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Abstract. Sanitizable signatures, introduced by Ateniese et al. at ESOR-
ICS’05, allow to issue a signature on a message where certain predefined
message blocks may later be changed (sanitized) by some dedicated party
(the sanitizer) without invalidating the original signature. With sanitiz-
able signatures, replacements for modifiable (admissible) message blocks
can be chosen arbitrarily by the sanitizer. However, in various scenar-
ios this makes sanitizers too powerful. To reduce the sanitizers power,
Klonowski and Lauks at ICISC’06 proposed (among others) an extension
that enables the signer to limit the allowed modifications per admissible
block to a well defined set each. At CT-RSA’10 Canard and Jambert
then extended the formal model of Brzuska et al. from PKC’09 to addi-
tionally include the aforementioned and other extensions. We, however,
observe that the privacy guarantees of their model do not capture privacy
in the sense of the original definition of sanitizable signatures. That is, if
a scheme is private in this model it is not guaranteed that the sets of al-
lowed modifications remain concealed. To this end, we review a stronger
notion of privacy, i.e., (strong) unlinkability (defined by Brzuska et al.
at EUROPKI’13), in this context. While unlinkability fixes this problem,
no efficient unlinkable scheme supporting the aforementioned extensions
exists and it seems to be hard to construct such schemes. As a remedy, in
this paper, we propose a notion stronger than privacy, but weaker than
unlinkability, which captures privacy in the original sense. Moreover, it
allows to easily construct efficient schemes satisfying our notion from
secure existing schemes in a black-box fashion.

1 Introduction

Digital signatures are an important cryptographic tool to assert the authenticity
(source) and integrity of digital content. By virtue of these desired properties,
every alteration of signed data necessarily yields an invalidation of the original
signature. If one, however, considers handwritten signatures on paper documents,
there are various scenarios where the handwritten signature is still visible (source
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authentication is still given), but the document contains several blacked-out sec-
tions. These sections are not readable anymore and thus remain confidential.
Examples for such sanitized documents are the public release of previously clas-
sified governmental documents, legal subpoenas for documents in court trials or
documents for medical or biomedical research [ACJT12, CGRMO08, COS09].

It is clear that conventional digital signatures can not be used as a means
for source authentication in such scenarios for the obvious reason. A naive solu-
tion would be to issue a fresh signature on a sanitized version of the respective
document. However, this is often not possible (e.g., the signing key has already
expired or is not available) or it is even undesirable (e.g., due to time or cost
constraints).

1.1 Background on Sanitizable Signatures

To realize a controlled and limited sanitization of digitally signed content with-
out signer-interaction, various approaches to so called sanitizable signatures have
been introduced and refined over the years. Today, there are essentially two fla-
vors of sanitizable signatures. The first one focuses on removal (blacking-out)
of designated parts not necessarily conducted by a designated party (could be
everyone) and it covers redactable signatures [JMSWO02], content-extraction sig-
natures [SBZ01] and the sanitizable signatures in [MIM™*05]. The second one
focuses on replacement of designated parts conducted only by a designated party
(the sanitizer) and covers sanitizable signatures as defined in [ACAMTO05] and
follow up work [BFF109, BFLS09, BFLS10, BPS12, BPS13, PSP11]. For a sepa-
ration of these flavors we refer the reader to [dMPPS14].

In addition to the motivating examples in the beginning, sanitizable signa-
tures have shown to be a useful tool in various scenarios. Their applications
include customizing authenticated multicast transmissions, database outsourc-
ing (combating software piracy and unauthorized content distribution), remote
integrity checking of outsourced data [CXO08] and secure routing [ACAMTO05].
Moreover, they find applications in the context of public sector (open gov-
ernment) data [SKZ13], DRM licensing for digital content protection [CLMOS,
YSL10], privacy protection in smart grids [PK14], privacy-aware management
of audit-log data [HHH'08], health record disclosure [BBM09] and anonymiza-
tion [SR10], as well as identity management [SSZ14,ZS13]. On the more theoret-
ical side, it has been shown how to build attribute-based anonymous credential
systems from sanitizable signatures in a black-box fashion [CL13].

In this paper, we focus on sanitizable signatures in the vein of Ateniese et
al. [ACAMTO5]. The basic idea behind such a scheme is that a message is split
into fixed and modifiable (admissible) blocks, where each admissible block is
replaced by a chameleon hash (a trapdoor collision resistant hash) of this block,
and the concatenation of all blocks is then signed. A sanitizer being in possession
of the trapdoor, can then change each admissible block arbitrarily by computing
collisions. Such a sanitizable signature scheme needs to satisfy (1) unforgeability,
which says that no one except the honest signer and sanitizer can create valid
signatures and sanitizations respectively, (2) immutability, which says that a



malicious sanitizer must not be able to modify any part of the message which
has not been specified as admissible by the signer, (3) privacy, which says that all
sanitized information is unrecoverable for anyone except signer and sanitizer, (4)
transparency, which says that signatures created by the signer or the sanitizer are
indistinguishable, and (5) accountability, which requires that a malicious signer
or sanitizer is not able to deny authorship. These security properties have later
been rigorously defined in [BFFT09], where it is also shown that accountability
implies unforgeability, transparency implies privacy' and all other properties
are independent. Later, the property of (strong) unlinkability [BFLS10, BPS13]
as an even stronger privacy property has been introduced. Additionally, other
properties such as (blockwise) non-interactive public accountability [BPS12] have
been proposed and the model has also been extended to cover several signers
and sanitizers simultaneously [CJL12].

1.2 Motivation for this Work

With sanitizable signatures, admissible blocks can be replaced arbitrarily by
the sanitizer. However, this often makes sanitizers too powerful and thus may
limit their applicability in various scenarios severely. To reduce the sanitizers’
power, Klonowski and Lauks [KLO06] introduced several extensions for sanitiz-
able signatures, which allow to limit the power of a sanitizer in several ways and
thus eliminate the aforementioned concerns. In particular, they have introduced
extensions (1) limiting the set of possible modifications for an admissible block
(LimitSet), (2) forcing the sanitizer to make the same changes in logically linked
admissible blocks (EnforceModif), (3) limiting the sanitizer to modify at most
k out of n admissible blocks (LimitNbModif) and (4) forcing the sanitizer to
construct less than ¢ versions of a message (LimitNbSanit). Later, Canard and
Jambert [CJ10] extended the security model of Brzuska et al. [BFFT09] to cover
the aforementioned extensions (as [KL06] did not provide any model or proofs).

The LimitSet Extension. Although all of the aforementioned features improve
the applicability of sanitizable signatures, we deem the LimitSet extension to be
the generally most useful one (besides, it is the only extension that is related to
the privacy property). Thus, in the remainder of this paper, we only consider the
LimitSet extension and refer to schemes that implement this extension as ex-
tended sanitizable signature schemes (ESSS). In existing constructions, LimitSet
is realized by using cryptographic accumulators, a primitive that allows to suc-
cinctly represent a set (as a so called accumulator) and to compute witnesses
certifying membership for elements in the set. Basically, the set of admissible
changes for such a block is accumulated and the admissible block is replaced
by the respective accumulator. Loosely speaking, the signer initially provides an
element together with the witness and sanitizing simply requires the sanitizer to
exchange this element and the witness.

