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Abstract. Hardcore lemmas are results in complexity theory which
state that average-case hardness must have a very hard “kernel”, that is
a subset of instances where the given problem is extremely hard. They
find important applications in hardness amplification. In this paper we
revisit the following two fundamental results:
(a) The hardcore lemma for unpredictability, due to Impagliazzo (FOCS

’95). It states that if a boolean function f is “moderately” hard to
predict on average, then there must be a set of noticeable size on
which f is “extremely” hard to predict.

(b) The hardcore lemma for indistinguishability, proved by Maurer and
Tesaro (TCC’10), states that for two random variables X and Y
which are ε-computationally close, there are events A and B of
probability 1 − ε such that the distributions of X|A and Y |B are
“computationally” identical.

Using only the standard min-max theorem and some basic facts about
convex approximations in Lp spaces, we provide alternative modular
proofs and some generalizations of these results in the nonuniform set-
ting, achieving best possible bounds for (a) and slightly improving the
known bounds for (b). As an interesting application, we show a strength-
ening of the transformation between two most popular pseudoentropy
variants: HILL and Metric Entropy, and apply it to show how to ex-
tract pseudorandomness from a sequence of metric-entropy sources of
poor quality. In this case we significantly improve security parameters,
comparing to the best known techniques.

1 Introduction

1.1 Hardcore lemmas and their applications

Unpredictability Hardcore Lemma. Suppose that we have a function f :
{0, 1}n → {0, 1} that is mildly hard to predict by a class of circuits; for every
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circuit D from our class, D(x) and f(x) agree on at most, say, a 0.99 fraction
of inputs x. One of the reasons for that, which could intuitively explain this
behavior, is the existence of a “kernel” for this hardness: a set of noticeable
size on which f is extremely hard to predict, meaning that there is (almost)
no advantage over a random guess. How big this set should be? The intuitive
answer is a 0.02 = 2(1− 0.99) fraction of input. Indeed, if f cannot be guessed
better than with probability 1

2 on this set, then the probability that D agrees
with f is at most 0.02 · 12 + 0.98 · 1 = 0.99, by the total probability law.

Quite surprisingly, this intuitive characterization is true. The first such re-
sult was proved by Impagliazzo [Imp95]. An improved version with the optimal
density of the hardcore set was found by Holenstein [Hol05]. Below we present
the best possible result due to Klivans and Servedio.

Theorem 1 (Nonuniform Unpredictability Hardcore Lemma [KS03]).
Let f : {0, 1}n → {0, 1} be ε-unpredictable by circuits of size s, that is

Pr
x←{0,1}n

[D(x) = f(x)] 6 1− ε

2

holds for all boolean circuits D over n bits of size at most s. Then for any
δ ∈ (0, 1) there exists a “hardcore” set S of size ε2n such that f on S is 1 − δ
unpredictable by circuits of size s′ = O

(
sδ2/ log(1/ε)

)
, that is

Pr
x←S

[D(x) = f(x)] 6
1 + δ

2
, for every D of size at most s′.

Remark 1 (Conventions). Some authors define ε-unpredictability in a different
manner. We follow the approach of [Hol05]. The definition above is quite intu-
itive, since 1-unpredictability means that f is totally unpredictable.

Remark 2 (Trade-off between the loss in complexity and quality of the hardcore
set). Ideally we want δ = 0 but then we get nothing nontrivial about the indis-
tnguishability. In fact, we cannot guarantee that f on the hardcore is perfectly
unpredictable. The loss of δ2/ log(1/ε) in complexity is necessary (the matching
lower bound is due to Lu, Tsai, and Wu [LTW07]).

Remark 3 (Hardcore for any sampling distribution). Klivans and Servedio proved
in fact a more general result, where one samples x from arbitrary distribution V .
The hardcore set is replaced then by a distribution “dense” in V . See Theorem 3.

Note that the size of the hardcore set, guaranteed to be at least 2nε, is tight. In-
deed, if the second part of the theorem is satisfied, i.e. f is almost unpredictable
on a set of size ε, it implies that f , on average over the whole domain, cannot
be predicted better than 1 − ε+δ

2 ≈ 1 − ε
2 (provided that δ � ε). A uniform

version, with the tight hardcore density, is given also in [Hol05] and [VZ12].
Constructive versions of the hardcore lemma can be obtained by any boosting
algorithm [KS99,BHK09], however such results are not necessarily tight without
additional optimization.
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Indistinguishability Hardcore Lemma. It is well known that if two distri-
butions X1, X2 have the statistical distance at most ε, then there exist events
A1, A2 of probability at least 1− ε such that the distributions X1|A1 and X2|A2

are identical. Based on the reduction to the unpredictability hardcore lemma,
Maurer and Tessaro proved the following computational generalization of this
fact in the nonuniform setting

Theorem 2 (Indistinguishability Hardcore Lemma [MT10]). Let X1 and
X2 be distributions on {0, 1}n, with the computational distance ε against circuits
of size s, that is

|ED(X1)−ED(X2)| < ε for all D of size s.

Then there exist events A1 and A2 of probability 1− ε such that A1 and A2 are
computationally indistinguishable, that is

|ED(X1|A1)−ED(X2|A2)| 6 δ for every D of size s = sδ2/128n.

which states that if two distributions are (computationally) not too far away
from each other, then after conditioning on an event of noticeable probability
they are almost completely indistinguishable. Since the lower bound 1 − ε on
the probabilities of hardcore events is tight1, this theorem can be viewed as a
characterization of computational indistinguishability.

Applications of hardcore lemmas. Hardcore lemmas are fundamental re-
sult in complexity theory and find applications in cryptography and learning
theory. They are particularly important in the context of hardness amplifica-
tion, i.e. transforming somewhat hard problems into hard problems. See for
instance [LT13,GNW11,MT10,Hol05, Imp95].

