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Abstract — Diffusion layers are critical components of symmetric 

ciphers. MDS matrices are diffusion layers of maximal branch 

number which have been used in various symmetric ciphers. In 

this article, we examine decomposition of cyclic matrices from 

mathematical viewpoint and based on that, we present new cyclic 

MDS matrices. From the aspect of implementation, the proposed 

matrices have lower implementations costs both in software and 

hardware, compared to what is presented in cryptographic 

literature, up to our knowledge. 
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I.  INTRODUCTION  

Diffusion layers are crucial components of symmetric ciphers. 

MDS matrices are diffusion layers with maximum branch 

number. MDS diffusion layers are used in several symmetric 

ciphers [1-7]. Some aspects of the theory of MDS diffusion 

layers is studied in [8-14].  
 

    In this article, we verify a special kind of MDS matrices, 

namely cyclic MDS matrices and propose new MDS matrices 

of this type. The presented matrices have lower implementation 

costs compared to what is presented up to now. In [10,15,16] 

diffusion layers in the form of a matrix power are examined. In 

this paper, we study decomposition of matrices from another 

viewpoint: we consider the product of matrices and then check 

these products for MDSness. 
 

    More precisely, we study cyclic matrices over finite fields of 

characteristic two and based upon this algebraic investigation, 

we provide some 4 × 4 MDS matrices with efficient 

implementation. 
 

    In Section 2, we present preliminary notations and 

definitions. Section 3 is devoted to MDS matrices with efficient 

implementation and Section 4 is the conclusion. 

 
 

II. PRELIMINARY NOTATIONS AND DEFINITIONS 
 

Let � be a finite commutative ring with identity. We denote the 

ring of polynomials over � by �[�]. Suppose that  �(�) ∈ �[�]; 

the ring of polynomials modulo �(�) is denoted by 
�[�]
�(�)�. 

 

    Throughout the paper, �, �, � and � are natural numbers. The 

finite field of order 2� is denoted by ���  and the Cartesian 

product of � copies of �� by ���. Cardinality of a finite set � is 

denoted by |�|. We denote the operation of addition in ���  by +. Addition in ���[�]  and the XOR operation in ��� is denoted 

by  ⨁. We denote left rotation by ⋘ and composition of 

functions by ∘. The zero vector of any size is denoted by !. We 

use the notation ≡ for equivalence of sets, functions, vectors or 

algebraic structures. 
 

    Let ���#  be the natural �-dimensional linear space over ���. 

Let � = (�#%&, . . . , �() ∈ ���#  be a vector of length �. The 

weight of � is denoted by )(�) and is defined as 
 )(�) = |*0 ≤ - < �: �0 ≠ 02|. 
 
 

    The (differential) branch number of a linear transformation 3: ���# → ���#  or its representing matrix is defined as 
 �-��∈56�7 %*!2 *)(�) + )(3(�))2. 
 

    A linear transformation 3: ���# → ���#  is called MDS [17,18] 

iff its branch number is equal to � + 1. 

 
 



 

III. CONSTRUCTION OF NEW MDS MATRICES 
 

At first, we prove a theorem which is the base for applications 

presented in this paper. 
 

 

Theorem 1. Let � = 56�[�]
�9⊕&�. Every � ∈ � of the form                                 

 � − 1       ⊕ �0�0  - = 0 
 

corresponds to a mapping 
 

 3�: � → �, 
 3�(<) = �<  �=>  (�? ⊕ 1). 
 

 

Further, there is an � × � matrix @ over ���  which is the 

representing matrix of a linear transformation 3A such that the 

action of  3� and 3A are exactly the same: 
 3A: ���? → ���? , 
 < ≡ (<?%&, … , <() ⟼ (<?%&, … , <()@ ≡ �<  �=>  (�? ⊕ 1). 
 

Here, @ = D�0EF?×? ,      �0E = �(0%E)  #GH  ?. 
 

 

Proof. We know that < is of the form  
 � − 1       ⊕ <0�0 - = 0 

 

 

and so, if we take 
 ⊕0I(

?%& J0�0 = �<  �=>  (�? ⊕ 1), 
 

then we have 

J0 = K �E<(0%E) #GH ?
?%&
EI( ,   0 ≤ - < �. 

