty }
15: re-encrypt the first piece in S, with kyc, & upload it
to the server’s temporary buffer

16: end for

17: end while