1 'We note that the implication of privacy by transparency [BFLS10] only holds in the
proof-restricted case (cf. Section 3).



How to define Privacy? Recall that for sanitizable signatures without ex-
tensions, privacy means that it should not be possible to recover the original
message from a sanitized version. Now, what is the most reasonable definition
for privacy given the LimitSet extension? It seems to be most natural to re-
quire that, given a (sanitized) signature, a LimitSet block does not leak any
information about the remaining elements in the respective set (and thus no
information about the original message). By carefully inspecting the security
model for ESSS in [CJ10], we, however, observe that their privacy definition
does not capture this. In fact, an ESSS that reveals all elements of the sets cor-
responding to LimitSet blocks will be private in their model. One motivation for
a weak definition of privacy in [CJ10] might have been to preserve the implication
from (proof-restricted) transparency (as in the original model from [BFF109]).
However, as it totally neglects any privacy guarantees for the LimitSet exten-
sion, a stronger privacy notion seems advantageous and often even required.
In [BFLS10, BPS13] a stronger notion of privacy for sanitizable signatures—
called (strong) unlinkability—has been introduced. This notion, when adapted
to ESSS, indeed guarantees what we want to achieve. Yet, unlinkability induces
a significant overhead for constructions supporting the LimitSet extension. As
we will see later, the only unlinkable construction that supports the LimitSet
extension [CL13] is rather inefficient and is only proven secure in a customized
model which does not consider all security requirements of sanitizable signatures
and thus does not represent an ESSS. In general, as we will show later, efficient
unlinkable constructions of ESSS seem hard to achieve. Taking all together we
conclude that, while the notion of privacy in [CJ10] seems to be too weak, un-
linkability seems to be too strong. Subsequently, we motivate why a stronger
privacy notion (inbetween these two notions) that still allows to obtain efficient
instantiations is however important for practical applications.

Motivating Applications. We consider use cases where it is required to limit
the sanitizers abilities, while at the same time providing privacy with respect
to verifiers. For instance, consider authenticity preserving workflows that span
multiple enterprises. Using ESSS they can be modeled as illustrated in Figure 1,
with a signer and a sanitizer per enterprise. Then, employees can—within some
well defined boundaries—act (in the role of the sanitizer) on behalf of their com-
pany, while also being accountable for their actions. However, companies do not
disclose sensitive business internals. As a concrete example for such a workflow,
envision that a bank signs a document containing a LimitSet block with autho-
rized financial transactions for some company once every day. An employee of
this company is then able to demonstrate the authorization of single transactions
to subsequent enterprises via sanitization, while not being able to maliciously
introduce new transactions. The company will definitely want that employees
can be held accountable for revealing certain transactions and that transactions
which were never revealed by sanitized versions of the orignal document remain
concealed. Observe, that an ESSS being private according to [CJ10] could reveal
sensitive business internals upon signature verification (i.e., the unused trans-
action information). Another use case is the anonymization of (medical) data
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Fig. 1. Modeling a Workflow using ESSS

before publishing it, e.g., instead of removing the entire address information of
some individual, one can replace the precise address with some larger region. To
do so, one could define an admissible set with two elements being the precise
address and the region. This would greatly help to automate the sanitization and
to reduce errors, which, in turn, improves the quality of sanitized documents.?
Likewise to the previous example, an ESSS which is private according to the def-
inition in [CJ10] would allow to reconstruct the precise address from a sanitized
document.

1.3 Contribution

In this paper we take a closer look at the privacy definition for ESSS in [CJ10]
as well as the unlinkability definitions in [BFLS10,BPS13] when applied to the
security model for ESSS. We conclude that these notions are either not strict
enough to cover the requirements outlined in the previous section or too strict to
obtain practical schemes. To this end, we introduce a stronger notion of privacy—
denoted strong privacy—which explicitly considers privacy issues related to the
LimitSet extension. More precisely, our strengthened notion guarantees that
the sets of allowed modifications remain concealed, while still allowing efficient
instantiations. We show that privacy is strictly weaker than strong privacy and
that unlinkability is strictly stronger than strong privacy. Most importantly, we
show that efficient and secure ESSS providing strong privacy can be constructed
in a black-box way from any sanitizable signature scheme that is secure in the
models of [BFFT09, GQZ11]. We do so by proposing (1) a generic conversion
of sanitizable signatures to ESSS which support the LimitSet extension and
(2) showing that instantiating the LimitSet extension in this generic conversion
with indistinguishable accumulators (as introduced in [DHS15]) yields construc-
tions that provide strong privacy.

2 Preliminaries and Notation

For the sake of compact notation, we often use the concatenation operator,
e.g., (a) /(b)) = (a1,...,an,b1,...,by) and assume that concatenated

2 Such sets could be obtained and standardized by using concepts from k-anonymity
[Swe02] or t-plausibility [ACJT12] with the help of domain expert knowledge.



sequences can later be uniquely decomposed (even when concatenating elements
of different types and lengths). Let = <* X denote the operation that picks an
element z uniformly at random from a finite set X. A function € : N — R™ is
called negligible if for all ¢ > 0 there is a k¢ such that e(k) < 1/k° for all k > k.
In the remainder of this paper, we use € to denote such a negligible function.

2.1 (Indistinguishable) Accumulators

Accumulators allow to represent a finite set A’ of values as a single succinct ac-
cumulator accy. For each value z € X, one can efficiently obtain a membership
witness wit, that certifies the membership of x in accy, while this is infeasible
for values y ¢ X (collision freeness). Indistinguishable accumulators [DHS15]
additionally require that neither the accumulator nor corresponding witnesses
leak information about the accumulated set. Subsequently, we use the basic
model for static accumulators from [DHS15] and note that in general a trusted
setup is assumed (i.e., AGen is run by a TTP that discards the trapdoor skacc).
However, if the party maintaining accy is trusted, as it is the case within saniti-
zable signatures, using skacc may be useful as it typically supports more efficient
computations (the parameter sk}, denotes the optional trapdoor, i.e., using the
trapdoor does not influence the output distributions of the algorithms and all
algorithms also run without skacc).

Definition 1 (Accumulator [DHS15]). An accumulator is a tuple of PPT
algorithms (AGen, AEval, AWitCreate, AVerify) which are defined as follows:

AGen(1",t): This algorithm takes a security parameter k and a parameter t. If
t # oo, then t is an upper bound for the number of accumulated elements. It
returns a key pair (SKacc, PKaec), where skace = 0 if no trapdoor exists.

AEval((sky.., Pkoec)s X): This (probabilistic)® algorithm takes a key pair (sk3..,
Pkacc) and a set X to be accumulated and returns an accumulator accy to-
gether with some auziliary information aux.

AWitCreate((sky.c, PKacc)s acCx, aux, x): This algorithm takes a key pair (sk,
PKaee)s an accumulator accy, auziliary information aux and a value x. It
returns L, if x ¢ X, and a witness wit,, for x otherwise.

AVerify(pk,..s accx, wity, x): This algorithm takes a public key pk,.,
mulator accy, a witness wit, and a value x. It returns true if wit, is a
witness for x € X and false otherwise.

an accu-

A secure indistinguishable accumulator is correct, collision free and indistin-
guishable. We recall the definitions for collision freeness and indistinguishability
below.*

3 If AEval is probabilistic, the internally used randomness is denoted as r. AEval,. is
used to make the randomness explicit.

