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Abstract

The increasing ubiquity of the cloud computing paradigm has renewed focus on the classical problem of
allowing weak clients to check the results of computation delegated to powerful servers. Recent advances
in proof-based verifiable computation have led to several near-practical protocols. Protocols based on
interactive proofs (IPs) work with highly restrictive models of computation and are thus efficient only for
a limited class of computations. In contrast, protocols based on argument systems apply to a much larger
class of computations, but efficiency requires amortization of very expensive setup costs.

This paper initiates the study of the practical efficiency of multiprover interactive proofs (MIPs).
We present a new MIP for delegating computation that extends insights from a powerful IP protocol
(Goldwasser et al., STOC, 2008). Without reductions or amplification, our protocol uses only two provers
(departing from prior work on MIPs), and achieves both the efficiency of interactive proof-based protocols
and the generality of argument system-based protocols. Also, this result, together with recently developed
machinery, creates a potential avenue toward concretely efficient arguments without setup costs.

We describe Clover, a built system for verifiable computation, based on our protocol. Although Clover
does not implement the full theory (it has setup costs), it applies to problems that existing IPs cannot
efficiently handle, and achieves performance comparable to, or better than, the best argument systems.
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1 Introduction
In recent years, the rise of cloud computing has renewed interest in the problem of how a weak client can
verifiably outsource computation to a powerful but untrusted server. As a motivating example, suppose that a
client wants to use the cloud to perform an expensive computation. There are many potential sources of error
in the results, including bugs in the server, hardware failures, and malicious behavior. In such applications, it
is often infeasible for the client to locally verify the correctness of the results.

There are many solutions to this problem (e.g., replication [6, 29, 45, 50, 55], trusted hardware [30, 65],
attestation [5, 56, 62, 66, 67, 73], or auditing [45, 47, 59]) that make strong assumptions about the usage
model or setup (e.g., uncorrelated errors, a chain of trust, intermediate results amenable to checking, etc.).

It has long been known that there are theoretical solutions to this problem that make no such assumptions
other than perhaps standard cryptographic ones [8, 9, 40, 40, 42, 46, 51, 54, 72]. Roughly speaking, the
client, or verifier, and server, or prover, represent a high-level program as a circuit; verification consists of the
prover using cryptographic or complexity-theoretic machinery to convince the verifier that it holds a valid
assignment to the wires of the circuit. Recently, there has emerged a new area of secure systems research,
called proof-based verifiable computation [78], that strives to build real systems using refinements of the
theory [17, 18, 26, 31, 61, 68–71, 75, 76]. Principal goals of these systems are to have minimal overhead for
the prover and for verification to be cheaper for the verifier than doing the computation locally.

Three approaches have been implemented. The first is based on interactive proofs (IPs) [11, 40, 42, 54, 72]
and is due to Cormode et al. (CMT) [31, 74, 75], who refined the GKR protocol [40]. The second approach
combines cryptographic commitments [51] with probabilistically checkable circuit encodings (of the kind
that appear in probabilistically checkable proofs, or PCPs [8, 9]) to obtain efficient argument systems [25]
(i.e., interactive proofs secure only against polynomial-time provers). Setty et al. [26, 69–71] build on work
of Ishai et al. [46] and GGPR [37]. The third approach is based on non-interactive arguments (also known
as SNARGs [39] or SNARKs [21]). Parno et al. describe a system [61] that realizes the full promise of
GGPR [37]; Ben-Sasson et al. [17, 18] likewise build on GGPR and several other works [15, 24].

The IP-based approach of CMT has a number of advantages. Most notably, for circuits with regular
wiring patterns (defined formally in §4.5.3; roughly, the circuit consists of repeated, structurally similar
blocks [31, 74]), CMT does not require preprocessing, has a highly efficient verifier, and achieves extremely
low overhead for the prover [74] (small constant factors over native execution). By contrast, the argument
systems require an expensive preprocessing stage for the verifier and have very high prover overhead. On
the other hand, CMT is less general. It applies only to small-depth circuits (i.e., parallelizable computation).
And it does not support non-deterministic circuits, which can be extremely useful for representing high-level
programs as circuits [15, 17, 26, 61, 69, 71]; operations such as random memory access and comparisons,
among others, are problematic for interactive proofs but not argument systems.

Our goal in this paper is to develop a protocol that simultaneously achieves the efficiency of CMT and the
generality of the argument systems. To accomplish this, we give up on the single prover of prior built systems.
Instead, we develop a practical implementation of multi-prover interactive proofs (MIPs), using CMT as a
base. Specifically, our protocol uses two provers, and provided that the provers do not communicate once the
interrogation phase of the protocol begins, the verifier will detect arbitrary error or misbehavior on their part.

