
Inception Makes Non-malleable Codes Stronger

Divesh Aggarwal1, Tomasz Kazana2?, and Maciej Obremski3

1 National University of Singapore
2 University of Warsaw

3 Aarhus University

Abstract. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [DPW10], provide a useful message integrity guar-
antee in situations where traditional error-correction (and even error-
detection) is impossible; for example, when the attacker can completely
overwrite the encoded message. NMCs have emerged as a fundamental
object at the intersection of coding theory and cryptography.
A large body of the recent work has focused on various constructions
of non-malleable codes in the split-state model. Many variants of NMCs
have been introduced in the literature i.e. strong NMCs, super strong
NMCs and continuous NMCs. Perhaps the most useful notion among
these is that of continuous non-malleable codes, that allows for continu-
ous tampering by the adversary.
In this paper we give the first efficient, information-theoretic secure con-
struction of continuous non-malleable codes in the split-state model. En-
route to our main result, we obtain constructions for almost all possible
notions of non-malleable codes that have been considered in the split-
state model, and for which such a construction is possible. Our result
is obtained by a series of black-box reductions starting from the non-
malleable codes from [ADL14].
One of the main technical ingredient of our result is a new concept that
we call inception coding. We believe it may be of independent interest.
Also our construction is used as a building block for non-persistent (re-
settable) continuous non-malleable codes in constant split-state model
in [ADN+19].

? Supported by NCN grant UMO-2014/13/D/ST6/03252. Partially done during a
post-docinternship at NYU

1 Introduction

Non-malleable Codes. Non-malleable codes (NMCs), introduced by Dziembowski,
Pietrzak and Wichs [DPW10], provide a useful message integrity guarantee in
situations where traditional error-correction (and even error-detection) is im-
possible; for example, when the attacker can completely overwrite the encoded
message. NMCs have emerged as a fundamental object at the intersection of
coding theory and cryptography.

Informally, given a tampering family F , an NMC (Enc,Dec) against F en-
codes a given message m into a codeword c ← Enc(m) in a way that, if the
adversary modifies c to c′ = f(c) for some f ∈ F , then the the message
m′ = Dec(c′) is either the original message m, or a completely “unrelated
value”. As has been shown by the recent progress [DPW10,LL12,DKO13,ADL14,
FMVW14,FMNV14,CG14a,CG14b,CZ14,Agg15,ADKO15b,ADKO15a,CGL15,
AGM+15b,AGM+15a,AAnHKM+16,Li16] NMCs aim to handle a much larger
class of tampering functions F than traditional error-correcting or error-detecting
codes, at the expense of potentially allowing the attacker to replace a given
message m by an unrelated message m′. NMCs are useful in situations where
changing m to an unrelated m′ is not useful for the attacker (for example, when
m is the secret key for a signature scheme.)

(Super) Strong Non-malleable Codes. A stronger notion of non-malleability,
called strong non-malleable codes, was also considered in [DPW10] in which,
whenever the codeword c is modified to c′ = f(c) 6= c, the decoded message
m′ = Dec(c′) is independent of m. This is in contrast to the plain notion of
non-malleability where some modification of the codeword c could still result in
m′ = m. Indeed, this is the case in some of the previous constructions of non-
malleable codes like [ADL14,ADKO15a]. For the purpose of conveniently defin-
ing continuous non-malleable codes, an even stronger notion called super-strong
non-malleable codes has been considered in the literature [FMNV14,JW15]. In-
formally speaking, in this notion, if c′ 6= c is a valid codeword, then c′ must be
independent of c.

An intermediate notion can also be considered where if m′ = Dec(c′) /∈
{m,⊥}, then c′ must be independent of c. To be consistent with other notions
of non-malleable codes, we call these super non-malleable codes.

Continuous Non-malleable Codes. It is clearly realistically possible that the at-
tacker repeatedly tampers with the device and observes the outputs. As men-
tioned in [JW15], non-malleable codes can provide protection against these kind
of attacks if the device is allowed to freshly re-encode its state after each invo-
cation to make sure that the tampering is applied to a fresh codeword at each
step. After each execution the entire content of the memory is erased. While such
perfect erasures may be feasible in some settings, they are rather problematic in
the presence of tampering. Due to this reason, Faust et al. [FMNV14] introduced
an even stronger notion of non-malleable codes called continuous non-malleable

codes where security is achieved against continuous tampering of a single code-
word without re-encoding. Jafargholi and Wichs [JW15] considered four variants
of continuous non-malleable codes depending on

– Whether tampering is persistent in the sense that the tampering is always
applied to the current version of the tampered codeword, and all previ-
ous versions of the codeword are lost. The alternative definition considers
non-persistent tampering where the tampering always occurs on the original
codeword.

– Whether tampering to an invalid codeword (i.e., when the decoder outputs
⊥) causes a “self-destruct” and the experiment stops and the attacker cannot
gain any additional information, or alternatively whether the attacker can
always continue to tamper and gain information.

Split-State Model. Although any kind of non-malleable codes do not exist if the
family of “tampering functions” F is completely unrestricted,4 they are known
to exist for many large classes of tampering families F . One such natural family
is the family of tampering functions in the so called t-split-state model. In this
model, the codeword is “split” into t > 1 states c = (c1, . . . , ct); a tampering
function f is viewed as a list of t functions (f1, . . . , ft) where each function fi
tampers with corresponding component ci of the codeword independently: i.e.,
the tampered codeword is c′ = (f1(c1), . . . , ft(ct)).

This family is interesting since it seems naturally useful in applications, es-
pecially when t is low and the shares y1, . . . , yt are stored in different parts of
memory, or by different parties. Not surprisingly, the setting of t = 2 appears the
most useful (but also the most challenging from the technical point of view), so
it received the most attention so far [DPW10, LL12, DKO13, ADL14, FMNV14,
CG14a, CG14b, CZ14, CGL15, ADKO15b, ADKO15a, Li16] and is also the focus
of our work.

While some of the above mentioned results achieve security against compu-
tationally bounded adversaries, we focus on security in the information-theoretic
setting, i.e., security against unbounded adversaries. The known results in the
information-theoretic setting can be summarized as follows. Firstly [DPW10]
showed the existence of (strong) non-malleable codes, and this result was im-
proved by [CG14a] who showed that the optimal rate of these codes is 1/2.
Faust et al. [FMNV14] showed the impossibility of continuous non-malleable
codes against non-persistent split-state tampering. Later [JW15] showed that
continuous non-malleable codes exist in the split-state model if the tampering is
persistent.

There have been a series of recent results culminating in constructions of
efficient non-malleable codes in the split-state model [DKO13, ADL14, CZ14,
CGL15, ADKO15a, Li16]. However, there is no known efficient construction in
the continuous setting. Since the work of [FMNV14] rules out the possibility of

4 In particular, F should not include “re-encoding functions” f(c) = Enc(f ′(Dec(c)))
for any non-trivial function f ′, as m′ = Dec(f(Enc(m))) = f ′(m) is obviously related
to m.

such a construction for the case of non-persistent tampering, the best one can
hope for is an efficient construction for the case of persistent tampering in the
split-state model.

Our Results and Techniques. This brings us to the main result of the paper
which is the following.

Theorem 1. For any k, there exists an efficient (in k) information-theoretically

secure persistent continuous 2−k
Ω(1)

-non-malleable code with self-destruct in the
split-state model that encodes k-bit messages to poly(k)-bit codewords.

Enroute to Theorem 1, we obtain efficient constructions of almost all pos-
sible notions of non-malleable codes in the split-state model for which such a
construction is possible.

While it might be argued that the most interesting case of continuous non-
malleable codes is that of non-persistent tampering, it was shown to be impossi-
ble in the 2-split state model in [FMNV14]. In a recent work, it has been shown
that our persistent continuous non-malleable codes can in fact be used to obtain
an efficient construction of non-persistent continuous non-malleable codes in the
constant split-state model [ADN+19].

The construction is obtained in a series of steps. We first show a reduction
(Theorem 2 in Section 4) that any scheme in the split-state model that is a super-
strong non-malleable code is also a persistent continuous non-malleable code
with self-destruct in the split-state model. The key idea behind this reduction is
the observation by Jafargholi and Wichs [JW15] that for the case of persistent
continuous non-malleable codes with self-destruct, without loss of generality,
we can assume that the experiment stops at the first instance (say at step I)
when there is a non-trivial tampering. This is because if the tampered codeword
decodes to ⊥ then the experiment stops because of the self-destruct property,
and if it does not decode to ⊥, then the adversary learns the entire codeword
and can simulate the remaining tampering experiment himself. Thus, the main
ingredient of this reduction is showing that for any non-malleable code in the
split-state model, the random variable I combined with first non-same tampering
experiment output does not reveal the encoded message.