4 Note that, even though A can run AEval and AWitCreate itself, they are modeled as
oracles to emphasize that A sees arbitrary accumulators and witnesses.



Definition 2 (Collision Freeness). An accumulator is collision-free, if for all
PPT adversaries A there is a negligible function €(-) such that:

(sKace, PKyee) < AGen(1%,1), O « {OFCH) QW)Y

Pr (with, 2%, X", r*) «+ A (pk,e) : < e(k),
(AVerify(pk,ec, acc*, wity, z*) = true A x* ¢ X'*)

where acc* < AEval,« ((skacc, Pkaee )s X*). Here, OF and OV represent the ora-
cles for the algorithms AEval and AWitCreate, respectively. In case of randomized
accumulators the adversary outputs randomness r*, which is omitted for deter-
ministic accumulators. Likewise, the adversary can control the randomness r
used by OF for randomized accumulators. Thus OF takes an additional input r.

Definition 3 (Indistinguishability). An accumulator is indistinguishable, if
for all PPT adversaries A there is a negligible function €(-) such that:

(SKace, PKyee) <= AGen(1%,t), b<= {0,1}, (X, XY,
state) < A(pk,.), (accy,, aux) <— AEval((skjc, Pkacc)s Ab),
O  {OFC) W)y e o A9 (pk, ., accy, , state)

b=1>b"

Pr < — +¢€(k),

1
2

where Xy and X, are two distinct subsets of the accumulation domain. Here, OF
is defined as before, whereas OV is restricted to queries for values x € Xy N Xj.
Furthermore, the input parameter aux for OV is kept up to date and is provided
by the environment, since A could trivially distinguish using aux.

It is obvious, that the notion of indistinguishability requires a randomized AEval
algorithm. We stress that [DHS15] also provide a variant of indistinguishability,
which adds this non-determinism to accumulators with a deterministic AEval
algorithm. To do so, an additional random value z, from the accumulation do-
main is inserted into the accumulator upon AEval. This notion is called collision-
freeness weakening (cfw) indistinguishability, since collision freeness only holds
for X U {x,} and not X.

3 Formalizing Extended Sanitizable Signatures

In this section, we present a formal model for ESSS. Our model can thereby
be seen as a rigorous formalization of the model for ESSS presented in [CJ10].
Additionally, we include the suggestions from [GQZ11], i.e., additionally consider
forgeries where one only tampers with ADM. We stress that, when omitting
the extensions regarding LimitSet and ADM, it is equivalent to the model of
[BFFT09], which is generally considered as the standard model for sanitizable
signature schemes.

Definition 4 (Message). A message m = (m;)"_; is a sequence of n bitstrings
(message blocks).



Henceforth, we use ¢; to refer to the (maximum) length of message block m; and
assume an encoding that allows to derive (¢;)7_; from m.

Definition 5 (Admissible Modifications). Admissible modifications ADM
with respect to a message m = (m;)"_, are represented as a sequence ADM =
(B:)™, with B; € {fix,var,lim}.

Here B; = fix indicates that no changes are allowed, B; = var indicates that
arbitrary replacements are allowed, and B; = 1im indicates that the replacements
are limited to a predefined set (LimitSet).

Definition 6 (Set Limitations). Set limitations V with respect to a message
m = (m;)?_, and admissible modifications ADM = (B;)I"_, are represented by a
set V.={(i,M;) : B; = Lim A M; C U ,{0,1}}.

We use m’ **2Y) m to denote that m’ can be derived from m under ADM and V.

Definition 7 (Witnesses). Witnesses W = {(i, W;)}i_;, with W; = {(m,,,
witi, ), ..., (my,, wit;, )}, are derived from set limitations V = {(i, M;)}._,, with
M; = {m;,,...,ms, }. Thereby, wit;, attests that its corresponding message block
my; 15 contained in the set M;.

With V 22 W, we denote the extraction of the set of witnesses V correspond-
ing to a message m from the set W.

Definition 8 (Modification Instructions). Modification instructions MOD,
with respect to a message m = (m;)"_,, admissible modifications ADM and set
limitations V are represented by a set MOD = {(i,m})}!_; with t < n, where i
refers to the position of the message block in m, and m} is the new content for

message block m;.

With MOD < (ADM, V), we denote that the modification instructions in MOD
are compatible with ADM and V. Furthermore, with (mg, MODg, ADM,V) =
(m1,MOD;,ADM, V), we denote that after applying the changes in MODg and
MOD; to mg and m; respectively, the resulting messages m{, and m} are identical.

3.1 The Model

An ESSS is a tuple of PPT algorithms (KeyGengig, KeyGensay, Sign, Sanit, Verify,
Proof, Judge) which are defined as follows:

KeyGengig (1): This algorithm takes as input a security parameter x and outputs
a keypair (sksig, pkgig) for the signer.

KeyGeng,n (17): This algorithm takes as input a security parameter x and out-
puts a keypair (sksan, pke,,) for the sanitizer.



Sign(m, ADM, V, (sksig, Pksg)s Pksan): This algorithm takes as input a message
m, corresponding admissible modifications ADM and set limitations V, as
well as the keypair (sksg, pkg,) of the signer and the verification key pk,,, of
the sanitizer. It computes the set W from V, obtains V "*® W and outputs
a signature o = (6,)) together with some auxiliary sanitization information
san = (aux,W).® In case of an error, L is returned. As in [BFFT09], we
assume that ADM can be recovered from a signature o.

Sanit((m, o), MOD, san, pkgg, skean): This algorithm takes as input a valid mes-
sage-signature pair (m, o), modification instructions MOD, some auxiliary
sanitization information san and the verification key pkg, of the signer and
the signing key skqan of the sanitizer. It modifies m and o according to MOD
and outputs an updated message-signature pair (m’, o’) and L if m’ “%%" m.
We assume that V can be reconstructed from san.

si ) san
g

Verify((m, o), pkyig, Pkssn): This algorithm takes as input a message-signature
pair (m, o) and the public verification keys of the signer pkg, and the san-
itizer pkg,,. It returns true if o is a valid signature on m under pkg, and
pk..,, and false otherwise.

Proof((m, o), {(mj, ;) }j_1, (Sksig, PKsig) s PKsan): This algorithm takes as input a
message-signature pair (m,o), ¢ message-signature pairs {(m;, Uj)}?:1 cre-
ated by the signer, the keypair (sksig, pkgg) of the signer and the public key
pk.,, of the sanitizer and outputs a proof 7.

Judge((m, o), pkgg, Pksan, 7): This algorithm takes as input a message-signature
pair (m,o), the verification keys of the signer pkg, and the sanitizer pkg,),
and a proof 7. It outputs a decision d € {sig, san}, indicating whether the
signature has been produced by the signer or the sanitizer.

san?

san

3.2 Security Properties

For security, an ESSS is required to fulfill the following properties.
Definition 9 (Correctness). An ESSS is correct, if

Vk,¥m,VADM, VV,YMOD =< (ADM, V),

V(sksig, Pkig) ¢~ KeyGengig(17), V(sksan, Pksan) ¢ KeyGengan (1),

V(0,san) « Sign(m, ADM, V, (sksig, PKig ), PKsan);

¥(m’, ") < Sanit((m, o), MOD, san, pkg,, Sksan ),
V{(m1,ADM1,V1),...,(my,ADMy,V,)} D (m,ADM, V) :

Verify((m7 U)a pksig7 pksan) = true A Verify((m/7 0/)7 pksiga pksan) = true A
(((o,) - Sign(m;, ADM;, V;, (sksig, Pksig) Pksan))j—1 A T < Proof((m’,o"),
{(m;, Uj)}?‘:l’ (sksig; pksig)v Pksan) A Judge((m’,o’), pksig7 PKgan: T) = San)'

5 While san is not required for plain sanitizable signature schemes, ESSS additionally
return san to pass auxiliary information, which is only relevant for the sanitizer.



