Recent Results in
Scalable Multi-Party Computation

Jared Saia and Mahdi Zamani

Dept. of Computer Science, University of New Mexico, Albuquerque, NM, USA 87131
{saia,zamani}@cs.unm.edu

Abstract. Secure multi-party computation (MPC) allows multiple par-
ties to compute a known function over inputs held by each party, without
any party having to reveal its private input. Unfortunately, traditional
MPC algorithms do not scale well to large numbers of parties. In this
paper, we describe several recent MPC algorithms that are designed to
handle large networks. All of these algorithms rely on recent techniques
from the Byzantine agreement literature on forming and using quorums.
Informally, a quorum is a small set of parties, most of which are trust-
worthy. We describe the advantages and disadvantages of these scalable
algorithms, and we propose new ideas for improving practicality of cur-
rent techniques. Finally, we conduct simulations to measure bandwidth
cost for several current MPC algorithms.

1 Introduction

In secure multi-party computation (MPC), a set of parties, each having a secret
value (input), want to compute a common function over their inputs, without
revealing any information about their inputs other than what is revealed by the
output of the function.

In this paper, we focus on scalable MPC algorithms, which are designed to
be resource-efficient (e.g., in terms of bandwidth, computation, and latency)
for large networks. Scalable MPC is of importance for many applications over
modern networks. For example, how can peers in BitTorrent auction off resources
without hiring an auctioneer? How can we design a decentralized Twitter that
enables provably anonymous broadcast? How can we perform data mining over
data spread over large numbers of machines?

Although much theoretical progress has been made in the MPC literature to
achieve scalability (e.g., [DIKT08 DIK10,AJLA*12 BGT13,DKMS14,BCP14al),
practical progress is slower. In particular, most known schemes suffer from either
poor or unknown communication and computation costs in practice.

Most large-scale distributed systems are composed of nodes with limited
resources. This makes it of extreme importance to balance the protocol load
across all parties involved. Also, large networks tend to have weak admission
control mechanisms which makes them likely to contain Byzantine nodes. Thus,
a key variant of the MPC problem that we consider will be when a certain hidden
fraction of the nodes are controlled by a Byzantine adversary.

1.1 Problem Statement

In the MPC problem, a set of n parties, each holding a private input, jointly
evaluate a function f over their inputs while ensuring,

1. Upon termination of the protocol, all parties have learned the correct output
of f; and

2. No party learns any information about other parties’ inputs other than what
is revealed from the output.

We assume the identities of the n parties are common knowledge, and there
is a private and authenticated communication channel between every pair of
parties. We consider two communication models. In the synchronous model,
there is an upper bound, known to all parties, on the length of time that a
message can take to be sent through a channel. In the asynchronous model,
there is no such upper bound.

Usually, a certain fraction of the parties are controlled by a Byzantine' ad-
versary. These parties can deviate arbitrarily from the protocol. In particular,
they can send incorrect messages, stop sending any messages, share information
amongst themselves, and so forth. Their goal is to thwart the protocol by ei-
ther obtaining information about the private inputs, or causing the output of
the function to be computed incorrectly. We say the adversary is semi-honest
if the adversary-controlled parties are curious to learn about other parties’ se-
cret information, but they strictly follow the protocol. We say that the parties
controlled by the adversary are malicious (or Byzantine or dishonest). The re-
maining parties are called semi-honest (or simply, honest).

The adversary is either computationally-bounded or computationally-unbounded.
The former is typically limited to only probabilistic polynomial-time (PPT) algo-
rithms, and the latter has no computational limitations. The adversary is either
assumed to be static or adaptive. A static adversary is limited to selecting the
set of dishonest parties at the start of the protocol, while an adaptive adversary
does not have this limitation.

1.2 Measures of Effectiveness

The following metrics are typically used to measure the effectiveness of MPC
protocols.

— Resource costs. These include communication cost (number of messages
sent and size of each message), computation cost, and latency (number of
rounds of communication). We remark that load-balancing may be important
for all of these resources.

— Fault Tolerance. These metrics measure to what degree a protocol can tol-
erate adversarial attack. They include: the number of nodes that an adver-
sary can take over (without sacrificing correctness); the type(s) of faults, i.e.,

1 Also known as active or malicious.

Byzantine, crash faults, randomly, or adversarially distributed; the number
of bits in messages that can be corrupted by an adversary; and the amount
of churn that the protocol can tolerate

1.3 MPC and Byzantine Agreement

In the Byzantine setting, the MPC problem is tightly related to the problem of
Byzantine agreement (BA), where a group of n parties each holding an input
value want to agree on a common value. In a celebrated result, Pease, Shostak,
and Lamport [PSL80] proved that perfectly-secure BA can be achieved as long
as less than one third fraction of the parties is corrupted. There are several
interesting connections between BA and MPC:

1. BA can be seen as MPC for the simplest type of function: a function that
must return a bit equal to the input bit of at least one honest party. However,
BA is simpler that MPC in that it is not necessary to maintain privacy of
inputs.

2. MPC protocols strongly rely on the use of a broadcast channel which is
typically realized using a BA protocol.? Most MPC results so far assume the
existence of a broadcast channel. Unfortunately, this requirement is highly
problematic in settings, where the number of parties is large.

3. Several recent MPC schemes [BGT13,DKMS14,BCP14a,ZMS14] crucially
build upon the notion of quorums® for achieving scalability. A quorum is a
polylogarithmic set of parties, where the number of corrupted parties in each
quorum is guaranteed not to exceed a certain fraction. King et al. [KLST11]
show how to use BA to efficiently create a collection of quorums.

Paper organization. The rest of this paper is organized as follows. In Sec-
tion 2, we review related work with a focus on MPC for many parties (i.e.,
scalable MPC). In Section 3, we describe key open problems in scalable MPC.
In Section 4, we describe algorithmic tools used in current scalable MPC al-
gorithms. Section 5 describes recent quorum-based results for scalable MPC,
and defines and analyzes new techniques for improving these results. Finally, we
conclude in Section 6.

2 Related Work

Due to the large body of work, we do not attempt a comprehensive review of
the MPC literature here, but rather focus on work that is relevant to scalable
MPC.

2 The standard definition of MPC (as given in Section 1.1) implies Byzantine agree-
ment. Goldwasser and Lindell [GL02] show that a relaxed definition of MPC allows
MPC without a broadcast channel (and hence without Byzantine agreement).

3 Also known as committees.

The MPC problem was first described by Yao [Yao82]. He described an
algorithm for MPC with two parties in the presence of a semi-honest adver-
sary. Goldreich et al. [GMWS&T7] propose the first MPC protocol that is secure
against a Byzantine adversary. This work along with [CDG88,GHY88] are all
based on cryptographic hardness assumptions and are often regarded as the first
generic solutions to MPC. These were followed by several cryptographic improve-
ments [BMR9I0,GRR98,CFGN96] as well as information theoretically-secure pro-
tocols [BGW88,CCD88,Beadl,BCGI3] in late 1980s and 1990s. Unfortunately,
these methods all have poor communication scalability. In particular, if there are
n parties involved in the computation, and the function f is represented by a cir-
cuit with m gates, then these algorithms require each party to send a number of
messages and perform a number of computations that is £2(mn). In 2000s, excit-
ing improvements were made to the cost of MPC, when m (i.e., the circuit size) is
much larger than n [DI06,DN07,DIK*08]. For example, Damgard et al. [DIKT08]
give an algorithm with computation and communication cost that is O(m) plus
a polynomial in n. Unfortunately, the additive polynomial in these algorithms is
large (at least £2(n%)) making them impractical for large n.