Motivation. We have two reasons to study the practical efficiency of MIPs. First, although the MIP model
(stated above) is not always appropriate, it does correspond to some realistic scenarios: namely, those in
which there is replication but in which we do not want to assume that at least one of the replicas functions
correctly. (Indeed, if we are willing to assume that at least one of the replicas performs correctly, one can use
Refereed games and related protocols [27, 28, 52], as noted in Section 2.) Examples include the growing
use of efficient yet unreliable hardware, or a single cloud provider with a homogenous platform. In these
cases, many nodes (and hence both “provers”) can fail simultaneously. More broadly, the MIP model applies
whenever one would use (Byzantine Fault-Tolerant) replication [4, 6, 29, 55]; however, unlike replication, the
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MIP model tolerates correlated error.
Our second motivation stems from intense recent interest in non-interactive and succint arguments [17, 21,

22, 24, 32, 33, 37, 41, 43, 53, 58, 61], especially SNARKs (succinct non-interactive arguments of knowledge)
without preprocessing. Bitansky and Chiesa [23] give a powerful technique for obtaining such SNARKs;
using fully-homomorphic encryption (FHE) [38], they compile any complexity preserving1 MIP that also has
a proof-of-knowledge (PoK) property into a complexity preserving SNARK (under a natural but non-standard
assumption). This reduction (and other closely related ones [3, 35, 48, 49]) creates a potential avenue toward
a concretely efficient SNARK: (1) develop a more practical compiler (in particular, one not based on FHE),
and (2) develop a complexity preserving MIP with PoK that has inexpensive concrete costs (few provers, few
queries, etc.). In this work, we focus on the second of these prongs, in the hope that future work will target
the first. Of course, Bitansky and Chiesa also describe a complexity preserving MIP with PoK, but it has
substantially higher quantitative costs, as discussed in Sections 2 and 4.5.3.

Summary of contributions. This paper contains both theoretical contributions and systems innovations. As
our primary contribution, we describe a new MIP (with PoK) for the problem of non-deterministic circuit
evaluation (§3–§4). Our MIP improves on prior work by several logarithmic factors (which reduces concrete
costs substantially). Also, ours is the first complexity preserving MIP that has two provers and requires
only one protocol repetition. Our protocol combines several new ideas (a new circuit arithmetization and a
soundness analysis that avoids repetition, as outlined in Section 4), with existing ideas [12, 31, 40, 76].

We also describe a built system, called Clover (Section 5); given code written in a subset of C, Clover
produces a verifier and provers that implement the protocol. This system allows us to perform a preliminary
evaluation of the concrete efficiency properties of our MIP (§6). We find that Clover has better applicability
than existing IP-based approaches (i.e., CMT) and better efficiency than existing argument-based approaches.
However, Clover does not implement our MIP in full generality; specifically, Clover requires preprocessing
(also known as setup costs for the verifier). The reason for the discrepancy is that our MIP avoids preprocessing
only for regular circuits and Clover does not yet produce such circuits for general-purpose computations.
(However, such circuits exist in principle: we show that the RAM-into-circuit techniques of Ben-Sasson et
al. [15] can be modified to yield regular circuits.) Instead, Clover applies techniques [70, 71, 76] that produce
irregular circuits. Amortizing the resulting setup costs requires working over a batch of computation instances
(the same computation, with different inputs). While not ideal, the restriction is not disastrous: this model is
encountered in realistic applications of cloud computing (MapReduce, other data parallel computations, etc.).

2 Related work
Although there has been a great deal of classical systems work on verifiable computation, the majority of the
literature either makes strong assumptions about the usage model (e.g., trusted hardware) or is special-purpose.
See for example [61, 62, 70] for partial surveys of the area. Herein we focus on the recent body of work on
proof-based verifiable computation, and the tools it draws on.

GKR-CMT. We described GKR-CMT [31, 40, 74, 76] in the introduction; our MIP extends several ideas
from this protocol, achieving the following advantages. First, our protocol’s costs depend logarithmically
on the circuit’s size, with no dependence on the depth. In GKR-CMT, by contrast, the verifier’s costs
grow logarithmically in the circuit’s size and linearly in the depth, rendering the protocol inapplicable to
deep circuits. Second, our protocol does not require circuits to be layered, leading to much smaller circuit
representations. Third, our protocol requires fewer rounds, improving over GKR-CMT by a factor equal to
the circuit depth. Fourth, our protocol handles non-deterministic circuits; this permits the use of efficient
reductions from high-level programs to circuits [15, 61, 69, 76], a point we elaborate on below.

1An argument system or MIP is complexity preserving if when applied to a computation that can be solved by a (non-deterministic)
Random Access Machine that runs in time T(n) and space S(n), the verifier runs in time Õ(n), and the provers run in total time
Õ(T(n)) and space Õ(S(n)). Here, n is the size of the input to the RAM, and the Õ notation hides factors polylogarithmic in T(n).
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Fast reductions from RAMs to circuits. Ben-Sasson et al. [15], building on foundational work by, e.g.,
Gurevich and Shelah [44] and Robson [63], develop efficient methods for turning high-level programs (non-
deterministic RAMs) into non-deterministic circuits. We adapt the techniques of [15] to construct circuits
that compose with our MIP.

Prior work on MIPs. Babai et al. famously proved that MIP=NEXP [12]: the class of problems solvable
by multi-prover interactive proofs with a polynomial-time verifier equals the class of languages solvable
in non-deterministic exponential time. The protocol that they use in their proof inspired a number of our
techniques. In both protocols, the verifier runs a sum-check protocol (§3.3) with one prover to determine
whether some polynomial identity holds, and then asks another prover for help in performing the final check.