Definition 10 (Unforgeability). An ESSS is unforgeable, if for all PPT ad-

versaries A there is a negligible function €(-) such that:

(Sksig, Pksig) < KeyGengig (17), (Sksan, Pksan) <= KeyGengan(17),
O+ {OSIgn(‘y %y (Sksigv pksig)7 ')v Osamt('v ERERE) Sksan)’
Pr OPmOf(', °y (Sksig7 pksig)’ )}7 (m*7 U*) — Ao(pksig7 pksan) : S 6('%)7
Verify(m*, 0%, pkgg, PKsan) = true A

(m*, ADM", V*, pke,,) ¢ L3 A ((m*,-), ADM", pkgy) ¢ L>"

san) Sig
where OS&", Ot gnd OPf gimulate the Sign, Sanit and Prgof algorithms,
respectiwely. The environment keeps track of the queries to O5&" using LSien,
Furthermore, it maintains a list L5t containing the answers of O3 extended
with pkg, and ADM from the respective oracle query.

Definition 11 (Immutability). An ESSS is immutable, if for all PPT adver-
saries A there is a negligible function €(-) such that:

(Sksig7 pksig) — KeyGenSig(lﬁ% O — {OSign('7 P (Sksig7 pksig)7 ')7
OPrOOf('v > (SkSigv pksig)v )}7 (pk:am m”, U*) — Ao(pksig) :
Pr Verify(m*, 0%, pkgg, Pkean) = true A ((, o pkl,) ¢ LSEn v | S e(k),

san san

Fm= GOV - (m, ADM*, V¥, pk’, ) € LS‘g")

san
where the oracles and the environment variables are as in Definition 10.

Definition 12 (Privacy). An ESSS is private, if for all PPT adversaries A
there is a negligible function €(-) such that:

(sksig, Pksig) < KeyGensig(17), (sksan, PKsan) < KeyGengan(17),

san

b&{O,l},O(— {OSign('v'v'v(SkSigvpksig)a')’ < 1
OSanit(.’ G Sksan)a OProof(.’ . (Sksiga pksig)? _)’ OLoRSanit(_’ - =9
b =

(Sksig7 pksig)’ (Sksana pksan)7 b)}7 b* Ao<pksig7 pksan) : b*

Pr + e(k),

where O5€", O3t gnd OPFf gre as in Definition 10. O“ORS2Mt s defined as
follows:

OLeRSanit((m; MODy), (my1, MOD;), ADM, (sksig, Pkig); (SKsans Pkean): D) :
1: Randomly choose V (compatible with MODg and MOD; ).

. If MOD, £ (ADM,V) V MOD; £ (ADM, V), return L.

: If (mg, MODg, ADM, V) # (m1,MOD, ADM, V), return L.

: Compute (0p,5any) < Sign(ms, ADM, V, (sksig, Pkgg); PKesn)-

: Return (my, op) < Sanit((mp, op), MODy, sany, pkg,, SKsan)-

g wN

sig?

Observe that since V is internally chosen (and, thus, independent of the bit b) in
OLoRSanit " hrivacy holds independent of the adversaries capability to reconstruct
the set limitations. Clearly, this contradicts a definition of privacy in a sense
that sanitized signatures do not reveal the original message.

10



Definition 13 (Transparency). An ESSS is transparent, if for all PPT ad-
versaries A there is a negligible function €(-) such that:

( k5|g7 pks|g) — KeyGenS|g( ) ( Ksan, pksan) « Keyqensan(ln%
b % {O 1} O «— {Oslgn( - ,(Skgg; kaIg) )705anlt(.7 S < 1 n e(n)
Sksan)a OPrOOf( I} (SkSIga pks|g) )7 OSanlt/Slgn( y Ty Ty Ty (Sksiga pksig)7 -2 ’

(SkSElm pksan) )} b* — Ao(kaIgﬂ pksan) : b - b*

Pr

where O%8" OS2t gnd OPf gre as in Definition 10. In addition, O does
not respond to queries for messages-signature pairs obtained using (O52"t/Sien,
OSanit/Sien s defined as follows:

OSanit/Sign(m ADM, V, MOD, (sksig, PKsig)s (Sksan, PKsan), D)
1: If MOD £ (ADM V), return L.
Compute (o,san) < Sign(m, ADM, V, (sksig, Pkgg); PKep)-
: Compute (m’, 09) <= Sanit((m, o), MOD, san, pkg, Sksan) -
Compute (o1,san) < Sign(m’, ADM, V, (sksig, PKig ), PKean)-
Return (m', o).

g W N

Proof-restricted transparency [BFLS10]: OP°f does not answer queries
for messages returned by ©52"t/Sign I the proof for the implication of privacy
by transparency [BFFT09], O52nt/Sien is used to simulate the O°RSant queries.
Thus, note that the implication only holds if the privacy-adversary is restricted to
OPro°f queries for messages which do not originate from OM°RSant To additionally
rule out even stronger adversaries against privacy, i.e., such that privacy also
holds after seeing proofs for the messages in question, one would need to prove
privacy directly.

Definition 14 (Sanitizer-Accountability). An ESSS is sanitizer-accountable,
if for all PPT adversaries A there is a negligible function €(-) such that:

(sksig, Pk fg) — KeyGengig (1), O + {Os'g"(~, “ -+, (sksig, pksig)7 ),
Oproo ( 3Ty (SkSig’ pksig)v )}a (pk:ana m*v U*> — Ao(pksig)’
Pr | m « Proof((m*,c*), SIG, (sks,g,pks,g) pki,,) : Verify(m*, o*, pk
pkl,,) =true A (m* ADM*,V* pkZ) & L5&" A
JUdge((m O )7 pk5|ga pksam ) - Slg

< (k)

sig? >~

san)

where the oracles are as in Definition 10. The environment maintains a list SIG,
containing all message-signature tuples obtained from OS5,

Definition 15 (Signer-Accountability). An ESSS is signer-accountable, if
for all PPT adversaries A there is a negligible function €(-) such that:

(Sksany pksan) <_ KeyGensanEgln)a O <_ {Osanit( 7'7 b) 7Sksan)}7
(pk5|ga m*7 0*7 ’/T*) +— A (pksan) Verlfy(m o ) pk5|ga
Prl pkon) = true A ((m*,-),ADM", pkiy) ¢ LSt A < e(k),

Judge((m*,a*)7pk5,g,pksan, m) =san A

LSanit

where O5"t s well as are as in Definition 10.
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4 Rethinking Privacy for ESSS

In the following, we consider alternatives to the standard privacy property, i.e.,
(strong) unlinkability, and finally come up with a notion denoted as strong pri-
vacy which captures privacy for ESSS in the original sense of sanitizable signa-
tures.