1.2 Our results

An unpredictability hardcore lemma from standard min-max theo-
rem. We reprove Theorem 1 in its full generality developing a few new ideas.
Our approach has the following advantages:

(a) A new modular proof technique. Our approach is very simple and natural.
We observe that it is straightforward to construct a hardcore for any fixed
circuit of size s. Then we show that this is possible for any real-valued circuit
of the same size. The third step (the only one which loses in complexity)
is an approximation argument which shows that there exists a hardcore for
any convex combination of circuits of size s. Finally we trivially“switch” the
quantifiers by the standard min-max theorem. See Figure 1 for an overview.

(b) Tight bounds from the standard min-max theorem. In our proof the weight
of the hardcore event2 for ε-unpredictability is guaranteed to be ε and

1 By the similar reasoning as in the unpredictability case
2 The hardcore is then understood as the sampling distribution conditioned on an

appropriate event of sufficiently big probability.
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we loss a factor of O
(
log(1/ε)/δ2

)
in complexity for the hardcore to be

1− δ unpredictable, which matches the lower bound [LTW07]. The previous
proofs which achieve optimal parameters required involved iterative argu-
ments [KS03] or dedicated versions of the min-max theorem [VZ12]. Some
authors even suggested that it might be impossible to get the tight param-
eters using the standard min-max theorem [VZ12].

(c) New ideas of independent interests. The only technical difficulties in our
proof are steps 2 and 3. The tools we have developed to overcome them allows
us to give a direct proof (without reduction!) of the indistinguishability
hardcore lemma and a variant of the indistinguishability hardcore lemma
dedicated for computational entropy.

Below, in Figure 1, we sketch our proof strategy. We have managed to separate
a lossless use of the min-max theorem from a standard approximaiton argument
which is responsible for the only loss in complexity.

D ∈ D{0,1},s

(D is fixed)
D ∈ D[0,1],s

(D is fixed)
D ∈ conv

(
D[0,1],s

)

(D is fixed)

D ∈ conv
(
D[0,1],s

)

(D is arbitrary)easy

no loss

tricky
(optimization)

no loss

appropriate Lp

approximation

lossy step

trivial
(min-max thm.)

no loss

Fig. 1: An overview of our proof technique.

A quantitative comparison with versions of Theorem 1 is given in Table 1.

Result Author Proof technique Complexity loss
Sampling

distribution

Unpredictability
Hardcore

[Hol05]
standard min-max theorem

hardcore density optimization O(n/δ2) Uniform

[KS03] boosting O
(

log(1/ε)

δ2

)
Arbitrary

[VZ12]
dedicated min-max theorem

hardcore density optimization O
(

log(1/ε)

δ2

)
Arbitrary

This paper
Theorem 3

standard min-max theorem
convex approximation O

(
min

(
n
δ2
, log(1/ε)

δ2

))
Arbitrary

Table 1: Our unpredictability hardcore lemma compared to previous works

A simplified and improved reduction from to unpredictability hard-
cores. We show an alternative proof for the indistinguishability hardcore lemma
of Maurer and Tessaro. In [MT10] the non-trivial reduction goes from the in-
distinguishablity hardcore lemma to the “standard” unpredictability hardcore
lemma, that is where inputs are sampled from the uniform distribution. On the
contrary, we find it much easier and natural to reduce it to unpredictability of
some predicate which explicitly depends on the distributions X1, X2 (it is sim-
ply equal to the sign of the difference between probability mass functions). In
our reduction we achieve better numerical constants and improve the factor de-
pending on the dimension, replacing n by ∆2 log(1/δ) where ∆ is the statistical
distance of X1 and X2. The comparison with Theorem 2 is given in Table 2.
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Result Author Proof technique Complexity loss

Indistinguishability
Hardcore

[MT10]
Reduction

(to unpredictability hardcore) O(n/δ2)
This paper
Theorem 4

Simpler Reduction

(general unpredictability hardcore) O
(

min
(
∆2n
δ2

, ∆
2 log(∆/ε)

δ2

))

Table 2: Our indistinguishability hardcore lemma compared to previous works

A direct proof of the Indistinguishability Hardcore Lemma. Adapt-
ing the proof given for the unpredictability case, we derive the (nonuniform)
Indistinguishability Hardcore Lemma of Maurer and Tessaro directly, that is
without reducing it to unpredictability hardcore lemmas. This might be impor-
tant for lower bounds. Indeed, lower bounds on unpredictability hardcore lem-
mas do not imply lower bounds for the indistinguishability. For more details, see
Corollary 3 in Section 4.

An Indistinguishability Hardcore Lemma for Pseudoentropy. In some
situations, for instance in extracting entropy, we do not really need our distri-
bution X to be indistinguishable from a particular Y but rather from a class
of distributions Y (which is a weaker requirement). In particular, consider the
following alternatives to formalize the statement “X almost has min-entropy k”:

(i) X is (s, δ)-close to having property P , if there exists a distribution Y with
min-entropy k such that for every circuit D of size s, we have ∆D(X;Y ) 6 δ

(ii) X is (s, δ)-close to having property P , if for every D of size s there exists
a distribution Y with min-entropy k such that we have ∆D(X;Y ) 6 δ.

where ∆D(X;Y ) = ED(X) − ED(Y ) is the advantage of the attacker D. For
case (i), we obtain the notion of the HILL entropy [HILL99]. In case (ii) we
obtain a relaxed notion called metric pseudoentropy [BSW03]. Metric pseudoen-
tropy is widely used as a convenient substitute of HILL entropy and find many
application in studying pseudorandomness [VZ12, FOR12, DP08, BSW03]. It is
known [BSW03] that metric entropy with parameters (s, ε) can be converted
into HILL entropy with no loss in the amount and the parameters (s′, ε′) =
(O
(
s · δ2/n

)
, ε + δ) for any δ. We obtain a nice and much stronger version of

this transformation: if X has metric entropy of quality (s, ε) (even against weak-
est deterministic circuits) then after conditioning on an event of probability 1−ε,
it has the same amount of HILL entropy of quality (O

(
s · δ2/n

)
, δ).