The actual polynomial identity that we use differs substantially from that of Babai et al. Moreover, their
analysis assumes that provers are non-adaptive. While a protocol secure against non-adaptive provers can
always be transformed into one secure against adaptive provers [14, 36], these transformations either use
many provers or require repeating the protocol many times, leading to unacceptable concrete costs.

As stated in the introduction, Bitansky and Chiesa also do foundational work in MIPs, in particular
giving the first (and, prior to our work, the only) complexity preserving MIP [23]. However, their MIP has
substantially higher quantitative costs than ours, particularly for the provers. In our MIP, both provers run in
O(|C| log2 |C|) time for a given circuit C. While [23] does not include a careful accounting of logarithmic
factors, we estimate that even an optimized implementation of the MIP described in [23] requires total
runtime at least Ω̃(|C| log6 |C|) for the provers, where Ω̃ hides factors of log log(|C|). (In Section 4, we briefly
describe the reasons for these higher costs.) In addition, the MIP of [23] requires either hundreds of provers
or else thousands of repetitions.2

One might wonder whether state of the art PCPs, together with parallel repetition, would lead to 2-prover
complexity preserving MIPs. The answer is no, because the work required to construct the PCP does not
preserve the prover’s space complexity.

Refereed games and refereed delegation of computation. Recent work in the setting of refereed games
[28, 52] and refereed delegation of computation (RDoC) [27] has provided verifiable computation protocols
using two provers. These approaches assume that at least one of the provers is honest (the difference between
them is that refereed games provide information-theoretic security, while RDoC protocols are secure against
polynomial time provers). By contrast, MIPs do not assume that either of the provers is honest.

Canetti et al. [27] report on an RDoC implementation that, for some computations, achieves a slowdown
for the prover of a factor of 8. While our MIPs cannot compete with this efficiency, the assumption of a
correct and honest prover is not suitable for all cryptographic settings, as noted in the introduction. Moreover,
it is MIPs’ combination of information-theoretic security and security, even when all provers are dishonest,
that allows them to be compiled into single-prover arguments [23, 49].

Argument systems without pre-processing. A standard technique for producing argument systems is
to compile one from a short PCP [8, 9, 19, 20, 34], using collision-resistant hash functions [13, 51, 57].
Ben-Sasson et al. [15, 16] focus on reducing the concrete costs of short PCPs, toward a potentially practical
solution. On the one hand, such an approach is appealing: there is no preprocessing for the verifier. On the
other, although we do not know the concrete costs (existing work on this topic is still theoretical, though
implementation efforts are reportedly underway), they are likely to be quite high: the short PCPs in [16]
require many repetitions for soundness amplification.

Argument systems with pre-processing. Ishai et al. [46] obtain interactive argument systems, using long
PCPs (short PCPs are complicated and often a bottleneck); however, the verifier requires pre-processing.
Gennaro et al. (GGPR) [37], working in a similar model to [43, 53], use an ingenious encoding of circuits to

2The reason for this tradeoff is that a generic reduction [14] from m to 2 provers yields a soundness error of 1− 1/m, which in turn
would require thousands of repetitions to drive the soundness error below, say, one part in one million.
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construct efficient non-interactive argument systems that also avoid short PCPs. This work is the theoretical
foundation of several of the built systems described below.

SNARKs. SNARKs are a kind of non-interactive argument. At a high level, there are four known techniques
for constructing SNARKs. We break these down into two sub-classes:

Non-complexity preserving SNARKs. One can construct SNARKs by compiling them from short PCPs
using extractable collision resistant hash functions [21, 32, 33, 41, 58]. However, this approach does not
directly yield complexity preserving SNARKs because existing fast constructions of short PCPs do not
preserve the space complexity of the prover. A second approach avoids short PCPs but requires a costly
pre-processing stage for the verifier (see argument systems with pre-processing above) [24, 37, 43, 53].

Complexity preserving SNARKs. A third approach to constructing SNARKs is compiling them from
MIPs of knowledge [23], as discussed in the introduction. If the original MIP is complexity preserving, the
resulting SNARK is too (the resulting SNARK is designated-verifier). A fourth method, bootstrapping [22],
uses an “inefficient” SNARK to produce one that is both publicly verifiable and complexity preserving. While
bootstrapping yields remarkable asymptotic results, the approach is intrinsically indirect (roughly speaking, it
requires running the inefficient SNARK on many sub-computations).

Built systems. CMT [31] implements the interactive proof of GKR [40]; Vu et al. incorporate refinements
into a system called Allspice [76], and Thaler [74] accelerates the prover. In another line of work, Setty et
al. [69–71] refine the argument protocol of Ishai et al. [46]; the best-performing in this line is called Zaatar.3

Parno et al. realize the SNARKs of GGPR [37] in Pinocchio [61]. Ben-Sasson et al. [17, 18] borrow and
optimize this SNARK and combine it with the RAM-to-circuit reductions described above [15]; we will refer
to this work as BCTV. Pantry [26] builds on Zaatar [69] and Pinocchio; it compiles C to SNARKs (as does
BCTV), handles programs that work with RAM (as does BCTV), and computations that work with external
state (which BCTV does not handle). Finally, Buffet [77] incorporates the best features of Pantry and BCTV.