Our main technical reduction (Theorem 3 in Section 5) is one that shows
that any coding scheme that is super non-malleable in the split-state model
can be converted into a scheme that is super-strong non-malleable in the split-
state model. To do that we develop a new technique we called inception cod-
ing. The key difference between a super non-malleable code and a super-strong
non-malleable code is that in the former, the adversary is assumed to not gain
any useful information if he tampers with and changes the codeword but the
tampered codeword still decodes to the same message while in the latter, the
adversary in this case gets to see the entire tampered codeword. Our incep-
tion coding essentially forces all these non-trivial tampered codewords (that
originally decoded to the correct message) to decode to ⊥. In our reduction,
given a super non-malleable code (Enc,Dec), we modify the encoding proce-
dure to sacrifice a small suffix of the message (it will not carry any message

related information anymore) to replace it with validity checks for each of the
states that detect whether these states have been tampered with. The message
m is encoded as Enc(m, checkx, checky) = (X,Y) subject to the condition that
Verify(checkx;X) = Verify(checky;Y) = OK. This ensures that in the case when
tampered codeword decodes correctly, the validity check can detect the tam-
pering and output ⊥. In order to use the super non-malleability of (Enc,Dec)
to conclude super-strong non-malleability of the modified encoding scheme, we
need to do rejection sampling to ensure that the codeword is valid with re-
spect to the modified encoding algorithm. This blows up the error by a factor
of about 22t where t is the length of each validity check, and so we require that
22t � 1/ε, where ε is the error parameter for (Enc,Dec). We obtain a construc-
tion of the check function in Definition 8 using the well-studied Reed-Solomon
error-correcting codes. In order to reduce the output length of this construc-
tion, we define a composition theorem on validity check functions, and show in
Lemma 7 that using this composition theorem repeatedly, we can progressively
make the length of the validity check shorter.

Finally, to complete the proof, we show (in Theorem 5 in Section 6) that the
coding scheme from [ADL14], which was shown to be a non-malleable code in
the split-state model, is also super non-malleable. This proof was surprisingly
involved, since we need to argue that for any two tampered codewords c′1, c

′
2

of two distinct messages, if they do not decode to ⊥ or the original messages,
respectively, then the two tampered codewords are indistinguishable. This re-
quired a careful re-analysis of the various cases in [ADL14], in particular those
where their tampering experiment does not output same or ⊥. Fortunately, this
happens only when one of the two tampered parts f(L) or g(R) loses a lot of
information about the two parts L and R of the original codeword, and since the
construction of [ADL14] is based on the inner product function, which is a strong
2-source extractor, one can conclude that the tampered codeword (f(L), g(R))
is independent of the 〈L,R〉 and hence of the original message.

Background. The notion of non-malleability was introduced by Dolev, Dwork
and Naor [DDN00], and has found many applications in cryptography. Tradi-
tionally, non-malleability is defined in the computational setting, but recently
non-malleability has been successfully defined and applied in the information-
theoretic setting (generally resulting in somewhat simpler and cleaner defini-
tions than their computational counter-parts). For example, in addition to non-
malleable codes studied in this work, the work of Dodis and Wichs [DW09] de-
fined the notion of non-malleable extractors as a tool for building round-efficient
privacy amplification protocols.

Finally, the study of non-malleable codes falls into a much larger crypto-
graphic framework of providing counter-measures against various classes of tam-
pering attacks. This work was pioneered by the early works of [ISW03,GLM+03,
IPSW06], and has since led to many subsequent models. We do not list all such
tampering models, but we refer to [KKS11, LL12] for an excellent discussion of
various such models.

Other Related Work. In addition to the works mentioned above, non-malleable
codes have been studied in various tampering models in several recent results.
For tampering functions of size 2poly(n), rate-1 codes (with efficient encoding and
decoding) exist, and can be obtained efficiently with overwhelming probabil-
ity [FMVW14].

Cheraghchi and Guruswami [CG14b] gave a rate 1 non-malleable code against
the class of bitwise-tampering functions, where each bit of the codewords is tam-
pered independently. Recently, Agrawal et al. [AGM+15b,AGM+15a] improved
this result by giving a explicit rate-1 code against a stronger class of tampering
functions, which in addition to tampering with each bit of the codeword inde-
pendently, can also permute the bits of the resulting codeword after tampering,
was achieved in [AGM+15b,AGM+15a].

In the “split state” setting, an encoding scheme was proposed in [CKM11].
For the case of only two states, an explicit non-malleable code for encoding
one-bit message was proposed by [DKO13]. This was improved by Aggarwal et
al [ADL14] to a scheme that encodes larger messages but with rate 1/poly(k)
where k is the length of the message. This was further improved to obtain a
constant-rate non-malleable code in [CZ14,ADKO15a].

Another related result by Aggarwal et al [ADKO15b] obtained efficient con-
struction of non-malleable codes in a model where the adversary, in addition
to performing split-state tampering, is also allowed some limited interaction be-
tween the two states.

Coretti et al. [CMTV15,CDTV16] have obtained constructions of information-
theoretically secure continuous non-malleable codes in the bit-wise indepen-
dent tampering model and have used this construct a non-malleable encryption
scheme.

In the computational setting, there has been a sequence of works constructing
non-malleable codes and its variants [LL12,FMNV14]. Chandran et al. [CGM+15]
also rely on the computational setting in defining their new notion of blockwise
non-malleable codes. Blockwise non-malleable codes are a generalization of the
split-state model (and the recent lookahead model of [ADKO15a]) where the
adversary tampers with one state at a time.

2 Preliminaries

For a set S, we let US denote the uniform distribution over S. For an integer
m ∈ N, we let Um denote the uniform distribution over {0, 1}m, the bit-strings
of length m. For a distribution or random variable X we write x← X to denote
the operation of sampling a random x according to X. For a set S, we write
s← S as shorthand for s← US .

The Hamming distance between two strings (a1, . . . , am), (b1, . . . , bm) ∈
{0, 1}m is the number of i ∈ [m] such that ai 6= bi. We denote it as

Ham((a1, . . . , am) ; (b1, . . . , bm)) .

Entropy and Statistical Distance. The min-entropy of a random variable X is

defined as H∞(X)
def
= − log(maxx Pr[X = x]). We say that X is an (n, k)-source

if X ∈ {0, 1}n and H∞(X) ≥ k. For X ∈ {0, 1}n, we define the entropy rate of
X to be H∞(X)/n. We also define average (aka conditional) min-entropy of a
random variable X conditioned on another random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
.

where Ez←Z denotes the expected value over z ← Z. We have the following
lemma.

Lemma 1 ([DORS08]). Let (X,W) be some joint distribution. Then,

– For any s > 0, Prw←W [H∞(X|W = w) ≥ H̃∞(X|W)− s] ≥ 1− 2−s.

– If Z has at most 2` possible values, then H̃∞(X|(W,Z)) ≥ H̃∞(X|W)− `.

The statistical distance between two random variables W and Z distributed over
some set S is

∆(W,Z) := max
T⊆S
|W (T)− Z(T)| = 1

2

∑
s∈S
|W (s)− Z(s)|.

Note that ∆(W,Z) = maxD(Pr[D(W) = 1]−Pr[D(Z) = 1]), where D is a proba-
bilistic function. We say W is ε-close to Z, denoted W ≈ε Z, if ∆(W,Z) ≤ ε. We
write∆(W,Z|Y) as shorthand for∆((W,Y), (Z, Y)), and note that∆(W,Z|Y) =
Ey←Y∆(W |Y = y, Z|Y = y).

Reed-Solomon Codes. In Section 5 we will use standard Reed-Solomon error-
correcting codes. The following is a folklore result about Reed-Solomon codes.
See, for example [RU08].

Lemma 2. Let n = 2` for some positive integer `, and let q > 0 be an integer.
There exist a function RS : {0, 1}n → {0, 1}n+q logn5 such that:

– Hamming distance between any two elements of the image of RS is at least
q + 1,

– For any x ∈ {0, 1}n there exist a unique sequence of bits u ∈ {0, 1}q logn such
that x‖u is an element of the image of RS;

– For every u ∈ {0, 1}q logn the set of all x ∈ {0, 1}n such that x‖u is an
element of the image of RS is affine subspace of {0, 1}n.