Application: extracting pseudorandomness from pseudoentropy of
poor quality. Using our generalized indistinguishability hardcore lemma, we
prove that for a sequence of independent distributions X1, . . . , X`, each having
metric-entropy k with parameters (s, ε) for some large ε and against deterministic
circuits of size s, the concatenated string X = X1, X2, . . . , X` has HILL entropy
roughly (1− ε)`k with parameters (s′, δ′) = (δ, sδ2`−2/n). In other words, for a
metric pseudoentropy source of quality (s, ε) we achieve, sampling many times,
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the entropy extraction rate α = 1 − ε3 with good security. Comparing to the
state of art we save a quite large factor δ2 in security4.

1.3 Outline of the paper

Section 2 provides necessary definitions for hardness of unpredictability, compu-
tational indistinguishabilty and computational entropy. In Section 3 we present
a generalization of the unpredictability hardcore lemma and a slightly simplified
proof of the indistinguishability hardcore lemma. A hardcore lemma dedicated
for pseudoentropy is given in Section 4. An application to the problem of extract-
ing from a pseudoentropy source of very bad quality is discussed in Section 5.

2 Preliminaries

Computational and Statistical Indistinguishability. Let X and Y be
two random variables taking values in the same space. The advantage of D in
distinguishing between X and Y is defined to be ∆D(X;Y ) = ED(X)−ED(Y ).
The statistical distance between two random variables X and Y , is defined as
∆(X;Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]| and is equal to the maximum of

∆D(X;Y ) over all [0, 1]-valued functions D. The computational distance be-
tween X and Y is defined as maxD∈D |∆D(X;Y )| where D is a fixed class of
boolean functions. We say that X and Y are (s, ε)-close or (s, ε)-indistinguishable
if ∆D(X;Y ) 6 ε for all D of size at most s.

Hardness of Unpredictability. A boolean funciton f : {0, 1}n → {0, 1} is
said to be (s, δ)-unpredictable if Prx←{0,1}n [D(x) = f(x)] 6 1− δ/2 for all D of
size at most s. We also say that f is δ-hard against circuits of size s. We say that
that f is (s, δ)-unpredictable under the distribution V if Prx←V [D(x) = f(x)] 6
1− δ/2 for all D of size at most s.

Measures and Dense Distributions. X is δ-dense in Y if Pr[X = x] 6
Pr[Y = x]/δ for all x.

Circuits. By D{0,1},s and D[0,1],s we denote the set of boolean and, respectively,
real-valued circuits of size at most s.

Computational Entropy. There are many ways to define computational ana-
logues of entropy. We follow the most popular approach, which is based on the
concept of computational indistinguishability.

Definition 1 (HILL Pseudoentropy [HILL99]). Let X be a distribution
with the following property: there exists Y of min-entropy at least k such that
for all circuits D of size at most s we have |∆D(X;Y )| 6 ε. Then we say that
X has k bits of HILL entropy of quality (s, ε) and denote by HHILL

s,ε (X) > k.

3 Understood as the ratio of the number of extracted bit to the length of the input.
4 We note that the following issues makes this problem challenging: (a) since ε is

large, no hybrid technique can be applied and (b) pseudoentropy is only against
deterministic adversaries so no extractor can be directly applied
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It is known that for HILL Entropy all kind of circuits: deterministic boolean,
deterministic real valued and randomized boolean, are equivalent (with the same
size s). The following definition differs in the order of quantifiers

Definition 2 (Metric Pseudoentropy [BSW03]). Let X be a distribution
with the following property: for every deterministic boolean (respectively: deter-
ministic real valued or boolean randomized) circuit D of size at most s there exists
Y of min-entropy at least k such that |∆D(X;Y )| 6 ε. Then we say that X has
k bits of deterministic (respectively: deterministic real valued or boolean ran-

domized) metric entropy of quality (s, ε) and denote by H
Metric,det{0,1}
s,ε (X) > k

(respectively: H
Metric,det[0,1]
s,ε (X) and HMetric,rand

s,ε (X)).

Approximating convex hulls. The following facts are useful when we want
to approximate possibly long convex combinations of functions by a combination
of few functions; in particular, when we use the min-max theorem and need to
approximate any mixed strategy by an efficient strategy.

Lemma 1 ( [BSW03]). Let X be a finite domain, ν be a distribution on X and
let G be any set of functions g : X → [−1, 1] and let g be a convex combinations

of functions from G. Then for any ε ∈ (0, 1) and for some k 6 log |X |
2ε2 , there exist

functions g1, . . . , gk such that

max
x∈X

∣∣∣∣∣g(x)−

(
1

k

k∑
i=1

gi(x)

)∣∣∣∣∣ 6 ε

Lemma 2 (Convex approximation in Lp spaces [DDGS97]). Let X be a
finite domain, ν be a distribution on X . Fix a number 1 6 p < +∞ and for

any function f on X define ‖f‖p = (Ex←ν |f(x)|p)
1
p . Let G be any set of real

functions on X , let g be a convex combinations of functions from G and K > 0
be such that for all g ∈ G we have ‖g− g‖p 6 K. Then for any ` > 0 there exists

a convex combination g′ =
∑`
i=1 αigi of functions g1, . . . , gk ∈ G such that

‖g − g′‖p 6
KCp

`1−
1
t

where t = min(2, p) and Cp = 1 if 1 6 p 6 2, Cp =
√

2[Γ ((p+ 1)/2)/
√
π]1/p for

2 < p < +∞.