Depending on the model of computation, every function can be represented
in terms of some elementary operations such as arithmetic operations (e.g., addi-
tion, multiplication), Boolean operations (e.g., and, or), RAM instructions (e.g.,
get-value, set-value), etc. Informally speaking, every MPC protocol specifies how
a group of elementary operations can be computed securely. The function is
computed securely via composition of these secure operations. From this per-
spective, we classify the broad range of MPC approaches into two categories:
techniques that evaluate circuits (Boolean or arithmetic), and techniques that
evaluate RAM programs.

2.1 Circuit-Based Techniques

We subdivide the set of circuit-based methods into three categories based on their
main approach for achieving privacy: garbled circuits, secret sharing, and fully
homomorphic encryption. Although some protocols such as [DPSZ12,BGT13]
may fall into more than one category, most protocols follow only one as their
main approach.

Garbled Circuits. The idea of garbled circuits dates back to the two-party
MPC proposed by Yao [Yao82].* One party is called the circuit generator and
the other one is called the circuit evaluator. For each wire in the circuit, the gen-
erator creates a mapping that maps each possible value of that wire to another
value (called the garbled value). The generator then sends this mapping to the
evaluator. The evaluator evaluates the circuit using the mapping to compute the
garbled output. Next, the generator computes another mapping (called transla-
tion) that maps all possible garbled outputs to their actual values. In the final
round, the generator sends the translation to the evaluator, and the evaluator

* The term “garbled circuits” is due to Beaver, Micali, and Rogaway [BMR90].

sends the garbled output to the generator. Both parties can compute the actual
output at the same time without learning anything about each other’s inputs.
This algorithm is only secure in the semi-honest setting.

Yao’s original model has been the basis for several secure computation algo-
rithms mostly for the two-party setting with computational hardness assump-
tions [GMWS87,LP07,HEKM11,LP11,KMR11]. In a line of research, Lindell and
Pinkas give the first proof of Yao’s protocol [LP09] and present a two-party ap-
proach based on garbled circuits that uses the cut-and-choose technique to deal
with malicious parties [LP07,LP11].

Secret Sharing. In secret sharing, one party (called the dealer) distributes
a secret amongst a group of parties, each of whom is allocated a share of the
secret. Each share reveals nothing about the secret to the party possessing it,
and the secret can only be reconstructed when a sufficient number of shares are
combined together.

Many MPC schemes build upon the notion of secret sharing (most notably,
[BGWS88,CCD88,Beadl,GRRI8,DIKT08,DPSZ12,DKMS14]). Informally speak-
ing, each party secret shares its input among all parties using a secret sharing
scheme such as Shamir’s scheme [Sha79]. Then, all parties perform some inter-
mediate computation on the received shares and ensure that each part now has
a share of the result of the computation. In the final stage, all parties perform
a final computation on the intermediate results to find the final result. In the
Byzantine setting, each stage of this approach usually requires several rounds
of communication used to verify consistency of the shares distributed by each
party (using a Verifiable Secret Sharing (VSS) scheme like [CGMA85,BGWSS])
and to perform complicated operations such as multiplication.

Ben-Or et al. BGWS88] show that every functionality can be computed with
information-theoretic security in the presence of a semi-honest adversary con-
trolling less than half of the parties, and in the presence of a Byzantine adversary
controlling less than a third of the parties. They propose a protocol for securely
evaluating an arithmetic circuit that represents the functionality. First, the par-
ties secret-share their inputs with each other using Shamir’s scheme [Sha79].
For the Byzantine case, an interactive VSS protocol is proposed using bivariate
polynomials. The parties emulate the computation of each gate of the circuit by
computing shares of the gate’s output from the shares of the gate’s inputs.

Given shares of the input wires, an addition gate’s output is computed with-
out any interaction simply by asking each party to add their local shares together.
Unfortunately, multiplying two polynomials results in a polynomial that has a
higher degree and is not completely random. Ben-Or et al. [BGW88| emulate
a multiplication gate computation by running interactive protocols for degree
reduction and polynomial randomization.

The efficiency of [BGW88] was later improved by others in similar and dif-
ferent settings [Bea91,GRR98,DIK*08]. Unfortunately, these protocols still do
not scale well with n and incur large communication and computation costs in
practice.

Dani et al. [DKMS12] propose an MPC protocol for evaluating arithmetic cir-
cuits in large networks. The protocol is unconditionally-secure against a Byzan-
tine adversary corrupting less than (1/3 — €)n of the parties, for some positive
constant €. The protocol creates a set of quorums using the quorum building
algorithm of [KLST11]. For each gate in the circuit, a quorum is used to com-
pute the output of the gate using the MPC of [BGWS88| among parties of the
quorum. The protocol ensures that all parties in the quorum learn the output
of gate masked with a uniformly random value which is secret-shared among all
parties of the quorum. Thus, no party learns any information about the output,
but the parties together have enough information to provide the input for com-
putation of the masked output of the next gate. This procedure is repeated for
every level of the circuit. At the top level, the output is computed and sent down
to all parties through all-to-all communication between the quorums. Assuming
a circuit of depth d with m gates, this protocol requires each party to send (and
compute) O(m/n + /n) bits (operations) with latency O(d + polylog(n)).

This protocol was later modified in [DKMS14] in order to support asyn-
chronous communication incurring the same asymptotic costs but tolerating less
than (1/8 — €)n malicious parties. In the new model, the adversary has control
over the latency of the communication channels and can arbitrarily delay mes-
sages sent over them. However, all messages sent by the parties are assumed to
be eventually delivered but with indefinite delays.

The main challenge in this model is that the parties require a distributed
mechanism to learn when sufficient number of inputs are received in order to
start the computation over those inputs. To this end, Dani et al. [DKMS14]
propose to count the number of ready inputs using a distributed data structure
called 7-counter, where 7 = n — t is the threshold on the number inputs to be
received before the circuit is evaluated, and t < n/8.

Fully Homomorphic Encryption. A fully homomorphic encryption (FHE)
scheme allows to perform secure computation over encrypted data without de-
crypting it. Gentry [Gen09] proposed the first FHE scheme based on the hardness
of lattice problems. Since then, many techniques have been proposed to improve
the efficiency of FHE [vDGHV10,BGV12,GHS12]. Unfortunately, current tech-
niques are still very slow and can only evaluate small circuits. This restriction is
primarily due to noise management techniques (such as bootstrapping [Gen09])
used to deal with a noise term in ciphertexts that increases slightly with homo-
morphic addition and exponentially with homomorphic multiplication.

In particular, if the circuit has a sufficiently small multiplicative depth, then
it is possible to use current FHE schemes in practice without using the expensive
noise management techniques. Such a scheme is often called somewhat homomor-
phic encryption (SHE) [vDGHV10], which requires significantly less amount of
computation than an FHE with noise management.