5 The elements of the image of RS are called valid codewords for RS.

3 Various definitions of Non-Malleable Codes

Definition 1. A coding scheme in the split-state model consists of two func-
tions: a randomized encoding function Enc : {0, 1}k 7→ {0, 1}n × {0, 1}n, and a
deterministic decoding function Dec : {0, 1}n×{0, 1}n 7→ {0, 1}k∪{⊥} such that,
for each m ∈M, Pr(Dec(Enc(m)) = m) = 1 (over the randomness of the encod-
ing algorithm). Additionally, we say that the coding scheme is almost uniform if
for any m, any constant c > 1/2 and large enough n, and any L,R ⊆ {0, 1}n,
such that |L| ≥ 2cn, and |R| ≥ 2cn we have that

|L| × |R|
22n+1

≤ Pr(Enc(m) ∈ L ×R) ≤ |L| × |R|
22n−1

,

where the probability is taken over the randomness of the encoding algorithm.

We now define non-malleable codes.

Definition 2. (Non-Malleable Code from [DPW10].) Let (Enc : M →
X ×X ,Dec : X ×X →M∪{⊥}) be an encoding scheme. For f, g : X → X and
for any m ∈M define the experiment DPWTampf,gm as:

DPWTampf,gm =


(X,Y)← Enc(m),

X ′ := f(X), Y ′ := g(Y)
m′ := Dec(X ′, Y ′)

output: m′


We say that an encoding scheme (Enc,Dec) is ε-DPW-non-malleable in split-
state model if for every functions f, g : X → X there exists distribution Df,g on
M∪ {same,⊥} such that for every m ∈M we have

DPWTampf,gm ≈ε

 d← Df,g

if d = same then output m
otherwise output d.


We will consider the following alternative definition of non-malleable code, which
will be a smoother transition to the subsequent definitions in this section. We
show the equivalence of this definition to Definition 2 (originally formulated
in [DPW10]) in Appendix A.

Definition 3. (Non-Malleable Code.) We say that an encoding scheme (Enc :
M→ X ×X ,Dec : X ×X →M∪{⊥}) is ε-non-malleable in split-state model if
for every functions f, g : X → X there exists family of distributions {Df,g

x,y}x,y∈X
each on {0, 1} such that for every m0,m1 ∈M

Tampf,gm0
≈ε Tampf,gm1

where

Tampf,gm =


(X,Y)← Enc(m),

output same if Dec(X,Y) = Dec(f(X), g(Y)) ∧Df,g
X,Y = 0

else output: Dec(f(X), g(Y))



Some results in the literature like [FMNV14,JW15] have considered a notion
of super-strong non-malleable codes. We introduce the following intermediate
notion of super non-malleable codes.

Definition 4. (Super Non-Malleable Code.) We say that an encoding scheme
(Enc :M→ X ×X ,Dec : X ×X →M∪{⊥}) is ε-super non-malleable in split-
state model if for every functions f, g : X → X there exists family of distributions
{Df,g

x,y}x,y∈X each on {0, 1} such that for every m0,m1 ∈M

SupTampf,gm0
≈ε SupTampf,gm1

where SupTampf,gm =


(X,Y)← Enc(m),

output same if Dec(X,Y) = Dec(f(X), g(Y)) ∧Df,g
X,Y = 0

else if Dec(f(X), g(Y)) = ⊥ output ⊥
else output: (f(X), g(Y))


Definition 5. (Super Strong Non-Malleable Code.) We say that an en-
coding scheme (Enc :M→ X ×X ,Dec : X × X →M∪ {⊥}) is ε-super strong
non-malleable in split-state model if for every functions f, g : X → X and for
every m0,m1 ∈M

SupStrTampf,gm0
≈ε SupStrTampf,gm1

where

SupStrTampf,gm =


(X,Y)← Enc(m),

output same if (X,Y) = (f(X), g(Y))
else if Dec(f(X), g(Y)) = ⊥ output ⊥

else output: (f(X), g(Y))


Definition 6. (Continuous Non-Malleable Code.) [JW15] define four types
of continuous non-malleable codes based on two flags: sd ∈ {0, 1} (self-destruct)
and prs ∈ {0, 1} (persistent). We say that an encoding scheme (Enc : M →
X ×X ,Dec : X × X →M∪ {⊥}) is (T, ε)-continuous [sd, prs] non-malleable in
split-state model if for every Adversary A and for every m0,m1 ∈M

ConTamperA,T,m0
≈ε ConTamperA,T,m1

where ConTamperA,T,m =



(X,Y)← Enc(m),
f0, g0 ≡ id,
Repeat i = 1, 2, ...,T
A chooses functions f ′i , g

′
i

if prs = 1 then fi = f ′i ◦ fi−1, gi = g′i ◦ gi−1
else fi = f ′i , gi = g′i

if (fi(X), gi(Y)) = (X,Y) then output same
else
if Dec(fi(X), gi(Y)) = ⊥ then output ⊥ if sd = 1 then experiment stops

else output (fi(X), gi(Y)) if prs = 1 then experiment stops


Remark 1. In the case of persistent tampering, the above definition by [JW15]
assumes that the tampering experiment stops if there is a non-trivial tampering
that does not decode to ⊥ since in this case the adversary learns the entire tam-
pered codeword, and can simulate the remaining tampering experiment himself.

Remark 2. [FMNV14] show that non-persistent continuous non-malleable codes
are impossible to construct in 2-split state model.

Remark 3. In any model allowing bitwise tampering, in particular the 2−split
state model, it is not difficult to conclude that the non-self-destruct property
is impossible to achieve even in the case of persistent tampering if the space of
messages contains at least 3 elements. To see this, notice that one can tamper
the codeword c = (c1, c2, c3, . . .) to obtain c′1 = (0, c2, . . .). The adversary then
obtains the output of the tampering experiment which is same if and only if c1 =
0. Thus the adversary learns c?1 = c1 and continues the tampering experiment
with (c?1, 0, c3, . . .) (note that this tampering is persistent). Thus, the adversary
can continue learn the codeword one bit at a time, thereby learning the entire
codeword in N steps where N is the length of the codeword. Such an argument
has been used previously for proving impossibility results. See for instance the
work of Gennaro et al. [GLM+03].

4 From Super Strong NMCs to Continuous NMCs

In this section we will prove the following statement:

Theorem 2. If (Enc,Dec) is an ε-super strong non-malleable code in the split-
state model then (Enc,Dec) is a (T, (2T + 1)ε)−continuous [1, 1] non-malleable
code in the split-state model.

For proving Theorem 2, we will need the following lemmata. The following result
states that any non-malleable code in the 2-split state model is a good 2-out-of-2
secret sharing scheme.

Lemma 3 ([ADKO15b, Lemma 6.1]). Let Dec : X × X → M, and Enc :
M → X × X be an ε−non-malleable code in the split state model for some
ε < 1

2 . For any pair of messages m0,m1 ∈M, let (X0
1 , X

0
2)← Enc(m0), and let

(X1
1 , X

1
2)← Enc(m1). Then ∆(X0

1 ; X1
1) ≤ 2ε.

The following result states that given a non-malleable code (Enc,Dec) in the
split-state model, for any sets A,B, and any message m, the probability that
Enc(m) falls in the set A×B is almost independent of the choice of the message
m.

Lemma 4. Let k ≥ 3, and let ε < 1/20. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n,
Dec : {0, 1}n × {0, 1}n → {0, 1}k be an ε−non-malleable code in the split state
model. For every sets A,B ⊂ {0, 1}n and every messages m0,m1 ∈ {0, 1}k

|Pr(Enc(m0) ∈ A×B)− Pr(Enc(m1) ∈ A×B)| ≤ ε .

Proof. We claim that there exist x, y, z, w ∈ {0, 1}n such that m0,m1,Dec(x,w),
Dec(z, w), and Dec(z, y) are all different from Dec(x, y). Before proving this
claim, we show why this implies the given result. Consider the tampering func-
tions f, g such that f(c) = x if c ∈ A, and f(c) = z, otherwise, and g(c) = y if
c ∈ B, and g(c) = w, otherwise. Thus, for b = 0, 1, Tampf,gmb = Dec(x, y) if and
only if Enc(mb) ∈ A×B. The result then follows from the ε-non-malleability of
(Enc,Dec).