3 Hardcore Lemmas

3.1 Hardcore lemma for unpredictability

Below we prove a general hardcore lemma for unpredictability.

Theorem 3 (Unpredictability Hardcore Lemma for arbitrary distribu-
tions). Let V be an arbitrary distribution on {0, 1}n and suppose that an n-bit
boolean function f is (s, ε)-unpredictable under V . Then for any δ there exists
an event A of probability at least 2ε such that f is (s′, 1− δ)-unpredictable under
V |A, where s′ = O

(
sδ2 ·max (1/n, 1/ log(1/ε))

)
.
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Note that f is essentially almost unbiased under V |A: by applying trivial dis-
tinuguishers D ≡ 1 and D ≡ 0 we get 1

2 − δ 6 Pr[f(V |A) = 1] 6 1
2 + δ. For

some technical reasons we need the following observation, which states that the
hardcore event “preserves” unbiased predicates.

Corollary 1 (Unpredictability Hardcore Lemma for unbiased predi-
cates). Suppose that Theorem 3 holds for f and V such that P (f(V ) = −1) =
1
2 = P (f(V ) = 1). Then the hardcore event A can be chosen in such a way that
P (f(V |A) = −1) = P (f(V |A) = 1) = 1

2 , with the additional loss of a factor
O(1) in circuit size.

The proof of Corollary 1 appears in Appendix A. It is relatively simple and uses
the idea of “mass-shifting”. The proof of Theorem 3 appears in Appendix B.

3.2 Hardcore lemma for indistinguishability - reduction to
unpredictability case

The following lemma shows that indistinguishability of two distributions is equiv-
alent to the hardness of predicting some boolean function, which explicitly de-
pends on these distributions. This function is quite natural: it equals the sign of
the difference between the probability mass functions.

Lemma 3. Let D be a class of boolean functions, X,Y ∈ {0, 1}n be random
variables, and let ∆ = ∆(X,Y ) be different than 0. Then the following are
equivalent:

(a) X and Y are (D, ε)-indistinguishable
(b) f(x) is (D, 1− ε/∆)-unpredictable under V , where f(x) is the indicator of

the set {x : PX(x) > PY (x)} and the distribution of V is given by PV (x) =
|PX(x)−PY (x)| /2∆.

Proof. For any boolean D we obtain

ED(X)−ED(Y ) =
∑
x

(PX(x)−PY (x))D(x)

= 2∆ (Pr[f(V ) = 1] E[D(V )|f(V ) = 1]

−Pr[f(V ) = 0] E[D(V )|f(V ) = 0])

Observe that Pr[f(V ) = 1] = Pr[f(V ) = 0] = 1
2 . Therefore

ED(X)−ED(Y ) = 2∆

(
−1

2
+

1

2
E[D(V )|f(V ) = 1] +

1

2
E[(1−D(V ))|f(V ) = 0]

)
.

Since D is boolean, the last equation is equivalent to

ED(X)−ED(Y ) = 2∆

(
Pr[D(V ) = f(V )]− 1

2

)
,

which finishes the proof. ut
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Based on Lemma 3 we prove the following result

Theorem 4 (Indistinguishability Hardcore Lemma). Suppose that X and
Y are distributions (s, ε)-indistinguishable by boolean circuits Then for any δ > 0
there exist events A(X), A(Y ), both of equal probability at least 1− ε, such that
X|A(X) and Y |A(Y ) are (O

(
s · δ2/ log(∆(X;Y )/ε)

)
, ∆(X;Y )·δ) indistinguish-

able.

Proof. From the construction of V , we obtain that f is (s, 1 − ε/∆(X,Y ))-
unpredictable under V . From Theorem 3 we obtain that there exists a hard-
core A with probability at least 1 − ε/∆(X,Y ) such that f is extremely un-
predictable under V |A. This hardcore event can be described as follows: there
exists a measure M = MA that satisfies M(x) 6 PV (x) and P(A) = µ(M) > 1−
ε/∆(X,Y ) and such that f(x) is unpredictable for sampling according to M , i.e.
Px←M (D(x) = f(x)) < 1/2+δ. The distribution V |A is then defined by PV |A =
PM . Consider the events S− = {x : f(x) = 0} and S+ = {x : f(x) = 1}. From
the definition of V and f it follows that PV (S−) = PV (S+) = 1

2 . As shown in
Corollary 1, the sets S+, S− can be assumed to be perfectly unbiased also under
V |A. Define now two measures M0 = MX and M1 = MY as follows:

M0(x) =

{
PX(x)− 2∆(X,Y ) (PV (x)−M ′(x)) if PX(x) > PY (x)
PX(x) otherwise

(1)

and similarly,

M1(x) =

{
PY (x)− 2∆(X,Y ) (PV (x)−M ′(x)) if PX(x) < PY (x)
PY (x) otherwise

(2)

Note that both measures are well defined since PV (x) = |PX(x)−PY (x)| /2∆(X,Y )
and M ′(x) 6 PV (x). Then from the definition of (V,A) and the definition of f
it follows that

µ (M0) = 1− 2∆(X,Y )
∑

x: f(x)=1

PV (x) + 2∆(X,Y )
∑

x: f(x)=1

M ′(x)

= 1−∆(X,Y ) + 2∆(X,Y )P(A) ·PV |A
(
S+
)

= 1−∆(X,Y )P(Ac)