Damgard et al. [DPSZ12] propose a Byzantine-resilient MPC scheme using
SHE in an offline phase to compute Beaver multiplication triples [Bea91]. These
triples are later used in the online phase to compute multiplication gates ef-
ficiently. One drawback of this scheme is that when cheating happens in the

network, the protocol cannot guarantee termination. Malicious parties can take
advantage of this to prevent the protocol from termination.?

Asharov et al. [AJLAT12] describe a constant-round MPC scheme using a
threshold FHE (TFHE) technique that provides Byzantine-resilience and circuit-
independent communication cost. All parties first encrypt their inputs under
the FHE scheme of Brakerski et al. [BGV12] and send the encrypted values
to all other parties. Then, each party evaluates the desired function over the
encrypted inputs via homomorphism, and eventually participates in a distributed
decryption protocol to decrypt the output. Although providing constant rounds
of communication, this scheme does not scale well with the number of parties
and the circuit size due to all-to-all communication overhead (i.e., £2(n?)) and
high computation overhead of the FHE of [BGV12] for large-depth circuits. To
overcome the high computation cost, the authors propose to outsource circuit
computation to a powerful party (e.g., the “cloud”). While this is helpful for
the semi-honest setting, it requires expensive zero-knowledge proofs to enforce
honest behavior in the Byzantine setting.

Boyle et al. [BGT13] describe a synchronous MPC protocol for evaluating
arithmetic circuits. The protocol is computationally-secure against an adversary
corrupting up to (1/3 — €) fraction of parties, for some fixed positive €. As net-
work size scales, it becomes infeasible to require each party communicate with all
other parties. To this end, the protocol of [BGT13] uses quorums to achieve sub-
linear (polylog(n)) communication locality which is defined as the total number
of point-to-point communication channels that each party uses in the protocol.
Interestingly, the communication costs are independent of circuit size. This is
achieved by evaluating the circuit over encrypted values using an FHE scheme.
Unfortunately, the protocol is not fully load-balanced as it evaluates the circuit
using only one quorum (called supreme committee) for performing general MPC.
The protocol requires each party to send polylog(n) messages of size O(n) bits
and requires polylog(n) rounds.

Chandran et al. [CCG™14] address two limitations of the protocol of [BGT13]:
adaptive adversary and optimal resiliency (i.e., t < n/2 malicious parties). They
achieve both of these by replacing the common reference string (CRS) assump-
tion of [BGT13] with a different setup assumption called symmetric-key infras-
tructure (SKI), where every pair of parties share a uniformly-random key that
is unknown to other parties. The authors also show how to remove the SKI as-
sumption at a cost of increasing the communication locality by O(y/n). Although
this protocol provides small communication locality, the bandwidth cost seems
to be superpolynomial due to large non-constant message sizes.

2.2 RAM-Based Techniques

Most MPC constructions model algorithms as circuits. Unfortunately, a circuit
can at best model the worst-case running time of an algorithm because a circuit

5 In general, if the majority of parties are malicious, then the termination of MPC
(i.e., output delivery) cannot be guaranteed.

can only be created by unrolling loops to their worst-case runtime [GKP*13].
Moreover, circuits incur at least a linear computation complexity in the total
size of the input, while a sublinear overhead is crucial for achieving scalabil-
ity in most large-scale applications. In addition, most algorithms have already
been described in terms of instructions (programs) to a random access memory
(RAM) machine® [CR72], not circuits. These all bring the following question to
the mind: Is it possible to securely evaluate RAM programs instead of circuits?
Luckily, the answer is “yes”. Goldreich and Ostrovsky [GO96] show that by con-
structing a RAM with secure access, one can evaluate arbitrary RAM programs
privately. Such a RAM is often called an Oblivious RAM (ORAM). This is typ-
ically considered in a setting, where a group of parties (clients) want to access a
data storage (RAM) held by another party (a server).

To build an ORAM, content encryption alone is not sufficient because the
party holding the data (or an eavesdropper) can obtain critical information about
the queries by analyzing the access patterns, even though the data is encrypted.
Therefore, techniques are required to hide the access patterns to the data storage,
meaning that no party is able to distinguish between any subsets of the data
requests. More precisely, the following information must remain private: (1) the
locations of accessed data items, (2) the order of data requests, (3) the number
of requests to the same location, and (4) the type of access (e.g., get-value,
set-value).

Goldreich and Ostrovsky [GO96] propose a two-party technique for securely
outsourcing data to a remote storage. The client’s access pattern to the remote
storage is hidden by continuously shuffling and re-encrypting data as they are ac-
cessed. The authors show that any program in the standard RAM model can be
compiled into a program for an ORAM using an ORAM simulator with an over-
head that is polylogarithmic in the size of the memory. Although asymptotically-
efficient, the algorithm of [GO96] is not practical due to large constant factors.

Several techniques have been proposed to improve the overhead of ORAM
protocols in general [PR10,SCSL11,SvDST13] and for secure two-party com-
putation [GKK*12,GGH"13,L.O13]. Damgard et al. [DMN11] propose the first
ORAM algorithm in the multi-party setting. Unfortunately, their algorithm re-
quires each party to communicate and maintain information of size equivalent to
all parties’ inputs. Boyle et al. [BCP14a] describe a scalable technique for secure
computation of RAM programs in large networks by performing local communi-
cations in quorums of parties. For securely evaluating a RAM program I7, their
protocol incurs a total communication and computation of poly(n)+O(Time(IT))
while requiring O(|z| 4+ Space(IT)/n) memory per party, where Time(IT) and
Space(IT) are time and space complexity of IT respectively, and |z| denotes the
input size.

5 A RAM machine has a lookup functionality for accessing memory locations that
takes O(1) operations. Given an array A of N values and an index x € {1,..., N},
the lookup functionality returns Afz].

3 Open Problems

In this section, we describe several open problems in the domain of scalable
MPC. These problems are roughly ordered from easiest to hardest. We describe
some partial progress on the first two problems later in this paper.

Share Renewal. In the protocol of [DKMS14], each gate of the circuit is as-
signed a quorum (), and the parties in @) are responsible for computing the
function associated with that gate. Then, they send the result of this computa-
tion to any quorums associated with gates that need this result as input. Let
Q@' be one such quorum. It is necessary to securely send the output from @ to
Q' without revealing any information to any individual party or to any coalition
of adversarial parties. Inspired by [HJKY95], we refer to this problem as share
renewal, because it involves generating a fresh sharing of a secret-shared value
among a new set of parties.

Dani et al. [DKMS14] handle this problem by masking the result in @ and
unmasking the result in ’. Unfortunately, they do not provide an explicit con-
struction of their method, and simple constructions are very expensive in terms
of communication and computation costs [ZMS14]. Boyle et al. [BGT13] over-
come this problem by sending their encrypted inputs to only one quorum which
does all of the computation using FHE. This results in large computation and
communication costs for parties in that quorum. In Section 5, we give some ideas
for solving this problem efficiently.

Secure Multiplication. Consider an arithmetic circuit representing the de-
sired function to be computed. Using a linear secret sharing scheme (such as
[Sha79]), addition gates can be computed with no communication by simply
adding the two input shares. On the other hand, known secret sharing schemes
are not multiplicatively homomorphic meaning that the product of two shares
is not necessarily a valid and secure share of the product of the corresponding
secrets. Designing an efficient technique for secure multiplication is an important
building block for secret-sharing-based MPC. We are not aware of a perfectly-
secure technique for secure multiplication that requires only constant rounds of
communication.