Now, to prove the claim, we will use the probabilistic method. Let U be
uniform in {0, 1}k, and let X,Y ← Enc(U). Furthermore, let W,Z ∈ {0, 1}n
be uniform and independent of X,Y, U . We claim that X,Y, Z,W satisfy the
required property with non-zero probability.

It is easy to see that the probability that Dec(X,Y) = U is either of m0 or
m1 is at most 2/2k. Also, by Lemma 3, we have that except with probability 2ε,
X is independent of U . Also, W is independent of U . Thus, the probability that
Dec(X,W) = U is at most 2ε+1/2k. Similarly, the probability that Dec(Z, Y) =
U is at most 2ε+1/2k. Finally, W,Z are independent of U , and so the probability
that Dec(Z,W) = U is at most 1

2k
.

Thus, by union bound, the probability that X,Y, Z,W do not satisfy the
condition of the claim is at most 5

2k
+ 4ε ≤ 5

8 + 4ε < 1. ut

Before proving Theorem 2, let us fix some notation. Let A∗ be any adversary
described in Definition 6. Let (I)m denote the index of a round when same is not
output in the experiment ConTamperA∗,T,m and (fi, gi) (for i = 1, . . . , T) denote
pairs of functions chosen by A∗ (of course we can assume that they are always
the same because the choice for the next round does not depend on (X,Y)).

Proof (of Theorem 2).
We will show that

∆([(I)m0
, fIm0

(X0), gIm0
(Y0)] ; [Im1

, fIm1
(X1), gIm1

(Y1)]) ≤ (2T + 1)ε. (4.1)

The desired result will follow from the observation that ConTamperA∗,T,mb for
b = 0, 1 depends only on (I)mb , f(I)mb (Xb), and g(I)mb (Yb)

In order to simplify the proof, we make use of the following fact about sta-
tistical distance: The statistical distance between two random variables Z0 and
Z1 is at most δ if and only if for any computationally unbounded algorithm that
is given as input a sample distributed as Zb, for a uniformly random bit b, the
probability that the algorithm can guess the bit b is at most 1/2 + δ/2.

Thus, we wish to bound the probability of guessing the bit b, given I, fI(X), gI(Y),
where I,X, Y are shorthand for Imb , Xb, Yb.

We can partition the codeword space {0, 1}n × {0, 1}n into (2T + 1) sets:
(Ai1 ×Bi1), (Ai2 ×Bi2) for 1 ≤ i ≤ T , and the set C ×D, where

Ai1 = {X ⊂ {0, 1}n|fj(X) = X, for all j < i and fi(X) 6= X},
Bi1 = {Y ⊂ {0, 1}n|gj(Y) = Y, for all j < i},

Ai2 = {X ⊂ {0, 1}n|fj(X) = X, for all j ≤ i},
Bi2 = {Y ⊂ {0, 1}n|gj(Y) = Y, for all j < i and gi(Y) 6= Y },

C = {X ⊂ {0, 1}n|fj(X) = X, for all j ≤ T},
D = {Y ⊂ {0, 1}n|gj(Y) = Y, for all j ≤ T}.

Note that if (X,Y) ∈ Aij × Bij for j = 1, 2, and i ∈ [T], then I = i, and
if (X,Y) ∈ C × D, then I = T + 1. Also fI(X), gI(Y) are empty strings if
I = T + 1.

We call these partitions P1, ..., P2T+1.

Now suppose there is an adversary A that guesses the bit b with probability
greater than 1/2 + (2T + 1)ε/2 given I, fI(X), gI(Y). Let us say that A wins if
A guesses the bit b correctly. Then

1/2 + (2T + 1)ε/2 < Pr[A wins]

=

2T+1∑
r=1

Pr[A wins | (X,Y) ∈ Pr] · Pr[(X,Y) ∈ Pr]

= 1/2 +

2T+1∑
r=1

(Pr[A wins | (X,Y) ∈ Pr]− 1/2) · Pr[(X,Y) ∈ Pr] .

Thus, there exists some r such that:

(Pr[A wins | (X,Y) ∈ Pr]− 1/2) · Pr[(X,Y) ∈ Pr] > ε/2. (4.2)

We now show that this contradicts the fact that (Enc,Dec) is ε− super strong
non-malleable in the split state model.

Case 1: Pr = Ai1 ×Bi1 for some i ∈ [T]

Define the tampering function (f, g) as:

f(x) :=

{
fi(x) if x ∈ Ai1
u, otherwise.

where u is some element not in fi(A
i
1).

g(y) :=

{
gi(y) if y ∈ Bi1
v, otherwise.

where v is some element not in gi(B
i
1).

Then define an adversary A∗ that given the tampering experiment of a ran-
dom message mb, outputs a fresh uniform random bit if it sees any of
(u, y), (x, v), same, or ⊥, and calls A with input i, and the output of the tam-
pering experiment otherwise. The success probability of A∗ in guessing bit b
is

Pr[A wins | (X,Y) ∈ Pr] ·Pr[(X,Y) ∈ Pr] + 1
2 · (1−Pr[(X,Y) ∈ Pr]), which

is greater than 1
2 · Pr[(X,Y) ∈ Pr] + ε

2 + 1
2 · (1 − Pr[(X,Y) ∈ Pr]) = 1/2 + ε/2

using equation 4.2.

This contradicts the assumption that (Enc,Dec) is ε− super strong non-
malleable in the split state model.

Case 2: Pr = Ai2 ×Bi2 for some i ∈ [T]

This case is similar to Case 1.

Case 3: Pr = C ×D.

In this case, the only information that A has is that I = T + 1, which is
equivalent to saying that (X,Y) ∈ C ×D. Then let pb be Pr((Xb, Yb) ∈ C ×D)
for b = 0, 1. By Lemma 4, we have that |p0− p1| ≤ ε. Without loss of generality,
let p0 = p1 + ε′ for some ε′ ∈ [0, ε]. Then given (Xb, Yb) ∈ C ×D, the adversary
has higher chance of winning if the adversary outputs 0.

Thus, Pr[A wins | (Xb, Yb) ∈ C ×D] = Pr[b = 0|(Xb, Yb) ∈ C ×D].

So, rewriting equation 4.2 assuming Pr = C × D, we get that Pr[(Xb, Yb) ∈
C ×D ∧ b = 0]− 1

2 · Pr[(Xb, Yb) ∈ C ×D] > ε/2. This implies, 1
2 · (p1 + ε′)− 1

2 ·
1
2 · (p1 + p1 + ε′) > ε/2, which is equivalent to ε′ > 2ε, which is a contradiction.

ut

Remark 4. The above reduction is in the split-state model. It may be interest-
ing to note that the only place that we use a particular property of this model
is equation 4.1, which can be generalized to saying that the random variable I
combined with the output of tampering experiment should not reveal the mes-
sage. It is also obvious that if this statement does not hold for some model then
the reduction will not hold. That means that the above mentioned statement is
in some sense a necessary and sufficient property of a tampering model in which
the main reduction of this section is true.

5 Super Strong NMCs from Super NMCs via Inception
Coding

In this section, we will show that any super non-malleable code in the split-
state model can be converted into a super-strong non-malleable code in the
split-state model. The main technique used here and called by us ’inception’ is
described in 5.2 (i.e. Definition 9). However before we start the actual definition
and construction let us define some auxiliary objects in Section 5.1

5.1 Check Functions

In order to detect possible tampering with a string x, we introduce the following
variant of Universal Hashing Family.

Definition 7. A function C : {0, 1}s × {0, 1}n → {0, 1}t is called an ε-check if
for any x, y ∈ {0, 1}n such that x 6= y,

Pr
R←{0,1}s

(C(R, x) = C(R, y)) ≤ ε

Remark 5. Every ε-check is also (ε · 2t− 1)-universal hashing family. Due to un-
necessarily complicated normalization of parameters in standard UHF definition
it is simply more convenient for us to use the check notion all through the paper.

In this section we give a construction of an efficient check function that has a
short output length, short seed and has preimages with affine structure. Consider
the following function.