> 1− ε (3)

and similarly that the same estimate holds for µ (M1). Observe also that since S+

and S− are perfectly unbiased with respect to M ′, and since the same holds for
V , we have µ (M0) = µ (M1). These measures give rise to the joint distributions
X,A(X) and Y,A(Y ) for some events A(X), A(Y ) with probabilities at least
µ (M0) = µ (M1). It remains to calculate the advantage in distinguishing. Let V ′

and f ′ be a distribution and a predicate corresponding to X|A(X) and Y |A(Y )
according to the statement of Lemma 3. Observe that M0(x) > M1(x) if and only
if f(x) = 1, hence f ′(x) = f(x). Since |M0(x)−M1(x)| = 2∆(X,Y )M ′(x) for
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every x, we get PV (x) = M ′(x)/µ(M ′) = PV |A(x) and ∆(X|A(X), Y |A(Y )) =
∆(X,Y ). Therefore

∆D(X|A(X), Y |A(Y )) = ∆(X,Y ) · (2Px←V ′ (D(x) = f ′(x))− 1)

= ∆(X,Y ) ·
(
2Px←V |A′ (D(x) = f(x))− 1

)
< ∆(X,Y ) · δ, (4)

and we have finished the proof. ut

Remark 4. We note that without Corollary 1 we would obtain a slightly weaker
version of the indistinguishability hardcore lemma where the probability of the
hardcore events is guaranteed to be at least 1− ε− δ, which is very close to the
optimal 1− ε and equally good in applications.

4 Indistinguishability Hardcore Lemma for
Pseudoentropy

In this section we prove the following theorem, which gives the existence of a
“HILL-entropy-hardcore” for metric pseudoentropy.

Theorem 5 (Indistinguishability Hardcore Lemma for pseudoentropy).

Suppose that H
Metric,det{0,1}
s,ε (X) > k. Then for any δ and s′ = O

(
s · δ2/n

)
there

exists an event A of probability 1− ε such that HHILL
s′,δ (X|A) > k− log(1/(1− ε)).

This theorem shows that metric entropy not only can be converted to HILL
entropy with the loss of factor δ in advantage and δ2 in circuit size; It has a
hardcore of HILL entropy with the same quality parameters. Before we give the
proof, let us observe that this result implies the transformation between metric
and HILL entropy (up to the lose of at most one bit)

Corollary 2 (Metric entropy - HILL entropy transformation [BSW03]).

Suppose that H
Metric,det{0,1}
s,ε (X) > k. Then HHILL

s′,ε′ (X) > k where s′ = O
(
s · δ2/n

)
and ε′ = ε+ δ.

Proof (Proof of Corollary 2). We apply Theorem 5 obtaining a distribution Y |A
which is (s′, δ)-indistinguishable from X|A, and then we define Pr[Y ′ = x] =
Pr[A] ·Pr[Y = x|A]+2−n Pr[Ac]. Note that H∞(Y ′) > k−1 and Y ′ is (s′, ε+δ)-
indistinguishable from X. We remark that one can actually show without the
loss of 1 bit, because Theorem 5 actually is slightly stronger that stated, namely
HHILL
s′,δ (X|A) > k− log(1/(1−ε)) can be replaced by the following: X|A is (s′, δ)-

indistinguishable from Y |A where Y has k bits of min-entropy. ut

The proof strategy for Theorem 5 is exactly the same as in the case of Theo-
rem 3. The full proof is given in Appendix C. Note that the result inTheorem 5
with much worse parameters follows by converting metric-entropy into HILL en-
tropy using Corollary 2 and then applying Theorem 2. This way we lose δ4 in
circuit size.
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Corollary 3 (Direct proof of the Indistinguishability Hardcore Lemma).
The proof of Theorem 5 can be easily adapted to give a direct proof of Theorem 4
without reducing it to Theorem 3. Namely, in the proof we replace the condition
M2 6 2−k by M2 6 PY .

5 Applications: extracting from metric pseudoentropy of
poor quality

Suppose that we have a source of metric pseudoentropy that produces samples
secure against deterministic adversaries of high complexity but only with a very
big advantage ε (for instance, ε = 0.25). Since the metric entropy is only against
deterministic adversaries, for which it is not known [FOR12] if we can extract
pseudorandomness directly5, one needs to convert in into the HILL entropy.
However, it still does not solve the problem of large ε. In the next step one can
use Theorem 2 to prove that a concatenated sequence of many samples has large
HILL entropy6., with the rate of roughly 1 − ε. This approach loses O

(
δ4
)

in
security. Below we show that these two steps can be done at the same time which
allows us to save a factor of O

(
δ2
)

in security.

Theorem 6. Suppose that Xi, for i = 1, . . . , `, are independent n-bit random

variables such that H
Metric,det{0,1}
s,ε (X) > k. Then for any γ > 0 we have

HHILL
s′,δ′ (X) > (1− ε− γ)` (k − log(1/(1− ε))) ,

where s′ = O
(
s · δ2/n`2

)
and δ′ = δ + 2 exp(−2`γ2)

Proof. Fix δ and let s′ = O
(
s · δ2/n

)
. We apply Theorem 5 to Xi, for i =

1, , . . . , `, obtaining hardcore events Ai of probability at least 1 − ε such that
HHILL
s′,δ (Xi|Ai) > k − log(1/(1 − ε)). By the Chernoff Bound we know that the

probability that m = `(1 − ε − γ) of them happen simultaneously, is at least
1− 2 exp(−2`γ2). The result follows now by the observation that concatenating
` random variables Y1, . . . , Y` of HILL entropy k1, . . . , k` with parameters (s′, δ)
yields a distribution of HILL entropy k1 + k2 + . . .+ k` with parameters (s′, `δ)
(the proof follows by a standard hybrid argument). ut
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the anonymous referee for valuable criticism.