Byzantine-Resilient Threshold Decryption. Consider n parties that have
jointly encrypted a message using some encryption scheme. In threshold decryp-
tion, for some parameter x < n, it is required that any subset of = parties can
decrypt the message, while any subset of strictly less than x parties learn nothing
about the encrypted message. Threshold decryption of a (fully) homomorphic
encryption can be used as a primitive for constructing efficient MPC protocols.

Unfortunately, known techniques for Byzantine-resilient threshold decryption
(such as [CDN01,AJLAT12]) suffer from large communication overhead, due to
zero-knowledge proofs used for ensuring honest behavior. A key open problem
is to reduce this communication overhead.

Las Vegas MPC. Recently, several randomized MPC algorithms have been
proposed (such as [BGT13,DKMS14,CCG"14]) with Monte Carlo guarantees.

In particular, the output is correct with high probability”. Alternatively, one
may try to design a Las Vegas MPC algorithm. For this type of algorithm,
the output must be correct with probability 1, but the latency can be a random
variable. It is not clear that a quorum-based approach will be effective for solving
this open problem.

Oblivious Parallel RAM. While parallelism has been extensively used in var-
ious computer architectures for accelerating computations, most ORAM models
of computation (see Section 2.2) are not parallel. In the Parallel RAM (PRAM)
model of computation, several parties, running in parallel, want to access the
same shared external memory. This separates the program into two parts: con-
trol flow and shared memory. The goal is to parallelize control flow via oblivious
access to the share memory in order to reduce computational time and latency.

In general, any PRAM program can be converted into a RAM program to be
then evaluated by a standard ORAM. Unfortunately, this transformation incurs
a large computational overhead. Boyle et al. [BCP14b] take a first step towards
addressing this problem by describing an oblivious PRAM scheme that compiles
any PRAM program into an Oblivious PRAM (OPRAM) program. This compiler
incurs polylogarithmic overhead in the number of parties and the memory size.
The algorithm is based on the ORAM construction of Shi et al. [SCSL11] which
requires cryptographic assumptions. It remains unknown if one can design a
perfectly-secure oblivious PRAM with resource costs that scale well with the
network size and are independent of memory size.

Large Inputs. It is also interesting to consider MPC when each party can
have very large inputs. Following is a concrete problem in this domain. Let M
be a sparse adjacency matrix for some graph, and let the columns of M be
partitioned among the parties. This problem motivates the following questions:
Can we securely and efficiently compute the shortest path between a given pair
of vertices over M? We can also consider other graph-theoretic problems. Even
simpler, can we securely compute the dot product of two sparse vectors with
resource costs proportional only to the number of non-zero entries in the vectors?
We are not aware of any algorithms for even these simple types of problems.

4 Algorithmic Tools

In this section, we describe key algorithmic tools used in scalable MPC protocols.

4.1 Verifiable Secret Sharing

An (n,t)-secret sharing scheme, is a protocol in which a dealer who holds a
secret value shares the secret among n parties such that any set of ¢ parties
cannot gain any information about the secret, but any set of at least t+ 1 parties

" An event occurs with high probability, if it occurs with probability at least 1 — 1/n°,
for any ¢ > 0 and all sufficiently large n.

10

can reconstructs it. An (n, t)-verifiable secret sharing (VSS) scheme is an (n,t)-
secret sharing scheme with the additional property that after the sharing phase,
a dishonest dealer is either disqualified or the honest parties can reconstruct the
secret, even if shares sent by dishonest parties are spurious. Katz et al. [KKKO08|
propose a constant-round VSS protocol based on Shamir’s secret sharing [Sha79).
This result is described in Theorem 1.

Theorem 1. [KKKO08] There exists a synchronous linear (n,t)-VSS scheme for
t < n/3 that is perfectly-secure against a static adversary. The protocol requires
one broadcast and three rounds of communication.

For practicality, one can use the cryptographic VSS of Kate et al. [KZG10)
called eVSS®, which is based on Shamir’s scheme and the hardness of the dis-
crete logarithm problem. Since eVSS generates commitments over elliptic curve
groups, it requires smaller message sizes than other DL-based VSS scheme such
as [GRRYS].

Theorem 2. [KZG10] There exists a synchronous linear (n,t)-VSS scheme for
t < n/2 that is secure against a computationally-bounded static adversary. In
worst case, the protocol requires two broadcasts and four rounds of communica-
tion.

4.2 Secure Broadcast

In the Byzantine setting, when parties have only access to secure pairwise chan-
nels, a protocol is required to ensure secure (reliable) broadcast. Such a broadcast
protocol guarantees all parties receive the same message even if the broadcaster
(dealer) is dishonest and sends different messages to different parties. It is known
that a BA protocol can be used to perform secure broadcasts. The BA algorithm
of Braud-Santoni et al. [BGH13] gives the following result.

Theorem 3. [BGH13] There exists an unconditionally-secure protocol for per-
forming secure broadcasts among n parties. The protocol has O(n) amortized
communication and computation complexity, and it can tolerate up to (1/3—e€)n
Byzantine parties, for any positive €.

The algorithm of [BGH13] achieves this result by relaxing the load-balancing
requirements. If concerned with load-balancing, one can instead use the load-
balanced BA algorithm of King et al. [KSSV06b] with O(y/n) blowup.

4.3 Quorum Building

As an intermediate result in a Byzantine agreement paper, King et al. [KLST11]
give a protocol that can be used to bring all parties to agreement on a collec-
tion of n quorums. This protocol is based on the almost-everywhere Byzantine
agreement? of King et al. [KSSV06b].

8 Stands for efficient VSS
9 King et al. [KSSV06b] relax the requirement that all uncorrupted parties reach
agreement at the end of the protocol, instead requiring that a 1 — o(1) fraction

11

Theorem 4. [KSSV06b] Suppose there are n parties, b < 1/4 — e of which are
malicious, for any fized positive e. Then, there is a polylogarithmic (in n) bounded
degree network and a protocol such that,

— With high probability, a 1 —O(1/1nn) fraction of the honest parties agree on
the same value (bit or string).

— Ewery honest party sends and processes only a polylogarithmic (inn) number
of bits.

— The number of rounds required is polylogarithmic in n.

Their main technique is to divide the parties into groups of polylogarithmic
size; each party is assigned to multiple groups. In parallel, each group then uses
a leader election algorithm [Fei99] to elect a small number of parties from within
their group to move on. This step is recursively repeated on the set of elected
parties until size of the remaining parties in this set becomes polylogarithmic.
At this point, the remaining parties can solve the semi-random-string agreement
problem'? (similarly, they can run Byzantine agreement protocol to agree on a
bit). Provided the fraction of dishonest parties in the set of remaining parties is
less than 1/3 with high probability, these parties succeed in agreeing on a semi-
random string. Then, these parties communicate the result value to the rest of
the parties.

In general, one can use any BA algorithm to build a set of quorums as
described in [KLST11]. Theorem 5 gives a quorum building protocol using the
BA algorithm of Braud-Santoni et al. [BGH13].