Definition 8. Let q, t, n > 0 be integers. Let Check1 : {0, 1}n → {0, 1}q logn be
such that for all x ∈ {0, 1}n, x||Check1(x) is a valid Reed-Solomon code.6 Let
Check2 : {0, 1}t logn × {0, 1}n → {0, 1}t be a simple sampler function defined as
follows. Let r = r1‖r2‖ · · · ‖rt be such that each rj is a log n-bit string. Then
Check2(r, x) := xr1 . . . xrt , where xrj is the bit of x at position rj, when writ-

ten in binary form. Then we define the function C0 : {0, 1}t log(n) × {0, 1}n →
{0, 1}q logn+t as C0(r, x) := Check1(x)‖Check2(r, x).

Lemma 5. The function C0 defined above is a e−
qt
n -check.

Proof. We want to bound the probability that for any two distinct x, y ∈ {0, 1}n
and R = R1‖ . . . ‖Rt chosen uniformly at random from {0, 1}t logn, C0(R, x) =
C0(R, y).

By Lemma 2, we have that the Hamming distance between x‖Check1(x) and
y‖Check1(y) is at least q+1. Thus, if Ham(x; y) < q then Check1(x) 6= Check1(y).
So, for C0(R, x) = C0(R, y) we must have that Ham(x; y) ≥ q. Additionally, we
have that Check2(R, x) = Check2(R, y) which implies xRj = yRj for all j ∈ [t].

6 Correctness of this definition follows from Lemma 2.

This holds if none of R1, . . . , Rt belong to the set of positions on which x and y
are not different which occurs with probability at most(

1− q

n

)t
≤ e−

qt
n .

ut
For our application, we require a check with the output having length upper

bounded by nα for a small constant α > 0. Now, let us describe a composition
lemma for check functions that will help us to reach the expected parameters.

Lemma 6. If C0 : {0, 1}s1×{0, 1}n 7→ {0, 1}t1 is an ε1-check and C : {0, 1}s2×
{0, 1}t1 7→ {0, 1}t2 is an ε2-check then C1 : {0, 1}s1+s2×{0, 1}n 7→ {0, 1}t2 given
by

C1(r1‖r2, x) := C(r2, C0(r1, x))

is an (ε1 + ε2)-check.

Proof. LetR1‖R2 ← Us1+s2 , and let E1 = E1(R1, x) be the event that C0(R1, x) =
C0(R1, y) and E2 = E2(R1, R2, x) be the event that C(R2, C0(R1, x)) = C(R2, C0(R1, y)).
Then

Pr(E2) ≤ Pr(E1) + Pr(E2 | E1)

≤ ε1 + ε2 .

ut
We now apply Lemma 6 repeatedly to the construction of Lemma 5 to obtain

a check with small length of both the output and the seed.

Lemma 7. For any constant δ ∈ (0, 1/2) and for a large enough integer n, there

exists an efficient 2−n
δ2/5

-check Check? : {0, 1}s × {0, 1}n → {0, 1}t with s ≤ nδ
and t ≤ nδ.
Proof. Let δ′ = δ/5. We start with the construction from Lemma 5, and we
set t = n3δ

′
, and q = n1−2δ

′
. Furthermore, we assume that output length n1 =

q log n+ t ≤ n1−δ′ , and s1 = t log n ≤ n4δ′ , which hold for a large enough n. The

error is e−n
δ′

.
We then define a check function for the output of length n1, with seed length

s2 being at most n4δ
′

1 ≤ n(1−δ
′)·4δ′ , output length n2 being at most n1−δ

′

1 ≤
n(1−δ

′)2 , and error is at most e−n
δ′
1 .

We continue this procedure for ` steps until n` ≤ nδ. Thus n`−1 > nδ. The
number of steps ` is upper bounded by log(1− δ′)/ log δ. Thus, using Lemma 6,
the error is upper bounded by

log(1− δ′)
log δ

· e−n
5δ′2

≤ 2−n
5δ′2

and the total seed length is

s1 + · · ·+ s` ≤ n4δ
′
· log(1− δ′)

log δ
≤ nδ ,

where we again used that n is large enough. ut

5.2 Inception Coding

In this section, we show that any super non-malleable code in the split-state
model can be converted into a super-strong non-malleable code in the split-state
model. Notice that for some message m with (X,Y)← Enc(m), the only possible
scenario in which the output of the tampering experiment in the super-strong
non-malleability definition and that in the super non-malleability definition are
different is when Dec(X,Y) = Dec(f(X), g(Y)) even in the case of a non-trivial
tampering, i.e., (X,Y) 6= (f(X), g(Y)). Our idea is to use some of the least
significant bits of the message to store a seed and an output of a “Check” such
that if the decoder outputs the correct message in case of a non-trivial tampering,
then the “Check” can detect this and force the output to be ⊥. This technique
of installing a validity check for a codeword within the message is what we call
inception coding and is defined below.

Figure 1. Inception coding using super non-malleable code.

Definition 9. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n →
{0, 1}k ∩ {⊥} be a coding scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some
function.7 The Inception version of (Enc,Dec, C) is a coding scheme denoted as
IEnc : {0, 1}k−2s−2t → {0, 1}n×{0, 1}n, IDec : {0, 1}n×{0, 1}n → {0, 1}k−2s−2t∪
{⊥} and is defined as follows. The encoding algorithm IEnc, for a given message
m ∈ {0, 1}k−2s−2t, does the following.

– Choose uniformly at random rx, ry from {0, 1}s, and cx, cy from {0, 1}t.
– Sample (X,Y) as the output of the encoding algorithm Enc on input (m‖rx‖cx‖ry‖cy)

conditioned on the fact that C(rx, X) = cx and C(ry, Y) = cy.

7 We will use this definition with C being a check function.

– Output (X,Y).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.

– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx‖ry‖cy),
where m ∈ {0, 1}k−2s−2t, rx, ry ∈ {0, 1}s, and cx, cy ∈ {0, 1}t.

– If C(rx, x) = cx and C(ry, y) = cy then output m, else output ⊥.

We now state our main result.

Theorem 3. Let ε1, ε2 > 0. C : {0, 1}s × {0, 1}n → {0, 1}t be an ε1-check.
Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n → {0, 1}k ∩ {⊥}
be a uniform ε2-super non-malleable code in the split-state model such that for
any m, rx, cx, ry, cy, there is an efficient algorithm to sample (X,Y) ← Enc(m)
conditioned on C(rx, X) = cx and C(ry, Y) = cy. Then (IEnc, IDec) is an
efficient ε′-super strong non-malleable code in the split-state model with ε′ =
16ε2
2−2t + 2ε1 + 3ε2.

Proof. Let f : {0, 1}n 7→ {0, 1}n, g : {0, 1}n 7→ {0, 1}n be arbitrary functions
and m,m′ ∈ {0, 1}k−2s−2t be arbitrary messages. We will bound the statistical

distance between SupStrTampf,gm and SupStrTampf,gm′ for the encoding scheme
(IEnc, IDec). For this purpose, we intend to use the fact that (Enc,Dec) is super
non-malleable. However, the main issue with using this is that the codeword
obtained by using Enc might not be a valid encoding for IEnc. The main idea to
make sure that the encoding is valid is to (artificially) do rejection sampling. We
modify the tampering functions f, g to f ′, g′ such that the tampered codeword
becomes irrelevant if the code is not a valid codeword with respect to IEnc. This
is the reason that the error is blown-up by a factor 22t.

Let the space of all x ∈ {0, 1}n such that C(r, x) = c be Ar,c, i.e.,

Ar,c := {x ∈ {0, 1}n |C(r, x) = c} .

We choose fresh uniformly random and independent strings rx, ry from {0, 1}s,
and cx, cy from {0, 1}t. Consider the following functions:

f ′(x) :=

{
f(x) if x ∈ Arx,cx
0n, otherwise.

g′(y) :=

{
g(y) if y ∈ Ary,cy

0n otherwise.

Let (X,Y) ← Enc(m, rx, cx, ry, cy) and let (X ′, Y ′) ← Enc(m′, rx, cx, ry, cy).

We shorthand SupTampf
′,g′

(m,rx,cx,ry,cy)
by T and SupTampf

′,g′

(m′,rx,cx,ry,cy)
by T ′.

The range of T and T ′ is R = {0, 1}n × {0, 1}n ∪ {⊥, same}. Also, let A =
Arx,cx × Ary,cy , and let Pr((X,Y) ∈ A) = p and Pr((X ′, Y ′) ∈ A) = p′. By
Lemma 4, we have that |p − p′| ≤ ε2, and by the fact that (Enc,Dec) is almost
uniform, we have that p ≥ 2−2t−1.