5 The problem of randomized vs deterministic adversaries is the matter of metric
entropy only; for the HILL entropy all kind of circuits are equivalent

6 Maurer and Tessaro construct in the same way a PRG from a weak PRG
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7 Conclusion

An interesting open problem is to check if the indistinguishability hardcore
lemma can be derived from the unpredictability hardcore lemma, that is show
the reduction in other direction than in [MT10] and this paper. Another problem
worth of mentioning is the question about lower bounds on the necessary loss in
security for indistinguishability hardcore lemma.
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A Proof of Corollary 1

Proof (Proof of Corollary 1). Let M(x) = Pr[V = x,A]. Since M(x) 6 PV (x)
and we have M (S−) ,M (S+) 6 1

2 . Suppose that M (S+)−M (S−) = 2δ0. Then

M (S−) = µ(M)
2 − δ0 and M (S+) = µ(M)

2 + δ0. Suppose δ0 > 0. Since M (S−) 6
P (S−) − δ0 and M (S+) > δ0, we can define the measure M ′ by decreasing
the mass of S+ by δ0 and moving it to S− in such a way that M ′(x) 6 PV (x)
still holds on S−. For the case δ0 < 0 observe that M (S+) 6 P (S+) − (−δ0)
and M (S−) > −δ0 thus we proceed similarly by decreasing the mass of S− by
(−δ0) and moving it to S+ in such a way that M ′(x) 6 PV (x) holds on S+.
Therefore, in both cases we have M ′(x) 6 PV (x). Clearly M ′ (S+) = M ′ (S−).
Thus the measure M ′ gives rise to a distribution V,A′. While constructing M ′

from M we only shift a mass between disjoint sets, hence µ(M) = µ(M ′) and
P(A) = P(A′). It remains to show, that under distribution V |A′ the function
f is still unpredictable. Applying trivial distinguishers D = 1 and D = −1 to
unpredictability under V |A, we get M (S+) ,M (S−) 6 (1/2 + δ)P(A). Since
M (S+) + M (S−) = P(A) it follows then that 2 |δ0| = |M (S+)−M (S−)| 6
2δP(A). Since the total mass that of M that is shifted to M ′ is equal to δ0, we
have ‖M ′ −M‖1 =

∑
x
|M ′(x)−M(x)| 6 2 |δ0| 6 2δP(A). Since P(A′) = P(A),

this implies ∆ (V |A, V |A′) 6 2δ. Therefore, for every D of size s′ we obtain
Px←V |A′ (D(x) = f(x)) < 1

2 + δ + 2δ. Replacing δ with δ/3 changes the circuit
size only by a (small) constant factor. ut

B Proof of Theorem 3

Proof. In this proof, for convenience, we assume that boolean functions take
values in {−1, 1}.
Step 1. We extended the concept of unpredictability to all real-valued functions.
The following straightforward but very useful property is easy to check:

Lemma 4. Let f and D be boolean. Then f is ε-unpredictable by D under V if
and only if Ex←VD(x)f(x) 6 1− ε.

Step 2. We show how to construct a hardcore for a single boolean attacker D. For
some technical reasons, we need actually a slightly stronger statement, namely
a construction for a function D which takes values −1, 0, 1.

Lemma 5. Suppose that for a distribution V , a function D with values in
{−1, 0, 1} and a boolean function f we have Ex←VD(x)f(x) = ±δ. Then there is
a measure M such that M(x) 6 PV (x), µ(M) > 1− δ and Ex←MD(x)f(x) = 0.

Proof. By replacing D by −D we can assume that Ex←VD(x)f(x) = δ > 0. Let
S1 = {x : D(x)f(x) > 0}. If follows that Pr[V ∈ S1] =

∑
x∈S1

PV (x)D(x) > δ.

Now we define M(x) = PV (x) · (Pr[V ∈ S1] − δ)/Pr[V ∈ S1] for x ∈ S1 and
M(x) = PV (x) otherwise. M satisfies the required properties. ut

Step 3. We argue that the same is true for real-valued functions D.
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Lemma 6. Suppose that f is ε-unpredictable by boolean circuits of size s under a
distribution V . Then for every real-valued D of size s′ ≈ s there exists a measure
M such that M(x) 6 PV (x) for every x, µ(M) > ε and Ex←MD(x)f(x) = 0.

Proof. Suppose not. Since the set of feasible measures M is convex, this is we
must have either Ex←MD(x)f(x) > 0 for all M or Ex←MD(x)f(x) < 0 for all
M . By eventually replacing D with −D we obtain that there exists a real-valued
circuit D of size s such that for all measures M satisfying the constraints∑

x

D(x)f(x)M(x) > 0.

Now we give a characterization of the measure that minimizes the left-hand side
in the inequality above.

Claim 1. Let M0 be an optimal solution of the following problem

minimize
M

∑
x

D(x)f(x)M(x)

s.t.

{
M(x) 6 PV (x)

µ(M) > ε

Define S = {x : sgnD(x) = f(x)} and let p = P(V ∈ S). Let xi for i = 1, . . . ,M
be the elements of S, enumerated in such a way that |D(xi)| > |D(xi+1)|. Let

N be the maximal number such that N 6 M and
N∑
i=1

PV (xi) 6 min (1− ε, p).

Then the measure M0 defined by M0(x) = 0 if x = xi for some i ∈ [1, N ] and
M0(x) = PV (x) otherwise, is the minimizer.