Theorem 5. [BGH13] There exists an unconditionally-secure protocol that brings
all good parties to agreement on n good quorums with high probability. The pro-

tocol has O(n) amortized communication and computation complexity'', and it

can tolerate up to (1/3 — e)n Byzantine parties, for any positive €. If at most

(a—e€) fraction of parties are Byzantine, then each quorum is guaranteed to have

T < aN Byzantine parties.

5 Quorum-Based MPC

In Table 1, we review recent MPC results that provide sublinear communication
locality. All of these results rely on some quorum building technique for creating a
set of quorums each with honest majority. In the rest of this section, we describe a
few ideas for improving efficiency of the synchronous MPC of [DKMS12]. These
techniques are proved in [ZMS14]. We also conduct experiments to show the
effectiveness of our techniques when compared with the protocols of [DKMS12]
and [BGT13].

of uncorrupted parties reach agreement. They refer to this relaxation as almost-
everywhere agreement.

10 Tn semi-random-string agreement problem, we want to reach a situation where, for
any positive constant €, 1/2 + € fraction of parties are good and agree on a single
string of length O(logn) with a constant fraction for random bits.

11 Amortized communication complexity is the total number of bits exchanged divided
by the number of parties.

12

*2INJONIISRIJUT ASN-O1I)2WWAS © mEE:ww/xm
‘suorpdunsse o1yde130)dAI0 JUISTL POASIYDR ST 1999)®] m::L,H

‘[e1ADd] o eweyds HH L oYy Suis

*S910N]

77 werdoad NYY JO auil) UTUUNI 9SeD-1SIOM :([])2Wie],

‘sjue)suod oarysod : 3 3

-1o%owrered £31Indes oY) M

"HMOI10 oY) Jo y3idop :p
‘juswIee p[ey ® JO 9ZIS iy
‘so1paed Jo Joqunu :u

‘saojsuwreaedq
(uso@M o (u,Sorupu)gs | (u,, Sorufu)o
I0 I0 I0
EIN s(WusoBol)u| (v 8010 5(u 5 Boru) (U5 19011w)0 ON ON EIN z/u 0yd&xy | [pT4DHO0]
((n?war)o ((n?war)o
SO Mo QEKE.&BVQ + (u)Ajod + (u)Ajod SO ON ON u(®—¢/1) 1003104 [ep1and]
1 +*)o +(u Sorw)o +(u Sorw)o
10 10 10
SOK @o o (w)o (w)o ON ON ON u(®>—9/1) | 100p10g [F1snzl
((u)3Bolfjod
soX @o +p)o (wru+w)o (wru+w)o oN LN ON u(>—8/1) | oyp4 | [FISINMA]
((w)3o)Ajod
ON iDle (Mo (gpwsn) g + (W) (w)o ON ON ON u(®®—¢/1) | o1dhip [e1LoH4d]
((u)3Bojjod
SOX Mo +P)o (wru+w)o (wru+w)o ON ON oN u(>—¢/1) | 950d | [gTSINIAl
Kyrxspdwo) Jeuueyd
Jpeouereg uorjeynduwo) Kyrxspduwo) jseopeoag iAresiaApy punog
-peory 2z1g SSIA Aousajery rejor o3essaJ\ [B10], | sownssy | ;oudAsy | oanydepy |Aouoaifisey | Ajrandeg [00030ag

*£1[€D0] UOTYeITUNUITOD IBSUI[NS IIM SHMNSAI D) JIN U909y T 9[qe],

13

Although the protocol of [DKMS12] asymptotically scales well with n, it is
inefficient in practice due to large hidden factors in its cost complexities. More-
over, the paper does not provide an explicit construction of the proposed share
renewal technique (see Section 3). Unfortunately, simple constructions seem very
expensive in terms of communication and computation costs since parties in the
second quorum need to jointly and securely unmask each input.

In [ZMS14], we propose a simple and efficient technique for share renewal. We
also implement an efficient secure multiplication protocol to reduce the band-
width and computation costs of [DKMS12]. In the rest of this section, we sketch
the main properties of this new algorithm. Full details of the algorithms are
in [ZMS14].

Consider n parties in a fully-connected synchronous network with private
channels. Let f be any deterministic function over n inputs in some finite field
F, for prime p = poly(n), where f is represented as an arithmetic circuit with
m gates and depth d. We prove the following theorem in [ZMS14].

Theorem 6. There exists an unconditionally-secure n-party protocol that can
compute f with high probability, while ensuring,

— The protocol tolerates up to (1/6 — €)n malicious parties.
Each party sends (computes) O(m/n) messages (operations).
— Each message is of size O(logp) bits.

The protocol has O(d) rounds of communication.

While our techniques are perfectly-secure, one can use the efficient VSS of
Theorem 2 to achieve a cryptographic variant of Theorem 6 with better efficiency.

Theorem 7. There exists an n-party protocol secure against a PPT adversary
such that the protocol can compute f with high probability, while ensuring,

— The protocol tolerates up to (1/6 — €)n malicious parties.

— Fach party sends O(% log® n) messages and computes O(%(/ﬁ—!—log D) log? n)
operations, where K is the security parameter.

— FEach message is of size O(k + logp) bits.

— The protocol has O(d) rounds of communication.

In this section, we represent each shared value s € F,, by (s) = (s1,...,8p)
meaning that each party P; holds a share s; generated by the VSS scheme of
Theorem 1 during its sharing phase. Using the natural component-wise addition
of representations, we define (a) + (b) = (a + b). For multiplication, we define
(a) - (b) = Multiply({a), (b)), where Multiply is a protocol defined later in this
section.

5.1 Share Renewal

Recalling from Section 3, let Q and @’ be the quorums involved in the share
renewal process. In [ZMS14], we propose a different approach than [DKMS12]

14

by reducing the share renewal problem to the simpler problem of generating a
fresh sharing of the output of @ among parties of Q’. In other words, parties in
@ generate a new set of random shares that represents the same secret as the
output of), and distribute this new sharing among parties of @Q’.

The high-level idea is to first generate a random polynomial that passes
through the origin, and then add it to the polynomial that corresponds to the
shared secret. The result is a new polynomial that represents the same secret
but has coefficients that are chosen randomly and completely independent of
the coefficients of the original polynomial. Combined with the VSS scheme of
Theorem 1 in a group of n parties with ¢ < n/3 dishonest parties, this protocol
has one round of communication and requires each party to send O(n) field
elements.

This idea was first proposed by Ben-Or et al. [BGW88]. The solution provided
in [BGW88] requires a zero-knowledge proof, where each party is asked to prove
distribution of shares over a polynomial with zero free-coefficient. Unfortunately,
such a proof is either round-expensive (as in [BGWS88]) or requires a weaker
adversarial model for the problem to be solved efficiently (e.g., see [HIKY95]).
On the other hand, by relaxing the resiliency bound by only one less dishonest
party, we can generate a random polynomial that passes through the origin
without requiring the zero-knowledge step.

Let ¢(x) be the original polynomial. The idea is to first generate a ran-
dom polynomial p(x) of degree deg(¢) — 1, and then compute a new polynomial
¢o(x) = x - p(x) that is of degree deg(¢) and passes through the origin. Finally,
the fresh polynomial is computed from ¢(x) 4+ ¢o(x). The polynomial p(z) can
be simply generated by asking parties to agree on a secret-shared uniform ran-
dom value (using the protocol GenRand described in [ZMS14]) over a random
polynomial of degree deg(¢) — 1. Figure 1 depicts this idea for the special case
of d=1.