 

Here, the symbol ∑ stands for addition in ���. Now, if we 

consider the action of the linear transformation 3A, we have 
 (<?%&, … , <() ⟼ (<?%&, … , <()@, 
with @ = D�0EF?×? ,      �0E = �(0%E)  #GH  ? .                      ∎ 
 

 

Note 2. The correspondence investigated in Theorem 1 is such 

that for �, �&, �� ∈ � with � = �&��, we have @ = @&@�. Here, @& is the corresponding matrix of  �& and @� is the corresponding 

matrix of  ��. Moreover, for an invertible element � ∈ 56�[�]
�9⊕&� , �%& corresponds to @%&. 
 

 

    Now, we recall the mapping given in [19, Exam. 6] as an 

example of Theorem 1. We note that Theorem 1 is somewhat a 

generalization of the concepts presented in [19]. 
 

 

 

 

Example 3. Consider the mappings 
 

 M&, M�, MN, M: ��N� → ��N�, 
 M&(�) = � ⊕ (� ⋘ 1) ⊕ (� ⋘ 2), 
 

 M�(�) = � ⊕ (� ⋘ 2) ⊕ (� ⋘ 7), 
 

 MN(�) = � ⊕ (� ⋘ 4) ⊕ (� ⋘ 10), 
 

and M(�) = M& ∘ M� ∘ MN(�). Then, M has branch number 12 over ��� for any �. 
 

    In Example 3, we have used the concept of decomposition of 

matrices over �� or factoring of polynomials in 
56[�]
�P6⊕&�  , to 

find a linear mapping of maximal branch number with more 

efficient implementation, compared to what is presented up to 

now.  
 

    Now we have an example in finite field ���,  � > 1. 
 

 

 

Example 4. Consider � = 56�[�]
�P⊕&�. Let  �, < ∈ � with 
 

 � = �( ⊕ �&� ⊕ ����, 
 < = <( ⊕ <&� ⊕ <���. 
We have 
       �<  �=>  (�N ⊕ 1) = (�(<( + ��<& + �&<�) 
                              ⊕ (�(<& + �&<( + ��<�)� 
                                 ⊕ (�(<� + �&<& + ��<()��. 
 

With matrix notations, we have 

�<  �=> (�N ⊕ 1) ≡ (<�    <&    <() R�( �� �&�& �( ���� �& �(S. 
 

So, the corresponding matrix of � would be 
 

 

@ = R�( �� �&�& �( ���� �& �(S. 
 
 

Construction 5. Let T ∈ ���. Consider � = 56�[�]
�U⊕&� and �, �&, �� ∈ � with  � = �&��  �=> (�V ⊕ 1), and 
 �& = �N ⊕ T, 
 �� = �N⨁�⨁1. 
 

We have � = (T + 1)�N⨁��⨁T�⨁(T + 1). 
 
 

The corresponding matrices are 
 

@& = WT 1 0 00 T 1 001 00 T0 1TX, 
 



@� = W1 1 0 11 1 1 001 10 11 11X, 
and 
 

@ = WT + 1            T + 1          1                     TT            T + 1      T + 1                11T + 1           T          1            T + 1         T       T + 1    T + 1 X. 
 

It can be verified that the conditions on T to make @ MDS over ���, is the same as conditions of [12, Coro. 4.5]: T, TN + 1 and TY + 1 should not be zero. So, as stated after that corollary, 

almost all elements T in ���, make @ MDS.  
 

 

If we wish to use the diffusion layer corresponding to @, the 

pseudo-code for implementing it, would be as follows:  
 

 ZN = T[N ⊕ [(, 
 Z� = T[� ⊕ [N, 
 Z& = T[& ⊕ [�, 
 Z( = T[( ⊕ [&, 
 \& = ZN ⊕ Z�, 
 \� = Z& ⊕ Z(, 
 ]N = \& ⊕ Z(, 
 ]� = \& ⊕ Z&, 
 ]& = \� ⊕ Z�, 
 ]( = \� ⊕ ZN. 
 

Here, [0’s, 0 ≤ - ≤ 3, are the inputs, ]0’s, 0 ≤ - ≤ 3, are the 

outputs and Z0’s, 0 ≤ - ≤ 3, and \0’s, 1 ≤ - ≤ 2, are temporary 

variables. 
 