4.1 Revisiting Unlinkability

The notion of unlinkability for sanitizable signatures has been introduced in
[BFLS10] as a stronger notion of privacy (which implies the usual privacy prop-
erty). In [BPS13], an even stronger notion, i.e., strong unlinkability, has been
proposed. It requires that unlinkability must even hold for signers. The notions
defined in [BFLS10,BPS13] can easily be adapted to the model for ESSS and we
do so below.

Definition 16 (Unlinkability). An ESSS is unlinkable, if for all PPT adver-
saries A there is a negligible function €(-) such that:

(sksig, Pksig) + KeyGengig(17), (sksan, Pksan) < KeyGengan (17),
b<2{0,1},0 + {OSE"(-, -, -, (sksig, Pksig): ), oSanit(. L
Sksan)» OProof(., . (Sksig7 pksig)? _)7 (QLORSanlt(_7 - (Sksig7 pk

(Sksam pksan)? b)}’ b+ Ao(pksiga pksan) tb=20"

Pr < = +€(k),

sig)7

where OS8Ot gnd OPF gre as in Definition 10 and OX°RSMt operates as
follows:

OLoRSanit((my MODy, sang, ag), (m1, MODy,sany, o1), ADM, (skgg, PKig)s
(skean, Pk D)

: If MODg A (ADM,Vy) vV MOD; A (ADM, V1), return L.

: If (mo, MODg, ADM, Vy) # (m1, MOD1,ADM, V1), return L.

: If for any i € {0, 1}, Verify((m;, o), pkyg, Pkyn) = false, return L

¢ Return (myj, oy,) <= Sanit((my, 05), MODy, san, pkgg, Sksan) -

S W N

Note that Vo and V1 can be reconstructed from sang and sany, respectively. Fur-
thermore, note that for answers from the oracle OSRSMt  the oracle OS2t s
restricted to queries for modifications which are covered by both set limitations
Vo and V1, which were initially submitted to (OLoRSanit

Definition 17 (Strong Unlinkability). An ESSS is strongly unlinkable, if for
all PPT adversaries A there is a negligible function €(-) such that:

(Sksan, Pksan) < KeyGengan(17), b <= {0, 1},
Pr O — {Osamt('a'7'7'7Sksan)7OL0Rsamt('7'7'7'7(Sksan7pksan)7b)}7 S
b* « AO(pky,) : b=0b"

+ (k)

where the oracles are as in Definition 16, except that A controls (sksig, PKsig)-
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While (strong) unlinkability covers privacy for the LimitSet extension in the
original sense of privacy®, it seems very hard to construct efficient (strongly) un-
linkable schemes that support the LimitSet extension. Unfortunately, it is not
possible to simply extend existing (strongly) unlinkable constructions [BFLS10,
BPS13,FKM™15] by the LimitSet extension. To illustrate why, we revisit the
design principle of such schemes. Here, upon Sign, the signer issues two signa-
tures. The first signature, oprx, only covers the fixed message blocks and the
public key of the sanitizer, whereas the second signature, opyyr, covers the
whole message together with the public key of the signer (and the public key of
the sanitizer [BPS13]). Upon Sanit, the sanitizer simply issues a new signature
oryULL, Whereas the signature o gy x remains unchanged. Finally, upon Verify, one
verifies whether op;x is valid under pksig and opyrr is either valid under pksig
or pkg,, for a given message m and ADM. Thereby, the signature scheme used for
orrx is a deterministic signature scheme, while the scheme used for opy, can
either also be a deterministic signature scheme [BPS13], a group/ring signature
scheme [BFLS10], or a signature scheme with rerandomizable keys [FKMT15].

When extending these schemes to also support the LimitSet extension, it
is clear that the set limitations need to be fixed by the signer and must not
be modifiable by the sanitizer. One simple way to realize the LimitSet exten-
sion would be to additionally include some unique encoding of the limitations
V in oprx and check whether the message is consistent with the defined limi-
tations upon Verify. Obviously, this extension does not influence unforgeability
and immutability and the scheme is still (publicly) accountable. Furthermore
also privacy holds, since the set limitations which are included in the challenge
tuple in the privacy game are randomly chosen inside the O“°RS2"it oracle. How-
ever, unlinkability can not hold for the following reason: When querying the
oracle OLORSant in the unlinkability game, the adversary can choose set limi-
tations Vo and Vi such that MODy < (ADM, V;), MOD; < (ADM,V;) and
(I’T](),'\/'ODO7 ADM,V()) = (ml,l\/IODl, ADM, Vl)7 but VO 7é V1. For the corre-
sponding signatures o9 = (0rrx,,OFULL,), 01 = (OFIX,, OFULL,) Submitted to
the oracle, this means that oprx, # orrx, which yields a trivial distinguisher
for the unlinkability game.

As an alternative, one may think of separately signing each message con-
tained in the limited sets (using a deterministic signature scheme), where only
the signatures corresponding to the chosen messages are revealed. However, to
prevent forgeries where message blocks are re-used in other signatures (i.e., mix-
and-match like attacks [BFLS09]), it would be required to also include some
message-specific identifier in each signature. Again, it is easy to see that this
would provide a trivial distinguisher for the (strong) unlinkability game.

Clearly, the requirement that the limited sets are fixed by the signer and can-
not be modified later is not only specific to the aforementioned constructions,
but is inherent to all constructions of such schemes. To circumvent the afore-
mentioned issues, one could make use of more sophisticated primitives, which,

6 Note, that the ability to reconstruct the set limitations for o} obtained via (@-°RSanit
would imply a trivial distinguisher for the unlinkability game.

13



however, come at the cost of significant computational overhead and complex-
ity of the scheme. This is confirmed by the only known unlinkable construc-
tion supporting LimitSet [CL13]. It is computationally very expensive due to
a high number of bilinear map applications and the use of non-interactive zero-
knowledge proofs of knowledge in the computationally expensive target group
of the bilinear map. Moreover, it is proven secure only in a model which does
not consider all security requirements of sanitizable signatures (as it is tailored
to their black-box construction of anonymous credentials) and thus does not
represent an ESSS.

4.2 A Strengthened Notion for Privacy

Surprisingly, our requirement that the set limitations remain concealed can be
met by a simple extension of the conventional privacy property. We call the
extended property strong privacy.” As we will see, this modification allows to
obtain efficient implementations from secure existing ones in a black-box fashion.
We modify the privacy game such that the set limitations in QRS can be
submitted per message, i.e., QRS2 takes (mg, MODg, Vo), (m1, MODy, Vi),
ADM. This means that Vo and V; can be different and only need an overlap
such that after applying MODg and MOD; the messages m{, and m} are identical.
More formally, the game is defined as follows:

Definition 18 (Strong Privacy). An ESSS is strongly private, if for all PPT
adversaries A there is a negligible function €(-) such that:

(sksig; Pksig) < KeyGengig(17), (sksan, PKsan) 4= KeyGengan (1%),
b {0,1},0 « {OSE (.-, -, (sksig, Phaig), )y O, -, -
Sksan)v OPrOOf('v ) (Sksigv pksig)? ')7 0LoRSamt(_7 T (Sksig7 pksig)v
(Sksam pksan)? b)}’ b+ Ao(pksiga pksan) D b=20"

Pr < = +€(k),

where the oracles OSien - 0%t gnd OProf are defined as in Definition 10. The
oracle OR°RSaMt s defined as follows:

OLORSamt((mo’ MOD07 V0)7 (m17 MOD17 V1)7 ADMa (Sksig7 pksig)a (Sksana pksan)a b) :
1: If MODg A (ADM,Vy) vV MOD; Z (ADM, V1), return L.
2: If (mg, MODgo, ADM, Vo) # (m1,MOD1,ADM, V1), return L.
3: Compute (0p,5anp) < Sign(my, ADM, Vy, (sksig, PKeg ), PKean)-
4: Return (mj,03) < Sanit((my, 03), MODy, sany, pkgg, Sksan)-
Note that for answers from the oracle QRS the oracle Ot is restricted to
queries for modifications which are covered by both set limitations Vo and Vi,
which were initially submitted to (O-oRSanit,

Theorem 1. Privacy is strictly weaker than strong privacy, while (strong) un-
linkability is strictly stronger than strong privacy.