Theorem 8. [ZMS14] Let Q and Q' be two quorums of size N, where @ holds
a shared value (s) = (s1,...,sn) over a polynomial ¢ of degree d = N/3. There
exists a protocol that can generate a new shared value (s') = (s}, ...,s%) in Q'
such that s' = s. The protocol is secure against a computationally-unbounded
Byzantine adversary corrupting less than a 1/6 fraction of the parties in each
quorum.

5.2 Secure Multiplication

The secure multiplication protocol of [ZMS14] (denoted by Multiply) is based on
a well-known technique proposed by Beaver [Bea91]. The technique generates a
shared multiplication triple ({u), (v), (w)) such that w = u-v. The triple is then
used to convert multiplications over shared values to additions.

The only difference between Multiply and Beaver’s multiplication method is
that Beaver generates shared random elements v and v on polynomials of degree
d and multiplies them to get a polynomial of degree 2d for w. Then, a degree
reduction algorithm is run to reduce the degree from 2d to d. Instead, we choose

15

y

A

Bo(x) = 2 p(x)

o)

o

¢(x) ¢'(x) = p(x) + Po(x)

¢’ (x)
Fig. 1. Share renewal technique [ZMS14]

polynomials of degree d/2 for u and v to get a polynomial of degree d for w. In
our protocol, since we require less of 1/6 fraction of the parties be dishonest in
each quorum, we can do this without revealing any information to the adversary.
We note that the first step of Multiply is independent of the inputs and thus, can
be performed in an offline phase to generate a sufficient number of multiplication
triples.

Theorem 9. [ZMS14] Given two secret-shared values {a) and (b), the protocol
Multiply correctly generates a shared value {(c¢) such that ¢ = a-b. The protocol is
perfectly-secure against an adversary corrupting less than a 1/6 fraction of the
parties.

5.3 Simulation Results

To study the effectiveness of our techniques and compare our new MPC scheme
to previous work, we simulate our protocol along with the protocols of Dani
et al. [DKMS12] and Boyle et al. [BGT13]. We use these protocols to solve the
secure multi-party sorting (MPS) problem. MPS is useful in many applications
such as anonymous communication [RS93,BFTS04,MSZ14]|, privacy-preserving
statistical analysis [DAO1] (e.g., top-k queries [BD10]), auctions [Zhall], and
location-based services [ZM14]. It is often important for these applications to
be run among many parties. For example, MPS is a critical component of com-
munications algorithms that could enable the creation of large anonymous mi-
croblogging services without requiring trusted authorities (e.g., an anonymous
Twitter).

We run our protocol for inputs chosen from Z, with a 160-bit prime p for
getting about 80 bits of security. We set the parameters of our protocol in such
a way that we ensure the probability of error for the quorum building algorithm

16

of [BGH13] is smaller than 107°. For the sorting circuit, we set k = 2 to get
€ < 1078 for all values of n in the experiment. Clearly, for larger values of n, the
error becomes superpolynomially smaller, e.g., for n = 22°, we get e < 10739,
For all protocols evaluated in this section, we assume cheating (by malicious
parties) happens in every round of the protocols. This is essential for evaluating
various strategies used by these protocols for tolerating active attacks.

Figure 2 illustrates the simulation results obtained for various network sizes
between 25 and 230 (i.e., between 32 and about 1 billion). To better compare the
protocols, the vertical and horizontal axis of the plot are scaled logarithmically.
The x-axis presents the number of parties and the y-axis presents the number
of Kilobytes sent by each party for delivering one anonymous bit.

In this figure, we report results from three different versions of our protocol.
The first plot (marked with circles) belongs to our unconditionally-secure proto-
col (Theorem 6) that uses the perfectly-secure VSS scheme of Katz et al. [KKKO08].
The second plot (marked with stars) represents our computationally-secure pro-
tocol (Theorem 7) which uses the cryptographic VSS of Kate et al. [KZG10]. The
last plot (marked with diamonds) shows the cost of the cryptographic protocol
with amortized (averaged) setup cost.

We obtain this by running the setup phase of our protocol once and then
using the setup data to run the online protocol 100 times. The total number of
bits sent was then divided by 100 to get the average communication cost. To
achieve better results, we also generated a sufficient number of random triples in
the setup phase. Then, the triples were used by our multiplication subprotocol
in the online phase to multiply secret-shared values efficiently.

Our protocols significantly reduce bandwidth costs when compared to the
protocols of [DKMS12] and [BGT13]. For example, for n = 22° (about 1 mil-
lion parties?), the amortized protocol requires each party to send about 64KB
of data per anonymous bit delivered (about 8MB for our non-amortized ver-
sion) while the protocols of [DKMS12] and [BGT13] each send more than one
Terabytes of data per party and per sorting bit delivered.

6 Conclusion

We described recent MPC algorithms that are efficient, even with many parties.
In particular, we reviewed the most important results that achieve scalability
via quorums. To draw distinctions between various schemes, we described dif-
ferent approaches used in the literature for solving MPC. We described six open
problems whose solutions would improve efficiency of scalable MPC schemes.
Additionally, we described constructive techniques to improve efficiency of cur-
rent quorum-based techniques. A drawback of most MPC results is the lack
of empirical studies. We addressed this by implementing and benchmarking a
number of recent methods as well as our new techniques.

12 This is less than 1% of the number of active Twitter users. An intriguing application
of our protocol is an anonymous version of Twitter.

17

50

Kilobytes sent per party per sorted bit delivered

451

401

Log number of Kilobytes sent

[DKMS12]

4 |—=—[BGT13]
—o—[ZMS14] (Perfect VSS)
1 |——[ZMS14] (Crypto VSS)
——[ZMS14] (Amortized)

10 15 20 25 30

Log number of parties

Fig. 2. Bandwidth cost of scalable MPC protocols

7 Acknowledgments

The authors would like to acknowledge supports from NSF under grants CCF-
1320994, CCR-0313160, and CAREER Award 644058. We are also grateful
for valuable comments by Mahnush Movahedi from University of New Mexico,
David Evans from University of Virginia, Elette Boyle from Cornell University,
and Aniket Kate from Saarland University.

References

AJLAT12.

BCG93.

BCP14a.
BCP14b.

BD10.

Bea9l.

Gilad Asharov, Abhishek Jain, Adriana Lépez-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low
communication, computation and interaction via threshold FHE. In Ad-
vances in Cryptology — EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 483-501. Springer Berlin Heidelberg, 2012.
Michael Ben-Or, Ran Canetti, and Oded Goldreich. Asynchronous secure
computation. In Proceedings of the Twenty-Fifth ACM Symposium on the
Theory of Computing (STOC), 1993.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Large-scale secure com-
putation. Cryptology ePrint Archive, Report 2014/404, 2014.

Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivious parallel ram.
Cryptology ePrint Archive, Report 2014/594, 2014.

M. Burkhart and X. Dimitropoulos. Fast privacy-preserving top-k queries
using secret sharing. In Computer Communications and Networks (IC-
CCN), 2010 Proceedings of 19th International Conference on, pages 1-7,
August 2010.