Each of these systems separates into a front-end (an algorithm that transforms a high-level program into a
circuit) and a back-end (the “proof machinery”). The approaches built on GKR-CMT have the most efficient
back-end when they apply, but their applicability is limited, as noted earlier. The back-ends of Zaatar and
Pinocchio have the same rough efficiency as each other. However, Pinocchio provides non-interactivity and
zero-knowledge (by definition), which Zaatar does not (neither does GKR-CMT). The remaining differences
in the systems (Pinocchio, Pantry, BCTV, Buffet) concern the front-ends; this is because all of these systems
are built on the same back-end, namely the protocol of Pinocchio (whose parameters are optimized by BCTV).
Of these systems, Buffet’s circuits are equal or better in efficiency than its predecessors (the differences
approach two orders of magnitude for computations that interact with RAM), with almost no sacrifice of
expressiveness relative to the most expressive system (which is BCTV).

3 Preliminaries
3.1 Problem statement: multi-prover interactive proofs
We begin by defining multi-prover interactive proofs (MIPs). We primarily consider two-prover protocols and
specialize the definition to this case.

Definition 3.1. A two-prover interactive proof protocol for a language L ⊆ {0, 1}∗ involves three parties:
a probabilistic verifier and two provers. The verifier exchanges a sequence of messages with each prover;
each prover’s message is a function of the input message and the messages that it has seen so far. At the end
of the interaction, the verifier outputs 0 or 1. (V ,P1,P2) form a two-prover interactive protocol for L if the
following two conditions are satisfied, where the probabilities below are taken over V’s internal randomness.

3The argument protocol underlying [69–71] can also be modified to yield a two-prover MIP. The major advantage of our MIP over
this alternative is that the latter inherently requires an expensive pre-processing phase for the verifier that we can avoid.
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• Completeness: For any input x ∈ L, the verifier V outputs 1 with probability 1 when interacting with
provers P1 and P2.

• Soundness: For all x 6∈ L and all provers P∗1 , P∗2 , the probability that V outputs 1 on input x when
interacting with P∗1 and P∗2 is at most ε, for some ε < 1/3. The parameter ε is called the soundness error
of the protocol.

For simplicity, we will often refer to two-prover interactive proofs simply as MIPs. We also consider
functions f : {0, 1}∗ → R, for a finite range R, rather than languages. An MIP for f is an MIP for the
language {(x, f (x))}. We will sometimes consider MIPs for functions f with k > 1 outputs; to apply the
definition above to such functions, we interpret a k-tuple of outputs over rangeR as a single output over the
larger rangeRk. Clearly an MIP for f is interesting only if it is cheaper for V than computing f unaided. We
remark that the requirement of ε < 1/3 is chosen for consistency with the MIP literature (see e.g. [7, Chapter
8]); in our implementation, ε will be less than 2−23. Finally, a prover may in practice not be a single machine
(e.g., a prover may be implemented on a compute cluster).

Cost model. Whenever we work over a finite field F, we assume that a single field operation can be
computed in a single machine operation.

3.2 Other definitions

Circuits and transcripts. A arithmetic circuit C is defined over a field F and has input gates, output gates,
intermediate gates, and directed wires between them. Each gate computes addition or multiplication over F.
C can be non-deterministic (i.e., it can take auxiliary inputs). We will describe the gates in C as having values:
the value of an addition (multiplication) gate is set to be the sum (product) of its in-neighbors. We refer to the
number of gates in C as its size, and denote this quantity by |C|. A fundamental notion used by our MIP is
that of a correct transcript for a circuit C given input x ∈ {0, 1}n and output(s) y ∈ R.

Definition 3.2. A transcript for an arithmetic circuit C is an assignment of values to the circuit gates; a
correct transcript for {C, x, y} is a transcript in which the values assigned to the input gates are those of x,
the intermediate values correspond to the correct operation of each gate in C, and the values assigned to the
output gates are y. Given a triple {C, x, y}, we refer to the problem of determining whether there is a correct
transcript for {C, x, y} as the non-deterministic circuit evaluation problem.

Low-degree extensions. Let g : {0, 1}m → F be any function. We say that a polynomial g̃ : Fm → F is
a polynomial extension of g if g̃ agrees with g everywhere that g is defined; i.e., if g̃(x) = g(x) for all
x ∈ {0, 1}m. Notice that g̃ is defined over Fm whereas g is defined only over {0, 1}m. We will often work with
multilinear extensions, meaning that g̃ has degree at most one in each of its m variables.

3.3 Technical background

Schwartz-Zippel lemma. We will often make use of the following basic property of polynomials.

Lemma 3.1 ([79]). Let F be any field, and let f : Fm → F be a nonzero polynomial of total degree d. Then
on any finite set S ⊆ F, Prx←Sm [f (x) = 0] ≤ d/|S|. In particular, any two distinct polynomials of total degree
d can agree on at most d/|S| fraction of points in Sm.