Also, if (X,Y) /∈ A, then (f ′(X), g′(Y)) depends on at most one of X,Y , and
if (X ′, Y ′) /∈ A, then (f ′(X ′), g′(Y ′)) depends on at most one of X ′, Y ′. Hence
the respective tampering experiments T and T ′ depend on at most one of the
shares and by Lemma 3, we have that in this case T and T ′ are statistically
close, i.e.,:

1

2
·
∑
z∈R
|Pr(T = z ∧ (X,Y) /∈ A)− Pr(T ′ = z ∧ (X ′, Y ′) /∈ A)| ≤ 2ε2 . (5.1)

Also, by the super non-malleability assumption, we have that ∆(T ;T ′) ≤ ε2.
Thus, using Equation 5.1, and the triangle inequality, we have that

6ε2 ≥
∑
z∈R

∣∣∣Pr(T = z ∧ (X,Y) ∈ A)− Pr(T ′ = z ∧ (X ′, Y ′) ∈ A)|

=
∑
z∈R

∣∣∣Pr(T = z | (X,Y) ∈ A) · p− Pr(T ′ = z|(X ′, Y ′) ∈ A) · p′
∣∣∣

≥ p ·
∑
z∈R
|Pr(T = z|(X,Y) ∈ A)− Pr(T ′ = z|(X ′, Y ′) ∈ A)| − |p− p′|

≥ (2−2t−1) ·
∑
z∈R
|Pr(T = z|(X,Y) ∈ A)− Pr(T ′ = z|(X ′, Y ′) ∈ A)| − 2ε2 .

This implies that∑
z∈R
|Pr(T = z|(X,Y) ∈ A)− Pr(T ′ = z|(X ′, Y ′) ∈ A)| ≤ 8ε2

2−2t−1
.

Let T̃ be the tampering experiment T conditioned on the event (X,Y) ∈ A.

Similarly define T̃ ′.
We now compare the experiments T̃ and SupStrTampf,gm . For the purpose of

this comparison, we assume that the random coins needed to generate rx, cx, ry, cy,
and (X,Y) ← Enc(m) conditioned on (X,Y) ∈ A are the same. Then, we have

that if T̃ 6= same, then SupStrTampf,gm is equal to T̃ except with probability at

most ε2. To see this, notice that if both T̃ and SupStrTampf,gm are not same, then

they are equal. The event that T̃ 6= same and SupStrTampf,gm = same happens if

f(X) = X, g(Y) = Y but Df,g
X,Y = 1. This cannot happen with probability more

than ε2, since this would mean that T = (X,Y) which would immediately reveal
the message thereby contradicting the non-malleability of (Enc,Dec).

Also, we claim that if T̃ = same, then SupStrTampf,gm ∈ {same,⊥}, except

with probability at most ε1. This follows from the fact that if T̃ = same, and
SupStrTampf,gm /∈ {same,⊥}, then this implies that at least one of f(X) 6= X,
or g(Y) 6= Y but C(rx, f(X)) = cx, and C(ry, g(Y)) = cy which happens with
probability at most ε1.

Thus, we can bound the statistical distance between SupStrTampf,gm and

SupStrTampf,gm′ by

8ε2
2−2t−1

+2ε1 +2ε2 + |Pr(SupStrTampf,gm = same)−Pr(SupStrTampf,gm′ = same)| .

Finally, using Lemma 4, we can conclude that

|Pr(SupStrTampf,gm = same)− Pr(SupStrTampf,gm′ = same)| ≤ ε2

by setting A = {x ∈ {0, 1}n : f(x) = x}, and B = {y ∈ {0, 1}n : g(y) = y}. ut

6 Instantiating a Super Non-malleable Code

In [ADL14], Aggarwal et al. gave a construction of non-malleable codes in the
split-state model. Here, we argue that the construction of [ADL14] is also super-
non-malleable.

In [AB16], Aggarwal et al. improved the analysis of the [ADL14] construction,
when talking about parameters we will be recalling parameters from [AB16].

Note that for any message m with Enc(m) = (X,Y), and any functions f, g,
the output of the tampering experiment in Definition 3 is the same as that in
Definition 4 if Dec(f(X), g(Y)) = m or Dec(f(X), g(Y)) = ⊥. This leads to the
following simple observation.

Observation 6.1 Let ε, ε′ > 0. Let (Enc :M→ X×X ,Dec : X×X →M∪{⊥})
be an ε-non-malleable code in the split-state model. Given f, g : X 7→ X , assume
there exists a partitioning (S1, · · · ,Ss+t,S?) of X × X such that the following
hold:

1. For allm ∈M, 1 ≤ i ≤ s, Pr(X,Y)←Enc(m)(Dec(f(X), g(Y)) ∈ {m,⊥}|(X,Y) ∈
Si) ≥ 1− ε′.

2. For all m1,m2 ∈M, s+ 1 ≤ i ≤ s+ t, let (X1, Y1), (X2, Y2) be the encoding
of m1,m2 respectively, conditioned on the fact that (X1, Y1), (X2, Y2) ∈ Si.
Then ∆((f(X1), g(Y1)), (f(X2), g(Y2)) ≤ ε′.

3. For any m ∈M, Pr(Enc(m) ∈ S?) ≤ ε′.

Then, the scheme (Enc,Dec) is (ε+O(ε′))-super-non-malleable.

In the above observation, we set Df,g
(X,Y) to be 1 if (X,Y) ∈ S1, . . . ,Ss, and

0, otherwise.
Before describing the encoding scheme from [ADL14], we will need the fol-

lowing definition of an affine-evasive function.

Definition 10. Let F = Fp be a finite field. A surjective function h : F 7→
M ∪ {⊥} is called (γ, δ)-affine-evasive if or any a, b ∈ F such that a 6= 0, and
(a, b) 6= (1, 0), and for any m ∈M,

1. PrU←F(h(aU + b) 6= ⊥) ≤ γ
2. PrU←F(h(aU + b) 6= ⊥ | h(U) = m) ≤ δ
3. A uniformly random X such that h(X) = m is efficiently samplable.

Aggarwal [Agg15] showed the following.

Lemma 8. There exists an efficiently computable (p−3/4, Θ(|M| log p · p−1/4))-
affine-evasive function h : F 7→ M∪ {⊥}.

We now describe the coding scheme from [ADL14] combined with the affine-
evasive function promised by Lemma 8. Let M = {1, . . . ,K} and X = FN ,
where F is a finite field of prime order p such that p ≥ (K/ε)16, and N chosen
as C log4 p, where C is some universal constant.

Then for any m ∈ M, Enc(m) = Enc1 ◦ Enc2(m), where for any m ∈ M,
Enc2(m) is X where X is uniformly random such that h(X) = m, where h is
affine-evasive function defined earlier, and for any x ∈ F, Enc1(x) = (L,R),
where L,R ∈ FN are uniform such that 〈L,R〉 = x.

The decoding algorithm is as follows. For `, r ∈ FN × FN , Dec(`, r) = Dec2 ◦
Dec1(`, r), where for any `, r ∈ FN , Dec1(`, r) = 〈`, r〉, and for any x ∈ F,
Dec2(x) = h(x).

The following is implicit in [ADL14].

Theorem 4. Let f, g : FN 7→ FN be arbitrary functions. Let s = bN/20c, and let

t = b s
1/4

c log pc, for some universal constant c. Then, there exists a set S ⊂ FN×FN

of size at most p2N−s such that FN × FN \ S can be partitioned into sets of the
form

1. L × R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′

uniform in L,R respectively.

2. L × R, such that |L × R| ≥ p2N−7s, and there exists A ∈ FN×N , a 6= 0 ∈
F, b ∈ Fn such that f(`) = A` for all ` ∈ L, and AT g(r) = ar + b for all
r ∈ R.

3. L × R, such that |L × R| ≥ p2N−7s, and there exists y ∈ FN , such that
g(r) = y for all y ∈ R.

To argue that the construction given above is also super-non-malleable, we
will need the following:

Lemma 9. Let L and R be independent random variables over FN . If

H∞(L) + H∞(R) ≥ (N + 1) log p+ 2 log

(
1

ε

)
,

then

∆((L, 〈L,R〉) ; (L,UF)) ≤ ε and ∆((R, 〈L,R〉) ; (R,UF)) ≤ ε.

Lemma 10. Let X1, Y1 ∈ A, and X2, Y2 ∈ B be random variables such that
∆((X1, X2) ; (Y1, Y2)) ≤ ε. Then, for any non-empty set A1 ⊆ A, we have

∆(X2 | X1 ∈ A1 ; Y2 | Y1 ∈ A1) ≤ 2ε

Pr(X1 ∈ A1)
.