Proof. It is clear that for the optimal measure M0, the mass of PV (x) is de-
creased only if f(x)D(x) > 0 and keeps unchanged if f(x)D(x) < 0. Thus, the
total mass we cut is equal to at most∑

x: D(x)f(x)>0

PV (x) = p

In the other hand, it is bounded from above by 1 − ε due to the constraint
µ(M) > ε. The last observation is that if D(x)f(x) > 0, the greater the absolute
value of D(x) is, the more mass we cut. ut

As a conclusion from Claim 1 we get that µ(M0) = max(ε, 1 − p). From the
definition of M0 we have that

min
M :

M6PV

µ(M)>ε

∑
x

D(x)f(x)M(x) =
∑
x

D(x)f(x)M0(x)

Let D1(x) := D(x) · 1{f>0} and D2(x) := D(x) · 1{f<0}. Then we have

Ex←M0
D(x)f(x) = Ex←M0

D+
1 (x)−Ex←M0

D−1 (x)−Ex←M0
D+

2 (x) + Ex←M0
D−2 (x)
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By applying the formula EY =
∫

t∈[0,1]
P(Y > t) dt (valid for any random variable

Y ∈ [0, 1]) to Y = PM0
we obtain that for some t = t0 ∈ (0, 1) and D′ defined

by D′(x) = sgnD(x) · 1|D(x)|>t0 we get

Pr[D+
1 (Y ) > t0]− Pr[D−1 (Y ) > t0]− Pr[D+

2 (Y ) > t0] + Pr[D−2 (Y ) > t0] > 0,

which is equivalent to

Ex←M0
D′(x)f(x) > 0.

Observe that, by the construction, sgnD′ = sgnD and |D(x1)| > |D(x2)| is
equivalent to |D′(x1)| > |D′(x2)|. Therefore, applying the characterization given
by Claim 1 to the two cases: D,M0 and D′,M0, we obtain that M0 is a minimizer
for both circuits. Therefore

min
M :

M6PV

µ(M)>ε

∑
x

D′(x)f(x)M(x) =
∑
x

D′(x)f(x)M0(x) > 0

which gives us a contraddiction to Lemma 5. ut

Step 4. We argue that Lemma 6 holds approximately for all convex combinations

of circuits of size comparable to s. Let D′′ be a convex combination of real-valued
circuits of size s′′ = O

(
sδ2/ log(1/ε)

)
. From Lemma 2 applied to D′′, we obtain

that for some real-valued circuit D′ of size s′ ≈ s we have(
E

x←V

∣∣D′′(x)−D′(x)
∣∣p) 1

p

= O
(
δ ·
√
p/ log(1/ε)

)
(5)

Let M be the “hardcore” measure corresponding to D′ according to Lemma 6.
Since |f | = 1 and Ex←M D′(x)f(x) = 0, we obtain

E
x←M

D′′(x)f(x) 6 E
x←M

∣∣D′′(x)−D′(x)
∣∣ (6)

By the Hölder Inequality we obtain

E
x←M

∣∣D′′(x)−D′(x)
∣∣ 6 ( E

x←V

(
PM (x)

PV (x)

)q) 1
q

·
(

E
x←V

∣∣D′′(x)−D′(x)
∣∣p) 1

p

(7)

We will show that (
E

x←V
(PM (x)/PV (x))

q
) 1

q

6 (1/ε)
1
p (8)

Indeed, consider the set M of all distributions ε-dense in V . By definition, we
have PM ∈ M. Since the expression on the left-hand side of Equation (8) is
convex with respect to PM , its maximum overM is achieved on one of extreme
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points of the set M. It is easy to check that the extreme points P of M satisfy
P(x) = PV (x)/ε for all but at most one x ∈ supp(P)7. For any such P we have

E
x←V

(
P(x)

PV (x)

)q
6

1

εq
· ε · (1−P(x′)) +

(
P(x′)

PV (x′)

)q
·PV (x′)

where x′ is the point such that 0 < P(x′) 6 PV (x)/ε. Since the right-hand is
convex with respect to P(x′), it is maximized either for P(x′) = 0 or P(x′) =
PV (x)/ε. In any case, it is at most ε1−q. Let p = 2 log(1/ε). Combining Equa-
tion (6), Equation (7), Equation (8) and Equation (5) we get

E
x←M

D′′(x)f(x) 6 δ. (9)

Alternatively, we can use of Lemma 1, with s′′ = O
(
sδ2/n

)
.

Step 5. By applying the min-max theorem we reverse the order of quantifiers:
we obtain that there exists a measure M satisfying µ(M) > ε and M(x) 6
PV (x) such that Equation (9) hold for all circuits D′′ of size s. By replacing
D′′ with −D′′ we see that these inequalities hold in absolute values. It remains
to observe that the measure M gives rise to a joint distribution (V,A) where
M(x) = Pr[V = x,A = 1]. In particular, Pr[A = 1] = µ(M) > ε. ut

C Proof of Theorem 5

Proof (Proof of Theorem 5). By considering the functions P(X = x,A1) and
P(Y = x,A2) for some events A1, A2, it is easy to see that, equivalently, we
need to find measures M1,M2 which satisfy the following conditions:

(a) M1 6 PX(x) and M2 6 2−k

(b) µ(M1) = µ(M2) > 1− ε
(c) ∆D (PM1

,PM2
) 6 δ for every D of size s′.

First, we show how to construct measures satisfying these conditions only for
one fixed boolean circuit D

Claim 2. Let X be a finite domain. Suppose that we are given a boolean function
D and two probability distributions µ1, µ2 on X , such that ∆D(µ1, µ2) = ε. Then
there exist measures M1,M2 such that:

(a) Mi(x) 6 µi(x) for every x and i,
(b) µ(M1) = µ (M2) = 1− ε,
(c)

∑
x
D(x)M1(x) =

∑
x
D(x)M2(x).

Proof. Assume
∑
x
D(x)µ1(x)−

∑
x
D(x)µ2(x) = ε (the other case is symmetric).

By decreasing the measure µ1 on the set {x : D(x) = 1} we define a measure M1

such that M1(x) 6 µ1(x) and µ(M1) = 1−ε and
∑
x
D(x)M1(x) =

∑
x
D(x)µ2(x).

Now consider {x : D(x) = 0} and proceed similarly to obtain M2 from µ2. ut
7 This observation can be viewed as a generalization of the well-known fact that the

extreme points for the set of all high min-entropy distributions are flat distributions.
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Next we argue that the same is also possible for a real-valued circuit. This is the
main technical difficulty in the proof.