" In [AMPPS14], a security notion called strong privacy has been introduced for plain
sanitizable signatures. Our notion of strong privacy is unrelated to their notion and
does not conflict with their notion as ours is only meaningful in context of ESSS.
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As mentioned in [CJ10], the extension of the model regarding LimitSet does
not influence the relations of the properties shown in [BFFT09]. That is, un-
forgeability is implied by accountability, (proof-restricted) privacy is implied by
(proof-restricted) transparency and immautability is still independent of the other
properties. What remains for the proof of Theorem 1 is to unveil the relations
of strong privacy to the other privacy related notions. We subsequently prove a
number of lemmas to finally obtain the desired result.

Lemma 1. Not every transparent ESSS is strongly private.

We prove Lemma 1 by counterexample.

Proof. Let us consider an instantiation of Scheme 1 with a correct, unforgeable,
immutable, private, (proof-restricted) transparent and accountable sanitizable
signature scheme. Further, assume that the accumulator scheme is distinguish-
able. Then, an adversary against the indistinguishability implies an adversary
against strong privacy. O

From this proof, we can straight forwardly derive:
Corollary 1. Not every private ESSS is strongly private.

To show that strong privacy is a strictly stronger notion than privacy, we addi-
tionally need to show that the following lemma holds.

Lemma 2. FEvery strongly private ESSS is also private.

To prove this, we show that we can construct an efficient adversary A5 against
strong privacy using an efficient adversary AP against privacy.

Proof. ASP simply forwards the calls to the oracles O5&", ©52nit OProof whereas
the oracle OM°RSanit i5 gimulated as follows: Upon every query (mg, MODy),
(my,MOD;), ADM of AP, ASP internally chooses random set limitations V such
that MODy < (ADM, V), MOD; < (ADM, V). Then ASF forwards the query
(mg, MODy, V), (m1, MODy, V), ADM to its own O-°RS2nt oracle and returns the
result to AP. Eventually, A” outputs a bit b which is forwarded by ASP. It is
easy to see that the winning probability of ASP is identical to that of .AP. O

Subsequently, we show that unlinkability is strictly stronger than strong privacy.
Lemma 3. Not every strongly private ESSS is (strongly) unlinkable.
We prove Lemma 3 by counterexample.

Proof. Let us consider an instantiation of Scheme 1 with a correct, unforge-
able, immutable, private, (proof-restricted) transparent and accountable sanitiz-
able signature scheme which does not fulfill unlinkability. By Theorem 3, we can
extend it to be strongly private by using an indistinguishable accumulator. 0O

Lemma 4. FEvery unlinkable ESSS is also strongly private.
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To prove Lemma 4, we show that we can construct an efficient adversary .AY
against unlinkability using an efficient adversary ASF against strong privacy.

Proof. Likewise to the proof of Lemma 2, AY simply forwards the calls to
the oracles @58 0Sanit OProof whereas the oracle OW°RSant ig simulated as fol-
lows: Upon every query (mg, MODg,Vy), (my,MODy,V1), ADM of ASP, AY
obtains (og,sang) + O%€"(mg, ADM, Vo), (01,s5an1) < O%&"(m;, ADM, V;) us-
ing its own O>&" oracle. Then AY forwards the query (mg, MODy,sang, o),
(m1,MODq,sany, 1), ADM to its own OLoRSanit oracle and returns the result to
ASP . Eventually, ASP outputs a bit b which is forwarded by AY. Tt is easy to see
that the winning probability of AV is identical to that of ASP. O

Taking all the above results together, Theorem 1 follows.

5 Black-Box Extension of Sanitizable Signatures

Provably secure existing constructions of ESSS build up on concrete existing
sanitizable signature schemes. As it turns out, we can even obtain a more general
result, i.e., we obtain an ESSS that only makes black-box use of sanitizable
signatures in the model of [BFFT09, GQZ11] and secure accumulators. The so
obtained black-box construction of an ESSS then fulfills all the security notions
of the underlying sanitizable signature scheme.

Before we continue, we recall the general paradigm for instantiating LimitSet
(cf. [CJ10,KLO06]).

Paradigm 1. For each LimitSet block, use a secure accumulator ACC to accu-
mulate the set of admissible replacements. The respective message blocks are then
replaced with the corresponding accumulator value, i.e., the accumulators are in-
cluded in the same way as fized message blocks. Conversely, the actually chosen
message blocks for each LimitSet block are included in the same way as variable
message blocks (since they change on every sanitization). Finally, the signature
s augmented by the witnesses corresponding to the actual message blocks, while
the remaining witnesses are only known to the signer and the sanitizer.

We introduce our generic construction (that follows Paradigm 1) in Scheme 1,
where we use (KeyGensig, KeyGen,,,, Sign, Sanit, Verify, Proof, Judge) to
denote the algorithms of the underlying sanitizable signature scheme. We define
two operators ¢ and 1 to manipulate sets S = {(k1,v1),..., (kn,vn)} of key-
value pairs. Thereby, we assume the keys k1, ..., k, to be unique. The operator
¢(-,) takes a key k and a set S, obtains the tuple (k;,v;) with k = k; from S,
and returns v;. If no such tuple exists, L is returned. Similarly, the operator
(-, ), takes a key k, a value v} and a set S and obtains the tuple (k;, v;) with
k = k; from S. It returns (S\ {(k;, v;)})U{(k;,v})} and L if no such tuple exists.

We will prove the security of Scheme 1 using similar arguments as in [CJ10],
but relying on the abstract model of [BFFT09, GQZ11], instead of specific prop-
erties of the used sanitizable signature scheme.
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KeyGensig(17): Given a security parameter x, run (sksg, pkyy) < KeyGen(1”), choose an
accumulator scheme and run (skaec,pk,.) < AGen(17). Finally, return (sksg,pk —
((sksig, Skace ), (PKqig, PKace))-

KeyGeng,n (17): Given a security parameter s, return (sksan, Pkean) = (SKsan, PKgyn) <— KeyGensan( ).