Donald Beaver. Efficient multiparty protocols using circuit randomization.
In Advances in Cryptology — CRYPTO ’91, volume 576 of Lecture Notes
in Computer Science, pages 420-432. Springer Berlin Heidelberg, 1991.

18

BEFTS04.

BGH13.

BGT13.

BGV12.

BGWSS.

BMR90.

CCDSS.

CCG*14.

CDGSS.

CDNOL1.

CFGN96.

CGMAS5.

Ron Berman, Amos Fiat, and Amnon Ta-Shma. Provable unlinkability
against traffic analysis. In Financial Cryptography, volume 3110 of Lecture
Notes in Computer Science, pages 266—280. Springer Berlin Heidelberg,
2004.

Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. Fast Byzan-
tine agreement. In Proceedings of the 2018 ACM Symposium on Principles
of Distributed Computing, PODC ’13, pages 5764, New York, NY, USA,
2013. ACM.

Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. Communication lo-
cality in secure multi-party computation: how to run sublinear algorithms
in a distributed setting. In Proceedings of the 10th theory of cryptography
conference on Theory of Cryptography, TCC’13, pages 356-376, Berlin,
Heidelberg, 2013. Springer-Verlag.

Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. Fully homo-
morphic encryption without bootstrapping. In Proceedings of the 3rd In-
novations in Theoretical Computer Science Conference, ITCS ’12, pages
309-325, New York, NY, USA, 2012. ACM.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness
theorems for non-cryptographic fault-tolerant distributed computing. In
Proceedings of the Twentieth ACM Symposium on the Theory of Comput-
ing (STOC), pages 1-10, 1988.

D. Beaver, S. Micali, and P. Rogaway. The round complexity of secure
protocols. In Proceedings of the Twenty-second Annual ACM Symposium
on Theory of Computing, STOC ’90, pages 503-513, New York, NY, USA,
1990. ACM.

David Chaum, Claude Crépeau, and Ivan Damgard. Multiparty uncondi-
tionally secure protocols. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing (STOC), pages 11-19, 1988.
Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Gold-
wasser, Rafail Ostrovsky, and Vassilis Zikas. Optimally resilient and adap-
tively secure multi-party computation with low communication locality.
Cryptology ePrint Archive, Report 2014/615, 2014.

David Chaum, Ivan Damgard, and Jeroen van de Graaf. Multiparty com-
putations ensuring privacy of each party’s input and correctness of the
result. In A Conference on the Theory and Applications of Cryptographic
Techniques on Advances in Cryptology, CRYPTO ’87, pages 87-119, Lon-
don, UK, UK, 1988. Springer-Verlag.

Ronald Cramer, Ivan Damgard, and Jesper Buus Nielsen. Multiparty com-
putation from threshold homomorphic encryption. In Proceedings of the
International Conference on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, EUROCRYPT ’01, pages 280-299,
London, UK, UK, 2001. Springer-Verlag.

R. Canetti, U. Friege, O. Goldreich, and M. Naor. Adaptively secure multi-
party computation. Technical report, Cambridge, MA, USA, 1996.
Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the presence of faults. In
Proceedings of the 26th Annual Symposium on Foundations of Computer
Science, SFCS ’85, pages 383-395, Washington, DC, USA, 1985. IEEE
Computer Society.

19

CR72.

DAOL.

DI06.

DIK™*08.

DIK10.

DKMS12.

DKMS14.

DMNT11.

DNO7.

DPSZ12.

Fei99.

Gen09.

GGH™13.

Stephen A. Cook and Robert A. Reckhow. Time-bounded random access
machines. In Proceedings of the Fourth Annual ACM Symposium on The-
ory of Computing, STOC ’72, pages 73-80, New York, NY, USA, 1972.
ACM.

Wenliang Du and Mikhail J. Atallah. Secure multi-party computation
problems and their applications: A review and open problems. In Proceed-
ings of the 2001 Workshop on New Security Paradigms, NSPW ’01, pages
13-22, New York, NY, USA, 2001. ACM.

I. Damgard and Y. Ishai. Scalable secure multiparty computation. Ad-
vances in Cryptology - CRYPTO 2006, pages 501-520, 2006.

I. Damgard, Y. Ishai, M. Krgigaard, J. Nielsen, and A. Smith. Scalable
multiparty computation with nearly optimal work and resilience. Advances
in Cryptology — CRYPTO 08, pages 241-261, 2008.

Ivan Damgrd, Yuval Ishai, and Mikkel Krigaard. Perfectly secure mul-
tiparty computation and the computational overhead of cryptography.
In Advances in Cryptology EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 445-465. Springer Berlin Heidelberg,
2010.

Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Brief an-
nouncement: breaking the o(nm) bit barrier, secure multiparty computa-
tion with a static adversary. In Proceedings of the 2012 ACM symposium on
Principles of distributed computing, PODC ’12, pages 227-228, New York,
NY, USA, 2012. ACM. Full version: http://arxiv.org/abs/1203.0289.
Varsha Dani, Valerie King, Mahnush Movahedi, and Jared Saia. Quorums
quicken queries: Efficient asynchronous secure multiparty computation. In
Distributed Computing and Networking, volume 8314 of Lecture Notes in
Computer Science, pages 242—256. Springer Berlin Heidelberg, 2014.

Ivan Damgard, Sigurd Meldgaard, and Jesper Buus Nielsen. Perfectly
secure oblivious RAM without random oracles. In Proceedings of the 8th
Conference on Theory of Cryptography, TCC’11, pages 144-163, Berlin,
Heidelberg, 2011. Springer-Verlag.

I. Damgard and J.B. Nielsen. Scalable and unconditionally secure multi-
party computation. In Proceedings of the 27th annual international cryptol-
ogy conference on Advances in cryptology, pages 572-590. Springer-Verlag,
2007.

Ivan Damgard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multi-
party computation from somewhat homomorphic encryption. In Advances
in Cryptology — CRYPTO 2012, volume 7417 of Lecture Notes in Computer
Science, pages 643-662. Springer, 2012.

Uriel Feige. Noncryptographic selection protocols. In FOCS, pages 142—
153, 1999.

Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st annual ACM symposium on Theory of computing,
STOC ’09, pages 169-178, New York, NY, USA, 2009. ACM.

Craig Gentry, KennyA. Goldman, Shai Halevi, Charanjit Julta, Mariana
Raykova, and Daniel Wichs. Optimizing ORAM and using it efficiently
for secure computation. In Privacy Enhancing Technologies, volume 7981
of Lecture Notes in Computer Science, pages 1-18. Springer Berlin Heidel-
berg, 2013.

20

http://arxiv.org/abs/1203.0289

GHS12.

GHYSS.

GKK™*12.

GKP*13.

GLO02.

GMWS8r.

GO96.

GRR9S.

HEKMI11.

HIJKY95.

KKKO8.

KLST11.

KMRI11.

Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryp-
tion with polylog overhead. In Proceedings of the 31st Annual International
Conference on Theory and Applications of Cryptographic Techniques, EU-
ROCRYPT’12, pages 465-482, Berlin, Heidelberg, 2012. Springer-Verlag.
Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation:
Secure faut-tolerant protocols and the public-key model. In A Confer-
ence on the Theory and Applications of Cryptographic Techniques on Ad-
vances in Cryptology, CRYPTO ’87, pages 135-155, London, UK, UK,
1988. Springer-Verlag.