Theorem 5. The scheme (Enc,Dec) is almost uniform, O(ε)-super-non-malleable
code in the split-state model.

Proof. We first show that the scheme is a super non-malleable code in the split-
state model. We will argue that each partition promised by Theorem 4 is one
of S1, . . . ,Ss+t,S? as in Observation 6.1 with ε′ = ε. Clearly, for any m ∈ M,
Pr(Enc(m) ∈ S) ≤ p−s+1 ≤ ε, and hence we can set S? = S. So, we consider the
partitioning of Fn × Fn \ S.

1. L × R such that (〈L′, R′〉, 〈f(L′), g(R′)〉) is p−t-close to uniform for L′, R′

uniform in L,R respectively. In this case, for any message m, if (L,R) ←
Enc(m), then Dec(f(L), g(R)) conditioned on (L,R) ∈ L×R is h(〈f(L′), g(R′)〉)
conditioned on h(〈L′, R′〉) = m. By Lemma 10, we have that this is 2 ·p−t+1-
close to uniform, and hence, by Lemma 8, we have that h(〈f(L′), g(R′)〉) = ⊥
with probability at least 1− p−3/4 − p−t+1 ≥ 1− ε.

2. L×R, such that |L×R| ≥ p2N−7s, and there exists A ∈ FN×N , a ∈ F, b ∈ FN
such that f(`) = A` for all ` ∈ L, and AT g(r) = ar + b for all r ∈ R. In
this case, using the same argument as in the previous item, we have that
Dec(f(L), g(R)) conditioned on (L,R) ∈ L×R is ⊥ with probability at least
1− p−1/4 log p− p−t+1 ≥ 1− ε.

3. L × R, such that |L × R| ≥ p2N−7s, and there exists y ∈ FN , such that
g(r) = y for all y ∈ R. Let L′, R′ uniform in L,R, respectively. Then, using
Lemma 9, we have that 〈L′, R′〉 is p−(N−7s−1)/2-close to uniform given f(L′),
and g(R′) = y, and so, using Lemma 10, this partition satisfies item 2 from
Observation 6.1.

The result then follows from Observation 6.1.
We now show that the scheme is uniform. Let X0,Y0 ⊂ FN such that |X0| =

pc1N , and |Y0| = pc2N for some c1, c2 ∈ (1/2, 1), and let X1 = FN \ X0, and
Y1 = FN \Y0. Let X0, X1, Y0, Y1 be uniform in X0,X1,Y0,Y1, respectively. Then
by Lemma 9, there exists c > 0, such that for i, j ∈ {0, 1},

∆(〈Xi, Yj〉 ; UF) ≤ p−cN .

Thus, for any a ∈ Fp, the number of x ∈ Xi, y ∈ Yj such that 〈x, y〉 = a is

|Xi| · |Yj | · (
1

p
± p−cN) .

Thus the fraction of (x, y) ∈ X0 × Y0 such that 〈x, y〉 = a is in the interval(
|Xi| · |Yj |
p2N

· 1− p−cN+1

1 + p−cN+1
,
|Xi| · |Yj |
p2N

· 1 + p−cN+1

1− p−cN+1

)
,

which implies the result. ut

7 Final proof of the main result

Theorem 5 proves that non-malleable code from [ADL14] is super non-malleable.
The only additional requirement that needs to be fulfilled in order to be able

to use this code to obtain super strong non-malleable codes using Theorem 3 is
that there is an efficient algorithm to sample (X,Y) ← Enc(m) conditioned on
C(rx, X) = cx and C(ry, Y) = cy for some given rx, ry, cx, cy,m. Note that here,
X,Y ∈ FN , which is thought of as being embedded in to {0, 1}n for n = Ndlog pe.
A way to sample this will be to sample a← Enc2(m) ∈ Fp, and then try to sample
X,Y such that 〈X,Y 〉 = a (where X,Y are interpreted as elements of FN) and
C(rx, X) = cx and C(ry, Y) = cy (where X,Y are interpreted as elements of
{0, 1}n).

Since we don’t know how to sample this efficiently, we resolve this issue by
introducing an alternate definition of inception coding, which we call partial
inception coding, that installs only a check for X into the message.

Definition 11. Let Enc : {0, 1}k → {0, 1}n × {0, 1}n, Dec : {0, 1}n × {0, 1}n →
{0, 1}k ∩ {⊥} be a coding scheme. Let C : {0, 1}s × {0, 1}n → {0, 1}t be some
function.8 The Partial Inception version of (Enc,Dec, C) is a coding scheme
denoted as IEnc : {0, 1}k−s−t → {0, 1}n × {0, 1}n, IDec : {0, 1}n × {0, 1}n →
{0, 1}k−s−t ∪ {⊥} and is defined as follows. The encoding algorithm IEnc, for a
given message m ∈ {0, 1}k−s−t, does the following.

– Choose uniformly at random rx from {0, 1}s, and cx from {0, 1}t.
– Sample (X,Y) as the output of the encoding algorithm Enc on input (m‖rx‖cx)

conditioned on the fact that C(rx, X) = cx.
– Output (X,Y).

The decoding algorithm IDec, on input x, y ∈ {0, 1}n, does the following.

– Obtain Dec(x, y) ∈ {0, 1}k, and interpret the output as (m‖rx‖cx), where
m ∈ {0, 1}k−s−t, rx ∈ {0, 1}s, and cx ∈ {0, 1}t.

– If C(rx, x) = cx then output m, else output ⊥.

Then, it is easy to sample from the desired distribution. One can efficiently
sample X conditioned on C(X, rX) = cX since for any r ∈ {0, 1}s and any c ∈
{0, 1}t the set of all x such that C(r, x) = c is an affine subspace of {0, 1}n. This
follows immediately from Lemma 2 and Definition 8. Then, Y can be sampled
easily conditioned on the constraint that 〈X,Y 〉 = a.

However, this introduces an additional requirement on the non-malleable
code that the adversary cannot decode to the same message by changing just one
part of the codeword, i.e., for any function g : {0, 1}n 7→ {0, 1}n, and any message
m with (X,Y)← Enc(m), the probability that g(Y) 6= Y and Dec(X, g(Y)) = m
is small. This condition, fortunately, is immediate from the proof of Theorem 5,
where item (2) with A being the identity matrix corresponds to this case, and
unless g is also the identity function, we conclude that Dec(X, g(Y)) = m with
probability at most ε.

Remark 6. The main reason that we did not define partial inception coding to
start with is because we did not want to restrict Theorem 3 in the sense that

8 We will use this definition with C being a check function.

it only works if we instantiate it with a non-malleable code that has the special
property that the probability that g(Y) 6= Y and Dec(X, g(Y)) = m is small.
This, we believe is just a minor technicality since we are having difficulty in
sampling X,Y conditioned on C(rX , X) = cX , C(rY , Y) = cY and 〈X,Y 〉 = a.
Perhaps using a clever sampling algorithm like the one used by Chattopadhyay
and Zuckerman [CZ14], such a sampling is possible. Even if this is not the case,
we want Theorem 3 to be general enough so that it can be instantiated with
other super non-malleable codes.

Thus, using a result analogous to Theorem 3 for the case of Partial In-
ception coding introduced in Definition 11 and instantiating it with (Enc,Dec)
from [ADL14] gives us the following result.

Theorem 6. There exists an efficient 2−k
Ω(1)

-super-strong non-malleable code
in the split-state model from k-bit messages to k5-bit codewords.

Combining Theorem 6 with Theorem 2 gives us the main result of the paper, i.e.,
a construction of a persistent continuous non-malleable code in the split-state
model.

Theorem 7. There exists an efficient (T, (T + 1) · 2−kΩ(1)

)−continuous [1, 1]
non-malleable code in the split-state model from k-bit messages to k5-bit code-
words.

References

AAnHKM+16. Divesh Aggarwal, Shashank Agrawal, Divya Gupta nad Hemanta
K. Maji, Omkant Pandey, and Manoj Prabhakaran. Optimal com-
putational split state non-malleable codes. To appear in TCC 16-A,
2016.

AB16. Divesh Aggarwal and Jop Briët. Revisiting the sanders-bogolyubov-
ruzsa theorem in fpn and its application to non-malleable codes. 2016
IEEE International Symposium on Information Theory (ISIT), pages
1322–1326, 2016.