Sum-check protocol. Our MIP makes essential use of two standard tools from the literature on IPs and
MIPs: sum-check protocols [54, 72] (see also [7, §8.3.1] and [64, §3.2.3]), and low-degree tests [10, 12, 60].
We describe sum-check protocols here and low-degree tests in context (§4.4).

Sum-check protocols are interactive; there is a verifier VSC and a prover PSC, and VSC begins with an
m-variate polynomial g : Fm → F as well as with a claim K (which is often originated by PSC). The protocol
allows PSC to prove to VSC that K equals the sum of the evaluations of g over all 2m Boolean inputs, namely:
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K =
∑

u1∈{0,1}
∑

u2∈{0,1} · · ·
∑

um∈{0,1} g(u1, . . . , um). If the true sum is K, then a correct PSC can convince
VSC; otherwise, VSC is highly unlikely to be convinced.

The power of this protocol is that VSC has to do far less work than the apparently exponential work that is
required to compute the sum locally. VSC’s main burden is to perform a single evaluation of g(r1, . . . , rm),
for a point (r1, . . . , rm) chosen uniformly at random from Fm. Moreover, the protocol requires only 2m− 1
messages to be exchanged over m rounds, with each message consisting of a small number of field elements.

3.4 Framework

proversV 

Ψ Ψ 

accept/
reject

1 1

2

3

C C
y

Ψ, x

transcript. . . 

2

P2P1verifier

Figure 1—Our high-level framework. In step À, a veri-
fier V and two provers P1,P2 compile a computation
Ψ to an arithmetic circuit, C. In step Á, V requests eval-
uation of Ψ on input x; P1 returns purported output y,
and both provers obtain a transcript for the execution
of C on x. In step Â, V queries P1 in rounds and sub-
mits a final query to P2; if y6=Ψ(x), then the responses
from non-colluding P1,P2 do not, except with very low
probability, convince V that Ψ was executed correctly.

Here we introduce the framework around which our MIP
is designed. This high-level description also loosely ap-
plies to many of the recently implemented systems for
proof-based verifiable computation [17, 18, 26, 31, 61,
69–71, 75, 76]; the primary difference is our use of two
provers.

Our MIP has three steps, depicted in Figure 1. In
Step 1, V starts with a specification Ψ of a Random
Access Machine computing a function f , and sends Ψ to
the provers. In practice, Ψ will typically be a program
expressed in a high-level language (in our prototype
implementation, a subset of C). The provers and the
verifier compile Ψ into a (non-deterministic) arithmetic
circuit C.4

In Step 2, P1 and P2 execute the computation Ψ on
input x, and P1 returns output y. In performing this step,
the provers are expected to obtain a correct transcript for
{C, x, y}. Notice that if the claimed output is incorrect—
that is, if y 6= f (x)—then a correct transcript for {C, x, y}
simply does not exist: in any transcript that represents
the inputs and the computation of each gate correctly, the output wires would not be y.

In Step 3, P1 and P2 want to prove to V that a correct transcript for {C, x, y} exists. Of course, there is a
simple proof that a correct transcript exists: the transcript itself. Unfortunately, V can check this transcript for
correctness only by examining all of it, which would be as much work as having executed Ψ in the first place.
Instead, P1 and P2 use low-degree extensions to encode the transcript (as a much longer string) in such a way
that a transcript’s correctness (or lack thereof) can be determined by inspecting only a few of the locations in
the encoded version; this “inspection” will take the form of queries from the verifier to the provers.

Herein, our primary focus will be on Step 3, i.e., on giving a novel two-prover protocol for (non-
deterministic) circuit evaluation.

4 An MIP for non-deterministic circuit evaluation
4.1 Overview of the ideas

Given an arithmetic circuit C, input x, and claimed outputs y, our protocol encodes a purported transcript W
(Defn. 3.2) as a polynomial G̃x,y in such a way that G̃x,y evaluates to 0 on a particular subset of its domain if
and only if W is correct for {C, x, y}. Omitting many details, our MIP then uses a sum-check protocol (§3.3),
run with P1, to check that G̃x,y in fact evaluates to 0 all over the subset in question. At the end of this
sum-check protocol, P1 is forced to make a claim about W̃(w4) for a point w4 chosen at random by the

4If C satisfies certain regularity conditions (made formal in §4.5.3), our protocol will allow V to avoid materializing the full circuit C
during this step, enabling V to run in time sub-linear in |C|.
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verifier, where W̃ is the multilinear extension of W. Even checking this claim is too expensive for V , so V
outsources it to P2, using a low-degree test (§4.4).

In many respects, our approach can be seen as a careful adaptation of the ideas underlying the GKR
protocol [40] to the multi-prover setting. While GKR verifies the correctness of a transcript for {C, x, y} layer
by layer, with a a different instance of the sum-check protocol required for each layer of C, our MIP verifies
the whole computation in one shot, using a single invocation of the sum-check protocol.