 

Note 6. If we replace ���  in Construction 5 with any finite 

commutative ring with identity _, or 
56�[�]
�U⊕&� with 

`[�]
�U⊕&� , then 

the conditions for MDSness of @ are invertibility of T, TN + 1 

and TY + 1 in the ring _. These conditions are the same as 

conditions of [10, Theo. 7] and so, every matrix a (instead of T) satisfying the conditions of that theorem, satisfies the 

conditions for MDSness of  @. The important point concerning 

the decomposition done in Construction 5 is that, the cost of 

implementing this decomposition is 10 XOR’s and 4 table 

lookups or field multiplications. Compared to the best matrices 

given in [10] which need 14 XOR’s and 4 table lookups or field 

multiplications, our proposed matrix saves 4 XOR operations. 
 
 

 

    One of the drawbacks of our method is that the cost of 

implementing the inverse of these cyclic matrices is high and 

there are no involutions of this type. For example, for 

Construction 5 we have 
 

 (�N ⊕ T)%& = T�(T + 1)%V�N ⊕ T(T + 1)%V�� 
 

                       ⊕ (T + 1)%&� ⊕ TN(T + 1)%V, 
 (�N ⊕ � ⊕ 1)%& = �N ⊕ � ⊕ 1, 
and                      b(T + 1)�3 ⊕ �2 ⊕ T� ⊕ (T + 1)c%&

 

 

= (T3 + T2 + T)(T + 1)−4�3
 

          ⊕ (T� + T + 1)(T + 1)%V�� 
        ⊕ (TN + T + 1)(T + 1)%V� 
 

                               ⊕ (TN + T� + 1)(T + 1)%V. 
 

    Of course, if we apply the matrix of Construction 5 in a 

Feistel scheme or in an SPN structure in a mode like CTR, 

which do not need the implementation of the inverse of 

mappings, then our method is more efficient. 
 
 

 

Construction 6. Let  � = 56�[�]
�d⊕&� . We take 
 

 � = (�N ⊕ <)(�� ⊕ e)(�V ⊕ f� ⊕ 1)  �=>  (�g ⊕ 1) 
          = e�Y ⊕ (< + f)�h ⊕ �i ⊕ (<e + ef)�V 
             (<f + e)�N⨁<��⨁(<ef + 1)� + <e. 
 

Here, � = �&���N  �=>  (�g ⊕ 1) with 
 

 �& = �N ⊕ <, 
 �� = �� ⊕ e, 
 �N = �V ⊕ f� ⊕ 1. 
 

 

The corresponding matrices are 
 

 @& = D�0E& Fg×g,       
with 
 

�0E& = j<          (- − k) �=> 8 = 01         (- − k) �=>  8 = 30      (- − k) �=>  8 ≠ 0,3 ,   0 ≤ - < 8,   0 ≤ k < 8.   
 

 @� = D�0E� Fg×g,       
with 
 

�0E� = je          (- − k) �=> 8 = 01         (- − k) �=>  8 = 20      (- − k) �=>  8 ≠ 0,2 ,   0 ≤ - < 8,   0 ≤ k < 8.  
 

 @N = D�0EN Fg×g,       
with 
 

�0EN = j1            (- − k) �=> 8 = 0,4f                (- − k) �=> 8 = 10         (- − k) �=> 8 ≠ 0,1,4 ,   0 ≤ - < 8,   0 ≤ k < 8,   
 

and 
 



@ = D�0EFg×g,       
with 

�0E =
mnn
no
nnn
p<e                (- − k) �=> 8 = 0<ef + 1      (- − k) �=> 8 = 1<                  (- − k) �=> 8 = 2<f + e        (- − k) �=> 8 = 3<e + ef      (- − k) �=> 8 = 41                  (- − k) �=> 8 = 5< + f          (- − k) �=> 8 = 6e                 (- − k) �=> 8 = 7

, 0 ≤ -, k < 8. 
 

 
 

Construction 6 is merely an example for decomposition of      8 × 8 matrices. One can search these types of constructions to 

find matrices @ which are MDS.  

 

IV. CONCLUSION 

Diffusion layers are important components of symmetric 

ciphers. MDS matrices have been used in several symmetric 

ciphers. In this article, we studied decomposition of cyclic 

matrices from mathematical viewpoint and based on that, we 

presented new cyclic MDS matrices.  

    From the aspect of implementation, the proposed matrices 

have lower implementations costs both in software and 

hardware, compared to what is presented in cryptographic 

literature, up to our knowledge. 

    We think that based on the theory presented in this paper, the 

search for optimum MDS matrices over finite fields or finite 

commutative rings with identity can be done and more efficient 

matrices can be found by this method. 
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