ADKO15a. Divesh Aggarwal, Yevgeniy Dodis, Tomasz Kazana, and Maciej
Obremski. Leakage-resilient non-malleable codes. In The 47th ACM
Symposium on Theory of Computing (STOC), 2015.

ADKO15b. Divesh Aggarwal, Stefan Dziembowski, Tomasz Kazana, and Maciej
Obremski. Leakage-resilient non-malleable codes. In Theory of Cryp-
tography, volume 9014 of Lecture Notes in Computer Science, pages
398–426. Springer Berlin Heidelberg, 2015.

ADL14. Divesh Aggarwal, Yevgeniy Dodis, and Shachar Lovett. Non-malleable
codes from additive combinatorics. In STOC. ACM, 2014.

ADN+19. Divesh Aggarwal, Nico Döttling, Jesper Buus Nielsen, Maciej Obrem-
ski, and Erick Purwanto. Continuous non-malleable codes in the 8-
split-state model. Eurocrypt 2019, 2019.

Agg15. Divesh Aggarwal. Affine-evasive sets modulo a prime. Information
Processing Letters, 115(2):382–385, 2015.

AGM+15a. Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey,
and Manoj Prabhakaran. Explicit non-malleable codes resistant to
permutations. Advances in Cryptology - CRYPTO, 2015.

AGM+15b. Shashank Agrawal, Divya Gupta, HemantaK. Maji, Omkant Pandey,
and Manoj Prabhakaran. A rate-optimizing compiler for non-malleable
codes against bit-wise tampering and permutations. In Theory of Cryp-
tography, volume 9014 of Lecture Notes in Computer Science, pages
375–397. Springer Berlin Heidelberg, 2015.

CDTV16. Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, and Daniele Ven-
turi. Non-malleable encryption: Simpler, shorter, stronger. In Theory
of Cryptography - 13th International Conference, TCC 2016-A, Tel
Aviv, Israel, January 10-13, 2016, Proceedings, Part I, pages 306–335,
2016.

CG14a. Mahdi Cheraghchi and Venkatesan Guruswami. Capacity of non-
malleable codes. In ITCS, 2014.

CG14b. Mahdi Cheraghchi and Venkatesan Guruswami. Non-malleable coding
against bit-wise and split-state tampering. In TCC, 2014.

CGL15. Eshan Chattopadhyay, Vipul Goyal, and Xin Li. Non-malleable ex-
tractors and codes, with their many tampered extensions. CoRR,
abs/1505.00107, 2015.

CGM+15. Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant
Pandey, and Jalaj Upadhyay. Block-wise non-malleable codes. IACR
Cryptology ePrint Archive, 2015:129, 2015.

CKM11. Seung Geol Choi, Aggelos Kiayias, and Tal Malkin. Bitr: built-in tam-
per resilience. In Advances in Cryptology–ASIACRYPT 2011, pages
740–758. Springer, 2011.

CMTV15. Sandro Coretti, Ueli Maurer, Björn Tackmann, and Daniele Venturi.
From single-bit to multi-bit public-key encryption via non-malleable
codes. In Theory of Cryptography - 12th Theory of Cryptography Con-
ference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Proceedings,
Part I, pages 532–560, 2015.

CZ14. Eshan Chattopadhyay and David Zuckerman. Non-malleable codes in
the constant split-state model. FOCS, 2014.

DDN00. D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM,
30:391–437, 2000.

DKO13. Stefan Dziembowski, Tomasz Kazana, and Maciej Obremski. Non-
malleable codes from two-source extractors. In Advances in Cryptology-
CRYPTO 2013. Springer, 2013.

DORS08. Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith.
Fuzzy extractors: How to generate strong keys from biometrics and
other noisy data. SIAM Journal on Computing, 38(1):97–139, 2008.

DPW10. Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-
malleable codes. In ICS, pages 434–452. Tsinghua University Press,
2010.

DW09. Yevgeniy Dodis and Daniel Wichs. Non-malleable extractors and sym-
metric key cryptography from weak secrets. In Michael Mitzenmacher,
editor, Proceedings of the 41st Annual ACM Symposium on Theory of
Computing, pages 601–610, Bethesda, MD, USA, 2009. ACM.

FMNV14. S. Faust, P. Mukherjee, J. Nielsen, and D. Venturi. Continuous
non-malleable codes. In Theory of Cryptography Conference - TCC.
Springer, 2014.

FMVW14. S. Faust, P. Mukherjee, D. Venturi, and D. Wichs. Efficient non-
malleable codes and key-derivation for poly-size tampering circuits.
In Eurocrypt. Springer, 2014.

GLM+03. Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and
Tal Rabin. Algorithmic Tamper-Proof (ATP) security: Theoretical
foundations for security against hardware tampering. In Moni Naor,
editor, First Theory of Cryptography Conference — TCC 2004, volume
2951 of LNCS, pages 258–277. Springer-Verlag, February 19–21 2003.

IPSW06. Yuval Ishai, Manoj Prabhakaran, Amit Sahai, and David Wagner. Pri-
vate circuits II: Keeping secrets in tamperable circuits. In Serge Vau-
denay, editor, Advances in Cryptology—EUROCRYPT 2006, volume
4004 of LNCS, pages 308–327. Springer-Verlag, 2006.

ISW03. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing
hardware against probing attacks. In Dan Boneh, editor, Advances in
Cryptology—CRYPTO 2003, volume 2729 of LNCS. Springer-Verlag,
2003.

JW15. Zahra Jafargholi and Daniel Wichs. Tamper detection and continu-
ous non-malleable codes. In Theory of Cryptography, volume 9014 of
Lecture Notes in Computer Science, pages 451–480. Springer Berlin
Heidelberg, 2015.

KKS11. Yael Tauman Kalai, Bhavana Kanukurthi, and Amit Sahai. Cryptog-
raphy with tamperable and leaky memory. In Advances in Cryptology–
CRYPTO 2011, pages 373–390. Springer, 2011.

Li16. Xin Li. Improved non-malleable extractors, non-malleable codes and
independent source extractors. arXiv, 2016.

LL12. Feng-Hao Liu and Anna Lysyanskaya. Tamper and leakage resilience
in the split-state model. In Advances in Cryptology–CRYPTO 2012,
pages 517–532. Springer, 2012.

RU08. Tom Richardson and Ruediger Urbanke. Modern Coding Theory. Cam-
bridge University Press, New York, NY, USA, 2008.

A Equivalence of Our Non-malleable Codes Definition
(Def. 3) with that of [DPW10]

Theorem 8. If (Enc,Dec) is an ε−non-malleable code then it is also an ε−non-
malleable code according to the definition from [DPW10].

Proof. Let us define transform Tm : M ∪ {⊥, same} → M ∪ {⊥} as follows:
for any m′ ∈ M let Tm(m′) = m′, Tm(⊥) = ⊥, Tm(same) = m. Notice that
Tm(Tampf,gm) = DPWTampf,gm . Fix any message m0, and take Df,g = Tampf,gm0

.

We know that Tampf,gm ≈ε Tampf,gm0
for any functions f, g and any message m.

Thus
Tm(Tampf,gm) ≈ε Tm(Tampf,gm0

),

DPWTampf,gm ≈ε Tm(Df,g).

ut

Theorem 9. If (Enc,Dec) is an ε−-non-malleable code according to the defini-
tion from [DPW10], then it is 4ε−non-malleable code.

Proof. Using the notation from Theorem 8, we know that, irrespective of the
choice of Df,g

x,y distributions, the following is true:

Tm(Tampf,gm) = DPWTampf,gm .

Now let Df,g
x,y as follows:

Pr(Df,g
x,y = 0) = min

{
Pr(Df,g = same)

Pr(DPWTampf,gDec(x,y) = Dec(x, y))
, 1

}

if Pr(DPWTampf,gDec(x,y) = Dec(x, y)) 6= 0. Otherwise let Pr(Df,g
x,y = 0) = 0.

Notice that now

|Pr(Tampf,gm = same)− Pr(Df,g = same)| < ε .

By DPW-non-malleable codes definition we get

Tm(Tampf,gm) ≈ε Tm(Df,g)

thus
Tampf,gm ≈2ε D

f,g,

and thus that for any m0,m1 we get

Tampf,gm0
≈4ε Tampf,gm1

.

ut

	Inception Makes Non-malleable Codes Stronger