While this “sum-check protocol + low-degree test” paradigm for constructing two-prover MIPs is not
new [12], several aspects of our protocol require new ideas. One is the choice of the polynomial G̃x,y, which
is meant to vanish at all Boolean inputs if and only P1’s answers are consistent with a correct transcript W.
The difficulty in defining a suitable polynomial is that, for each output gate a, G̃x,y must ensure both that W(a)
is consistent with claimed output y and that W(a) is correct, given the values of a’s in-neighbors. Though our
definition of G̃x,y may appear obvious in hindsight, it carefully exploits cancellation to achieve this property
(Lemma 4.1 has details).

To the best of our knowledge, some aspects of our soundness analysis are also novel. In particular, in
standard analyses of low-degree tests, the assumption is that a prover is a function only of the queries issued
by the verifier within the test. However, recall that in our context V uses a low-degree test to check P1’s
claim about W̃(w4), and P1’s claim can depend not just on w4, but instead on the entire sequence of messages
exchanged with V over the course of the protocol. This makes it non-trivial to apply existing analyses of
low-degree tests to our setting, without resorting to expensive generic reductions or the use of additional
provers to force P1 to be non-adaptive.

4.2 Details of the MIP

We imagine a single input vector x and a claimed output y (which may be a vector), for a given computation
Ψ, compiled to an arithmetic circuit C of fan-in two. We stress that C may be non-deterministic. Each entry in
x, y, and all intermediate values, are contained in a finite field F = Fp (the integers mod a large prime p). In
our built system, p will always be 300 or 400 bits (§5).

Denote the number of gates in C, or its size, as |C|, and take s = dlog |C|e. Now, assume we have fixed an
ordering of the gates. Associate with every gate in C a label of s bits, in the natural way: the zero’th gate gets
the label 0, the next gate gets the label 1, etc. We will move back and forth between representing a label as an
integer (for example, 0, 1, etc.) and as a bit vector: (0,0,. . . ,0), (0,0,. . . ,1), etc.

Now, we will model a transcript of C as a list of every gate in C (including the input gates) together with a
purported value for that gate. It is convenient to represent that list as a function W : {0, 1}s → F that maps a
gate’s label to the gate’s purported value; it is also convenient to imagine that P1 is holding such a function
W. At this point, V wants to know whether W is a correct transcript (Defn. 3.2).

How can V check W for correctness? If V asks P1 only for the values of W for the input and output
gates, V has no way of knowing if the answers are correct. If V asks P1 for all of W, then V does not save
work. Instead, V translates the claim that W is correct into an equivalent algebraic claim that is amenable to
probabilistic checking. This algebraic claim concerns the properties of a carefully constructed polynomial.

To present this polynomial, we must introduce some functions that capture C’s structure: add, mult, and
io. Let add: {0, 1}3s → {0, 1} denote a function that takes as input three gate labels:

add(a, b, c) =

{
1 if gate a adds the outputs of gates b and c
0 otherwise

Likewise, mult : {0, 1}3s → {0, 1} returns 1 when gate a is the product of gates b and c, and 0 otherwise.
These two functions, add(·, ·, ·) and mult(·, ·, ·), are used in GKR [40], and are called wiring predicates by
CMT [31].5 We add a third wiring predicate: let io : {0, 1}3s → {0, 1} denote a function that takes as input

5A difference is that in those works, a circuit must be layered, and there are separate wiring predicates for each layer.
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gate labels (a, b, c) and returns 1 when gate a is a (non-auxiliary) input gate or one of the output gates, and b
and c are the in-neighbors of a (input gates have in-neighbors b = c = 0); otherwise, io returns 0.

Notice that add, mult, and io are independent of the inputs and purported outputs. Our last function,
however, depends on the inputs and purported outputs. Define Ix,y : {0, 1}s → F such that Ix,y(a) = xa if a is
the label of an input gate, Ix,y(a) = ya if a is the label of an output gate, and Ix,y(a) = 0 otherwise.

We now use add, mult, io, and Ix,y to write a function that captures whether a transcript W is correct for
{C, x, y}.

Lemma 4.1. For Gx,y(a, b, c) defined as below, Gx,y(a, b, c) = 0 for all (a, b, c) ∈ {0, 1}3s if and only if W is
a correct transcript for {C, x, y}:

Gx,y(a, b, c)= io(a, b, c)·(Ix,y(a)−W(a))+add(a, b, c)·(W(a)−(W(b)+W(c)))+mult(a, b, c)·(W(a)−W(b)·W(c)).

Proof. If W is not a correct transcript, there are five cases:
1. Suppose a ∈ {0, 1}s is the label of an input gate. If W(a) 6= xa, then Gx,y(a, 0, 0) = Ix,y(a)−W(a) =

xa −W(a) 6= 0.
2. Suppose a ∈ {0, 1}s is the label of a non-output addition gate with in-neighbors b and c. If W(a) 6=

W(b) + W(c), then Gx,y(a, b, c) = W(a)− (W(b) + W(c)) 6= 0.
3. Suppose a ∈ {0, 1}s is the label of a non-output multiplication gate with in-neighbors b and c. If

W(a) 6= W(b) ·W(c), then Gx,y(a, b, c) = W(a)− (W(b) ·W(c)) 6= 0.
4. Suppose a ∈ {0, 1}s is the label of an output addition gate with in-neighbors b and c. If ya 6= W(b) +