Sign(m, ADM, V, (sks,g7 PKsg)s PKsyn): Given m = (m;)i_;, ADM = (B;)i'_;, V = {(,M;) : B; =

lim A M; C szo{O, 137}, (skeigs pksg) and pkg,,, this algorithm sets V, W « 0 and computes
fori=1...n if B; = 1im do:

M; « ¢(3, V), acc; + AEval((skacc, Pkocc)s Ms), Wi <+ 0,

Yv; € M; : wit,;]. <+ AWitCreate((skacc, PK,ec ), acci, My, v5), Wi < Wi U {(v;, Witij )}

Vi (’i, (¢(m7~,, Wi), acci)), V+~ VUV, W<+ WU {(7., Wl)},

B; < var,m < m||(acc;, i), ADM < ADM||(fix).
endfor.
Next, it computes & < Sign(m, ADM, (sksig, pksig), Pk, ). Finally it sets o < (6, V) and san <
(0, W) and returns (o, san), or L if any of the calls to ¢, ¥ or Sign fails.

Sanit((m, o), MOD, san, pk,, sksan): Given (m,o) = ((m;);_q,0), MOD = {(i, m;)}*, san, pkgg and
skean, this algorithm computes
fori=1...nif B, =var A L # ¢(i, W) do:

Wi + ¢(i, W), wit < ¢(m}, W;), (wit,;]. yace;) < ¢(i, V), V' < (4, (wit, acc;), V).
endfor.
Finally, it computes & < Sanit(FEzt(m, o), MOD, pksig7sksan) and returns o = (6,V), or L if
any of the calls to ¢, ¥ or Sanit fails.

Verify((m, o), pkyg, Pksan): Given (m, o) = ((m;)_;, o), pky, and pkg,,, this algorithm verifies whether
Verify(Ezt(m, o), Pkgg, pk,,,) = false and returns false if so. Otherwise, it computes
fori=1...nif B =var A L # ¢(3,V) do:

(witij ,ace;) < ¢(¢, V), if[AVerify(pk »acci, Wity ; m;) = false| { return false }.
endfor.
Finally, it returns true.

Proof((m, o), {(m;, Uj)}g=07 (sksigs PKsig)s PKsan): Return  Proof(Ezt(m, o), { Ext(m, aj)}§=0, (sksig»
pkg,). Pkg,p)-

Judge((m, 0), pkggs Pkean, )2 Return Judge(Ezt(m, o), pKyg, PKeap, 7).

sig)

acc

Ezt(m,o): On input (m,o) = ((m;)7_1,0),

for i=1...n do:
(witij,acci) — ¢(i, V), if [(witij,acc,;) # 1] { set m « m||(acc;, %) }.
endfor.

Return (m, o).

Scheme 1: Black-box construction of ESSS from any sanitizable signature
scheme.

Theorem 2. When instantiating Scheme 1 with a sanitizable signature scheme
that provides security properties X in the model of [BFFT 09, GQZ11] and a se-
cure accumulator scheme, one obtains an ESSS that provides security properties
X

We prove Theorem 2 in Appendix A. Furthermore, we emphasize that—while
our model includes the extensions regarding ADM from [GQZ11]—the proof does
not rely on these extensions. This means that our black-box construction is also
applicable to schemes in the model of [BFFT09].

Now, we discuss some observations related to the instantiation of the Limit-
Set extension using accumulators. As discussed in the previous section, it seems
to be hard to design generic extensions that also preserve unlinkability [BFLS10,
BPS13]. Furthermore, the abstract model does not consider the signer as an ad-
versary, which gives some freedom regarding the implementations of certain al-
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gorithms and the choice of the accumulator scheme. As mentioned in Section 2.1,
the abstract model of accumulators assumes a trusted setup. It is, however, bene-
ficial that the signer runs the AGen algorithm to be able to perform more efficient
updates using the trapdoor. As a side effect, this also means that the signer is
later able to extend the limited sets by making use of the trapdoor in the fashion
of [PS14]. If this feature is unwanted, a TTP can run the AGen algorithm and

publish pk,.. as a common reference string.

5.1 Obtaining Strong Privacy via a Black-Box Construction

Now we show how strongly private ESSS can be constructed from private sani-
tizable signature schemes in a black-box fashion. Basically, this can be achieved
by applying the conversion in Scheme 1 and instantiating LimitSet using an
accumulator that provides the indistinguishability property.

Theorem 3. Let ESSS obtained using Scheme 1 be private and (AGen, AEval,
AWitCreate, AVerify) be an indistinguishable accumulator, then ESSS is strongly
private.

Proof. We prove the theorem above by using a sequence of games. Thereby, we
denote the event that the adversary wins Game ¢ by .S;.

Game 0: The original strong privacy game. _
Game 1: As in the original game, but we modify the oracle O“°RSa"it o firstly
compute V + Vo NV and to set Vo <V, V; < V.

Transition Game 0 — Game 1: A distinguisher between Game 0 and Game 1 is
a distinguisher for the indistinguishability game of the accumulator.

In Game 1, the signatures are computed with respect to Vo NV in (OLoRSanit,
This means that the LimitSet related values are independent of the bit b (similar
as when randomly choosing V). Thus, from the adversary’s viewpoint, Game 1 is
equivalent to the conventional privacy game, meaning that Pr[S;] < % + €priv(K).
Furthermore, we know that the distinguishing probability between Game 0 and
Game 1 is equivalent to the indistinguishability advantage of the accumulators,
i.e., |Pr[So] — Pr[Si]| = k - €ind(k), where k is the number of LimitSet blocks.®
In further consequence, this shows that the advantage of an adversary to win the
strong privacy game is negligible and bounded by Pr [Sy] < %Jrep,;\,(li)ka-e;nd (k).

O

We also note that it might be an option to use cfw-indistinguishable accumu-
lators instead of indistinguishable accumulators if the accumulation domain is
large enough that the chosen random value z, can not be efficiently guessed.
This would resemble the suggestion of [KLO06], who informally mentioned that
additionally accumulating a random value might prevent the adversary from
guessing the set limitations.

8 For compactness, we exchange all accumulators in a single game change and note
that it is straight forward to unroll the exchange of the accumulators to k simple
game changes.
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6 Conclusion

In this paper we propose the notion of strong privacy for ESSS, which, in con-
trast to the privacy notion for ESSS of [CJ10] covers privacy for the LimitSet
extension in the original sense of sanitizable signatures. From a practical per-
spective, our black-box constructions nicely combine with existing schemes in
the model of [BFFT09, GQZ11]. Thus, existing implementations of schemes in
these models directly yield a basis to instantiate our proposed extensions with
relatively low effort, while preserving the efficiency of the underlying schemes.
Conversely, it is still an open issue to construct efficient (strongly) unlinkable
ESSS or to come up with a generic extension to construct such schemes from
existing unlinkable sanitizable signature schemes.