S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal
Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party com-
putation in sublinear (amortized) time. In Proceedings of the 2012 ACM
Conference on Computer and Communications Security, CCS ’12, pages
513-524, New York, NY, USA, 2012. ACM.

Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. How to run Turing machines on encrypted data.
In Advances in Cryptology CRYPTO 2013, volume 8043 of Lecture Notes
in Computer Science, pages 536—553. Springer Berlin Heidelberg, 2013.
Shafi Goldwasser and Yehuda Lindell. Secure computation without agree-
ment. In Distributed Computing, volume 2508 of Lecture Notes in Com-
puter Science, pages 17-32. Springer Berlin Heidelberg, 2002.

Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental
game. In Proceedings of the nineteenth annual ACM symposium on Theory
of computing, STOC ’87, pages 218-229, New York, NY, USA, 1987. ACM.
Oded Goldreich and Rafail Ostrovsky. Software protection and simulation
on oblivious RAMs. J. ACM, 43(3):431-473, May 1996.

R. Gennaro, M.O. Rabin, and T. Rabin. Simplified VSS and fast-track
multiparty computations with applications to threshold cryptography. In
Proceedings of the 17th Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC ’98, pages 101-111. ACM, 1998.

Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster se-
cure two-party computation using garbled circuits. In Proceedings of the
20th USENIX Conference on Security, SEC’11, pages 35-35, Berkeley, CA,
USA, 2011. USENIX Association.

Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage. In Advances
in Cryptology — CRYPTO °95, volume 963 of Lecture Notes in Computer
Science, pages 339-352. Springer Berlin Heidelberg, 1995.

Jonathan Katz, Chiu-Yuen Koo, and Ranjit Kumaresan. Improving the
round complexity of VSS in point-to-point networks. In Automata, Lan-
guages and Programming, volume 5126 of Lecture Notes in Computer Sci-
ence, pages 499-510. Springer Berlin Heidelberg, 2008.

Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. Load
balanced scalable Byzantine agreement through quorum building with full
information. In Distributed Computing and Networking, volume 6522 of
Lecture Notes in Computer Science, pages 203—214. Springer Berlin Hei-
delberg, 2011.

Seny Kamara, Payman Mohassel, and Mariana Raykova. Outsourcing
multi-party computation. Cryptology ePrint Archive, Report 2011/272,
2011.

21

KSSV06a.

KSSVO06b.

KZG10.

LO13.

LPO7.

LP09.

LP11.

MSZ14.

PR10.

PSL80.

RS93.

SCSL11.

ShaT9.

SvDS™13.

Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Scalable leader
election. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium
on Discrete Algorithm, SODA 06, pages 990-999, Philadelphia, PA, USA,
2006.

Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. Towards se-
cure and scalable computation in peer-to-peer networks. In Proceedings of
the 47th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’06, pages 87-98, Washington, DC, USA, 2006. IEEE Computer
Society.

Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Advances in Cryp-
tology — ASIACRYPT 2010 - 16th International Conference on the Theory
and Application of Cryptology and Information Security, volume 6477 of
Lecture Notes in Computer Science, pages 177—-194. Springer, 2010.

Steve Lu and Rafail Ostrovsky. Distributed oblivious RAM for secure two-
party computation. In Proceedings of the 10th Theory of Cryptography
Conference on Theory of Cryptography, TCC’13, pages 377-396, Berlin,
Heidelberg, 2013. Springer-Verlag.

Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-
party computation in the presence of malicious adversaries. In Moni Naor,
editor, Advances in Cryptology - EUROCRYPT 2007, volume 4515 of Lec-
ture Notes in Computer Science, pages 52—78. Springer Berlin Heidelberg,
2007.

Yehuda Lindell and Benny Pinkas. A proof of security of yaos protocol for
two-party computation. Journal of Cryptology, 22(2):161-188, 2009.
Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-
and-choose oblivious transfer. In Proceedings of the 8th Conference on
Theory of Cryptography, TCC’11, pages 329-346, Berlin, Heidelberg, 2011.
Springer-Verlag.

Mahnush Movahedi, Jared Saia, and Mahdi Zamani. Secure anonymous
broadcast. ArXiv e-prints, May 2014.

Benny Pinkas and Tzachy Reinman. Oblivious RAM revisited. In
Proceedings of the 30th Annual Conference on Advances in Cryptology,
CRYPTO’10, pages 502-519, Berlin, Heidelberg, 2010. Springer-Verlag.
M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the pres-
ence of faults. Journal of the ACM, 27(2):228-234, April 1980.

Charles Rackoff and Daniel R. Simon. Cryptographic defense against traf-
fic analysis. In Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, STOC ’93, pages 672-681, New York, NY, USA,
1993. ACM.

Elaine Shi, T.-H.Hubert Chan, Emil Stefanov, and Mingfei Li. Oblivious
RAM with O((log N)?) worst-case cost. In Advances in Cryptology ASI-
ACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
197-214. Springer Berlin Heidelberg, 2011.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612-613, 1979.
Emil Stefanov, Marten van Dijk, Elaine Shi, Christopher Fletcher, Ling
Ren, Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely
simple oblivious RAM protocol. In Proceedings of the 2013 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’13, pages
299-310, New York, NY, USA, 2013. ACM.

22

vDGHV10.

Yao82.

Zhall.

ZM14.

ZMS14.

Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Proceedings of the 29th
Annual International Conference on Theory and Applications of Crypto-
graphic Techniques, EUROCRYPT’10, pages 24-43, Berlin, Heidelberg,
2010. Springer-Verlag.

Andrew C. Yao. Protocols for secure computations. In Proceedings of the
23rd Annual Symposium on Foundations of Computer Science, SFCS 82,
pages 160-164, Washington, DC, USA, 1982. IEEE Computer Society.
Bingsheng Zhang. Generic constant-round oblivious sorting algorithm for
MPC. In Provable Security, volume 6980 of Lecture Notes in Computer
Science, pages 240-256. Springer Berlin Heidelberg, 2011.

Mahdi Zamani and Mahnush Movahedi. Secure location sharing. In Pro-
ceedings of the 10th ACM International Workshop on Foundations of Mo-
bile Computing, FOMC ’14, pages 1-10, New York, NY, USA, 2014. ACM.
Mahdi Zamani, Mahnush Movahedi, and Jared Saia. Millions of mil-
lionaires: Multiparty computation in large networks. Cryptology ePrint
Archive, Report 2014/149, 2014.

23

	Recent Results in Scalable Multi-Party Computation
	1 Introduction
	1.1 Problem Statement
	1.2 Measures of Effectiveness
	1.3 MPC and Byzantine Agreement

	2 Related Work
	2.1 Circuit-Based Techniques
	2.2 RAM-Based Techniques

	3 Open Problems
	4 Algorithmic Tools
	4.1 Verifiable Secret Sharing
	4.2 Secure Broadcast
	4.3 Quorum Building

	5 Quorum-Based MPC
	5.1 Share Renewal
	5.2 Secure Multiplication
	5.3 Simulation Results

	6 Conclusion
	7 Acknowledgments