W(c), then Gx,y(a, b, c) = Ix,y(a)−W(a) + (W(a)− (W(b) + W(c))) = ya − (W(b) + W(c)) 6= 0.
5. Suppose a ∈ {0, 1}s is the label of an output multiplication gate with in-neighbors b and c. If ya 6=

W(b) ·W(c), then Gx,y(a, b, c) = Ix,y(a)−W(a) + (W(a)− (W(b) ·W(c))) = ya− (W(b) ·W(c)) 6= 0.
On the other hand, if W is a correct transcript then it is immediate from the definition of Gx,y that Gx,y(a, b, c) =
0 for all (a, b, c) ∈ {0, 1}3s.

The lemma implies that in order for V to check that W is a correct transcript, it suffices for V to check
that Gx,y vanishes on all inputs in the Boolean hypercube. However, this check must be “outsourced” because
V cannot handle all of Gx,y. We briefly consider a straw man approach to such outsourcing: use a sum-check

protocol (§3.3) to check whether 0 ?
=
∑

a,b,c∈{0,1}s Gx,y(a, b, c). This is a straw man because, first, the sum-
check protocol works with a polynomial (and Gx,y is not a polynomial), and, second, a sum of zero does not
actually imply that Gx,y vanishes on the desired subspace (the evaluations of Gx,y(a, b, c) could “cancel out”).

As a next step, consider the following polynomial extension G̃x,y : F3s → F of Gx,y:

G̃x,y(u1, u2, u3) = ĩo(u1, u2, u3) · (Ĩx,y(u1)− W̃(u1))

+ ãdd(u1, u2, u3) · (W̃(u1)− (W̃(u2) + W̃(u3)))

+ m̃ult(u1, u2, u3) · (W̃(u1)− W̃(u2) · W̃(u3)). (1)

Here, ĩo, Ĩx,y, W̃, ãdd, and m̃ult respectively denote polynomial extensions of io, Ix,y, W, add, and mult. For
efficiency, all of the polynomial extensions appearing in Equation (1) must be low-degree. We will always use
the multilinear extension W̃ of W, and we will always use multilinear or carefully chosen cubic extensions
ĩo, ãdd and m̃ult of io, add, and mult (these choices are essential for practical efficiency, as discussed in
Section 4.5.2). At this point, we have a polynomial (in 3s variables) over F, and we want to use the sum-check
protocol directly to prove to V that 0 =

∑
a,b,c∈{0,1}s G̃x,y(a, b, c). However, as noted above, cancellations

mean that a sum of zero does not guarantee that G̃x,y(a, b, c) evaluates to 0 over all (a, b, c) ∈ {0, 1}3s, which
was the algebraic property that we were trying to establish. This brings us to the actual protocol.

We consider a polynomial Fx,y whose coefficients are given by the evaluations of G̃x,y on {0, 1}3s.
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Specifically, define
Fx,y(t) =

∑
u∈{0,1}3s

G̃x,y(u) · tu. (2)

Here, the bit string u ∈ {0, 1}3s in the exponent denotes the integer
∑3s−1

i=0 ui · 2i (i.e., the integer whose
binary representation is u). Notice that Fx,y is the zero polynomial if and only if G̃x,y vanishes on {0, 1}3s (and
hence if and only if G̃x,y encodes a correct transcript, and hence if and only if y is the correct output). But by
the Schwartz-Zippel lemma, any non-zero low-degree polynomial has few roots, so if V picks a random point
q ∈ F and determines that Fx,y(q) = 0, it is safe for V to believe that Fx,y is the zero polynomial and hence
that G̃x,y vanishes on {0, 1}3s as claimed by P1 (our soundness analysis is made formal in Appendix A).

Thus, in our MIP, V chooses q uniformly at random from F, and is convinced that W is a correct transcript
for (C, x, y) as long as Fx,y(q) = 0. As explained below, V will outsource the computation of Fx,y(q) by
writing Fx,y(q) in a form that is amenable to checking via the sum-check protocol (this approach was first
proposed by Babai et al. in the original MIP=NEXP proof [12]).

To this end, notice that for any q ∈ F and u ∈ {0, 1}3s, we can write qu as a multilinear polyno-
mial gq in the coordinates of u as follows. Define q(i) = q2i

. Then it holds that qu =
∏3s−1

i=0 q(i)
ui

=∏3s−1
i=0

(
1 + (q(i) − 1)ui

)
:= gq(u). Defining the polynomial hq as G̃x,y · gq, we obtain the following identity:

Fx,y(q) =
∑

u∈{0,1}3s

G̃x,y(u) · gq(u) =
∑

u∈{0,1}3s

hq(u). (3)

Notice that hq is a low-degree polynomial in the coordinates of u (hq has degree at most 3 in each variable,
if the multilinear extensions of add, mult and io are used in the definition of G̃x,y). We now describe how V
outsources computation of

∑
u∈{0,1}3s hq(u) to P1 using a sum-check protocol.