Acknowledgements. We thank Kai Samelin for interesting discussions related
to this paper and for making us aware that our definitions of unforgeability
and signer-accountability were tailored to strongly-unforgeable signatures (in the
sense of [KSS15]) instead of the intended conventional unforgeability notions in
the sense of Brzuska et al. [BFFT09].
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A Proof of Theorem 2

Proof. Subsequently, we prove Theorem 2:

Correctness: Straightforwardly follows from inspection and the correctness of
the underlying primitives.
Unforgeability: Assume an efficient adversary A against unforgeability. We

show how this adversary can be turned into an efficient adversary B against
unforgeability of the underlying sanitizable signature scheme SSS. To do so,
we describe a reduction R such that (A, R) form B. Firstly, R obtains pkg,
and pk.,, from the challenger, runs (skacc, pkaec) < AGen(1%) and starts A on
((Pksigs PKace)s PKsan)- R implements the oracles by computing the accumula-
tor related parts itself and for the rest it uses the oracles of the unforgeability
challenger of the SSS. Now, by definition, A outputs (m*,o*) = (m*, (6,V))
such that Verify(m*, 0%, pkgg, Pksan) = true A (m*, ADM*,V*, pkg,,) ¢ Lo&n A
((m*,-),ADM*, pkg,) & L>*"*. This means that R can output (Exzt(m*,o*),
&) as a forgery for SSS. O

Remark 1. Observe that the chosen message block per LimitSet block is also
included as variable element, while the accumulators acc; together with the
positions ¢ of the LimitSet blocks in the message are treated as additional
fixed elements (cf. Ext in Scheme 1). Consequently, every forgery is a forgery
for the underlying SSS scheme.

Immutability: Assume an efficient adversary A against immutability. We show

how this adversary can be turned (1) into an efficient adversary By against
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immutability of the underlying sanitizable signature SSS scheme, or (2)

into an efficient adversary Bs against the collision freeness of the under-

lying accumulator. To do so, we describe two reductions Ri,Ro such that

B; = (.A, RZ)J S {172}

(1) Ry obtains pkg, from the challenger, runs (skacc,pkyec) + AGen(1%)
and starts A on (pKgg, Pkae). R1 implements the oracles by comput-
ing the accumulator related parts itself and for the rest it uses the or-
acles of the immutability challenger of the SSS. Eventually, A4 outputs
(Pkgan, m*, 0%) = (PkGn, m*, (6, V)) such that Verify(m*, 0, pkgg, pkiyn) =
true A ((+,-, -, pki, )gé L& v A m* *Y) m: (m, ADM* V¥ pkL,,) €
L"), If A m * OMIV (m, ADM* , V* pk’ ) € L58") because of a
modlﬁcatlon of a LimitSet element that is not covered by V*, then
R1 aborts (since we are in the other case). Otherwise, Ry can output
(pkZ,,, Ext(m*,0*),5) and wins the immutability game of SSS. O

(2) Rz obtains pk,. from the challenger, runs (sksig, pky,) < KeyGen(1”)
and starts A on (pKgg, pk,ec). R2 can simulate the oracles by comput-
ing the SSS related parts itself and calling the respective oracles for
the accumulator related computations. Ro keeps track of the accumu-
lators, contained sets and (optionally) the used randomizers obtained
from the oracles via a list Lacc. Eventually, A outputs (pkZ,,, m*,c*) =
(Pkaan, m*, (6,V)) such that Verify(m*, 0%, pkyg, pkeyn) = true A (( -,
pkin) & LS8 v A m* Y m: (m, ADM*, V*, pkZ,,) € L&), If (-

pki,) & L3, R, aborts. Ifﬂ GOV (m, ADM*,V* pkZ,.) €
Ls'g”) because of a modification of a L1m1tSet element that is not cov-
ered by V*, we know that there is at least one tuple (4, (wit;,, acc;)) € V
such that AVerify(pk,..,acc;, wit;;,,m;) = true but m; ¢ M;, where M;
is the set contained in acc;. Now, Ro can look up the set M; and the
corresponding randomizer r; in Ly and return (wit;,, m;, M;,7;) as a
collision for the accumulator. Otherwise, Ry aborts (since we are in the

other case). O
Privacy: Assume an efficient adversary A against privacy. We show how this ad-

versary can be turned into an efficient adversary B against privacy of the un-
derlying sanitizable signature scheme SSS. To do so, we describe a reduction
R such that (A, R) form B. Firstly, R obtains pkg, and pk,,, from the chal-
lenger, runs (skace, PKaec) <= AGen(1%) and starts A on ((PKggs PKacc)s PKsan)-
R implements the oracles by computing the accumulator related parts itself
and for the rest it uses the oracles of the privacy challenger of the SSS. Even-
tually A outputs a bit b*, which can be used by R to win the privacy game of
the SSS, where the winning probability is that of A. Now, we argue why this
is the case: In the privacy game, the set limitations V are internally chosen
in OLeRSanit gyich that they are compatible with both submitted challenge
messages. This, means that the LimitSet related signature components are
independent of the actual bit b.

Transparency: Assume an efficient adversary A against transparency. We show
how this adversary can be turned into an efficient adversary B against trans-
parency of the underlying sanitizable signature scheme SSS. To do so, we

y e Ty
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describe a reduction R such that (A, R) form B. Firstly, R obtains pkg,
and pk,, from the challenger, runs (skacc, pkaec) ¢ AGen(1%) and starts A
on ((PKgig, PKacc)s PKsan)- R implements the oracles by computing the accumu-
lator related parts itself and for the rest uses the oracles of the transparency
challenger of the SSS. Eventually, A outputs a bit b* and R forwards this bit
to the transparency challenger of the SSS and wins the game—the winning
probability is that of A. To see this, observe that in (O5€"/5ant the same set
limitations V are used in both, the signed and the sanitized message.
Accountability: Subsequently, we prove sanitizer- and signer-accountability:
Sanitizer-Accountability: Assume an efficient adversary A against san-
itizer-accountability. We show how this adversary can be turned into an
efficient adversary B against sanitizer-accountability of the underlying
sanitizable signature scheme SSS. To do so, we describe a reduction
R such that (A,R) form B. Firstly, R obtains pkg, from the chal-
lenger, runs (skacc, Pkyec) ¢ AGen(1%) and starts A on (pKgg, PKacc)-
R implements the oracles by computing the accumulator related parts
itself and for the rest uses the oracles of the sanitizer-accountability
challenger of the SSS. Now, by definition, A outputs (pkl,,, m*,o*) =
(Pkaan, m*, (6,V)) such that Verify(m*, 0%, pkyg, Pkeay) = true A (m*,
ADM*,V* pkZ,.) ¢ L8 A Judge((m*, o), pkyyg, Pkiy,, Proof((m*, o*),
SIG, (sksig, PKsig)s Pksan)) = sig. Consequently, R can output (pkg,,, Ext(
m*,0*),5) and wins the sanitizer-accountability game of the SSS (the
argumentation why is analogous to the one in Remark 1).
Signer-Accountability: Assume an efficient adversary A against signer-
accountability. We show how this adversary can be turned into an effi-
cient adversary B against signer-accountability of the underlying san-
itizable signature scheme SSS. To do so, we describe a reduction R
such that (A, R) form B. Firstly, R obtains pkg,, from the challenger
and starts A on pkg,. R implements the oracles by computing the
accumulator related parts itself and for the rest uses the oracles of
the signer-accountability challenger of the SSS. Eventually, A outputs
(PR m*, 0", 1) = ((PKGy, PKlce), m*, (6, V), ) such that Verify(m*, o*,
pklig, Pkean) = true A ((m*,-),ADM* pk,) ¢ L5 A Judge((m*, o),
Pkigs PKsan, ) = san. Consequently, A outputs (pkg,, Ext(m*,0%),6,7)
and wins the signer-accountability of the SSS (the argumentation why
is analogous to the one in Remark 1).
This completes the proof. a
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