Claim 3. Suppose that for any boolean D of size s there exist measures M1,M2

such that M1(x) 6 PX(x) and M2(x) 6 2−k for every x and µ(M1) = µ (M2) >

1− ε and

∣∣∣∣∑
x
D(x)M1(x)−

∑
x
D(x)M2(x)

∣∣∣∣ 6 δ. Then the same is true for real-

valued circuits of size D.

Proof. Suppose not. Since feasible measure M1,M2 form convex sets, we have ei-
ther

∑
x
D(x)M1(x)−

∑
x
D(x)M2(x) < −δ for all feasibleM1,M2 or

∑
x
D(x)M1(x)−∑

x
D(x)M2(x) > δ for all feasible M1,M2. Replacing D with Dc if necessary

we can assume that for all measures M1,M2 satisfying the corresponding con-
straints, the following inequality holds∑

x

D(x)M1(x)−
∑
x

D(x)M2(x) > δ. (10)

We will characterize the measures M1 = M+
1 ,M2 = M+

2 which maximize the
left-hand side of Equation (10), similarly as in Claim 1 in the proof of Theorem 3.

Claim 4. Suppose that the measures M1 = M+
1 ,M2 = M+

2 minimize∑
x

D(x)M1(x)−
∑
x

D(x)M2(x) > δ,

subject to constraints M1(x) > 0 and M2(x) > 0 for all x,
∑
xM1(x) = 1− ε =∑

xM2(x), M1(x) 6 PX(x) and M2(x) 6 a for all x. Let x1, . . . , xN , where N =
2n, be all the elements of {0, 1}n sorted such that D(xi) > D(xi+1) and let T be

the maximal number such that
∑T
i=1 PX(x) 6 ε. The optimal measuresM+

1 ,M
+
2

can be characterized as follows: M+
1 (xi) = 0 for i = 1, 2 . . . , T , M+

1 (xT+1) =

ε −
∑T
i=1 PX(x), and M+

1 (xi) = PX(xi) for i > T + 1; M+
2 (xi) = a for i =

1, . . . , b(1− ε)/ac, M+
2 (x2k+1) = (1− ε)/a− ab(1− ε)/ac.

Proof (Proof of Claim). The characterization of M+
1 follows from the simple ob-

servation that if we have D(x′) > D(x), 0 < M(x′) and M(x) < PX(x), then we
can decrease M(x′) by δ and increase M(x) by δ = min (M(x′),PX(x)−M(x))
decreasing (or at least not increasing) the value of

∑
xM(x)D(x). Consider now

M+
2 . Suppose that D(x′) > D(x), M(x′) < a and 0 < M(x). Then we increase

M on x′ by δ and decrease M on x by δ, where δ = min(a−M(x′),M(x)), and
increasing (or at least not decreasing) the value of

∑
xD(x)M(x). ut

Since for every x we have D(x) =
1∫
0

[D(x) > t]dt, for some positive number t0

and D′(x) = [D(x) > t0] we obtain∑
x

D′(x)M+
1 (x)−

∑
x

D′(x)M+
2 (x) > δ.
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The circuit D′ is comparable in size to D and is boolean. Observe now that
M+

1 and M−2 are also minimizers for D′. This follows by Claim 4 since the
extreme measures depends only on the ordering of the values {D(x)}x and D′,
as a threshold, is a monotone transform of D. ut

Finally, by an approximation argument, we show that suitable measures exist
for every D being a convex combination of circuit of size s′.

Claim 5. For any D ∈ conv
(
Ddet,{0,1},s′

)
there exist measures M1,M2 such

that M1(x) 6 PX(x) and M2(x) 6 2−k for every x and µ(M1) = µ (M2) > 1− ε

and

∣∣∣∣∑
x
D(x)M1(x)−

∑
x
D(x)M2(x)

∣∣∣∣ 6 δ.

Proof (Proof of Claim). We know by Lemma 1 that any convex combination of
circuits of size at most s′ can be approximated up to the error δ by a convex

combination of ` = O
(
n/δ2

)
of them. Let D′ =

m∑
i=1

aiDi be such a convex

combination approximating D. Define M1,M2 as a measures corresponding to
the real-valued circuit D′. ut

Claim 6. There exist measures M1 and M2 such that M1(x) 6 PX(x) and
M2(x) 6 2−k for every x and µ(M1) = µ(M2) > 1 − ε and such that for every

D of size at most s′ we have

∣∣∣∣∑
x
D(x)M1(x)−

∑
x
D(x)M2(x)

∣∣∣∣ 6 δ.

Proof. Consider a game where one player choses a cricuit D of size at most
s′ and the second choses a pair of measures (M1,M2) where M1,M2 satisfy
Mi(x) 6 PXi(x) for every x and µ(M1) = µ (M2) > 1− ε. Let the payoff matrix
be given by

∑
x
D(x)M1(x) −

∑
x
D(x)M2(x). By combining the claim with the

min-max theorem we get measures M1,M2 satisfying the same conditions and
such that for every D of size at most s′ we have∑

x

D(x)M1(x)−
∑
x

D(x)M2(x) 6 δ. (11)

Applying this to Dc and using µ(M1) = µ (M2) we get also∑
x

D(x)M1(x)−
∑
x

D(x)M2(x) > −δ. (12)

for all circuits of size at most s′ − 1. Thus the proof is finished. ut

Define P (Xi = x,Ai) = Mi(x). Since Mi(x) 6 P (Xi = x) the events Ai are well
defined. We have P (Ai) = µ(Mi) > 1−ε. Finally note that since µ(M1) = µ(M2)

we have ED(X1|A1)−ED(X2|A2) =

(∑
x
D(x)M1(x)−

∑
x
D(x)M2(x)

)
/µ(M1).

Therefore, the result follows. ut
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