4.3 Interaction with the first prover

The full protocol is given in Figure 5 (in Appendix E) and proceeds as follows. V picks a random q ∈ F (see
above for motivation) and sends it to the prover P1. The two parties then run the sum-check protocol over the
polynomial hq to prove to V that 0 =

∑
u∈{0,1}3s hq(u) = Fx,y(q).

Now, the final check in the sum-check protocol requires V to evaluate hq(·) at a randomly selected point
(w1, w2, w3) (see Section 3.3). If V could do this efficiently, we would be done. However, in our setting
V cannot evaluate hq(w1, w2, w3): doing so would require evaluating G̃x,y(w1, w2, w3) and hence (by the
definition of G̃x,y) evaluating W̃(w1), W̃(w2), and W̃(w3), which in turn would require constructing W̃(·),
which would be at least as much work as handling the unencoded transcript W.

Instead, V asks P1 for help: P1 gives V three field elements that are purported to be W̃(w1), W̃(w2), and
W̃(w3). Then, using a now-standard technique (see, e.g. [40]) the protocol reduces the uncertainty surrounding

the correctness of these values to a claim: v4
?
= W̃(w4). This reduction is the content of lines 7–21 in Figure 5,

and occurs as follows. Let `(t) be the degree-two curve passing through the points w1, w2, and w3 defined via
`(0) = w1, `(1) = w2, and `(2) = w3. V asks P1 to send her a degree 2s univariate polynomial H∗ claimed
to equal W̃ ◦ `, i.e., W̃ restricted to the curve `. V checks that H∗(0), H∗(1), and H∗(2) equal v1, v2, and v3
respectively. V then picks a random point τ ∈ F, chooses w4 as `(τ), evaluates H(τ), and treats H(τ) as an
implicit claim by P1 about the value of W̃(w4). The Schwartz-Zippel lemma implies that if H∗ 6= W̃ ◦ `, then
H∗(τ) 6= W̃(`(τ)) with probability 1 − 2s/F over τ R←− F. Hence, V chooses τ at random from F, and is
convinced that H∗ = W̃ ◦ ` (and hence that vi = W̃(wi) for i ∈ {1, 2, 3}) as long as H∗(τ) = W̃(w4) (again,
our formal proof of soundness appears in Appendix A).

At this point, the protocol has provided the following guarantee to V , which we state loosely. V should
believe that 0 = Fx,y(q)—and hence that a correct transcript exists and hence that the computation was done
correctly—if and only if V can establish that v4 = W̃(w4) for some low-degree polynomial W̃. But how can
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V check this? As noted, it would be too expensive for V to evaluate W̃. For this purpose, V turns to the second
prover.

4.4 Interaction with the second prover

To validate P1’s claim that v4 = W̃(w4), V engages the second prover, P2, using a low-degree test [10, 60]
(see Figure 5, lines 23–24). We use the point vs. plane low-degree test, as analyzed by Moshkovitz and Raz
[60]. This test works by asking P2 to send a very small “excerpt” of the encoded transcript W̃; to get this
transcript, P2 must execute the computation, just as P1 does. The “excerpt” is a low-degree polynomial
claimed to equal W̃ restricted to a low-dimensional subspace. In the test we use, this subspace is a plane that
passes through w4, and V conceals which point in the subspace is w4. Because V obtains (a description of) W̃
over the entire subspace, V extracts an implicit claim by P2 about the value of W̃(w4). At this point, V rejects
if there is a discrepancy in the two provers’ claims about W̃(w4) (see Figure 5, line 24).

In more detail, in the point vs. plane test, V sends P2 a random plane Q (i.e., a two-dimensional affine
subspace of Fs) through the point w4, parameterized in a way that reveals no information about the point w4
to P2, other than that w4 lies somewhere on Q. P2 responds with a bivariate polynomial H∗Q of degree s in
each variable claimed to equal W̃ ◦Q. Let (t1, t2) be the point such that Q(t1, t2) = w4. V considers H∗Q(t1, t2)

to be P2’s claim about the value of W̃(w4).
Moshkovitz and Raz [60] have analyzed the point vs. plane test to be sound for reasonable field sizes (see

Lemma A.1 in Appendix A for details). Note that Moshkovitz and Raz state explicitly that they made no
attempt to optimize the constants appearing in their analysis, and even small improvements in the constants
would yield substantial improvements to the soundness guarantee for our protocol. This would allow us
to work over smaller fields; the current implementation works over a very large field so as to achieve low
soundness error, and the field size is a substantial contributor to the costs of our implementation.

4.5 Guarantees and costs

4.5.1 Correctness

Our MIP guarantees completeness and soundness, as defined in Section 3.1. An upper-bound on our MIP’s
soundness error, ε, assuming |F| > |C|8, is (29 · log |C|)/|F|1/8. Thus, for a field size of 300 bits, ε < 2−23 for
any circuit C with fewer than 240 gates, and for a field size of 400 bits, ε < 2−35. We establish this formally
in Appendix A.

4.5.2 Overview of Costs

We now give a brief overview of the costs of our MIP, before formalizing them in Theorem 4.1.

V’s costs. The principal bottleneck in V’s running time is that V’s final check in the sum-check protocol
requires evaluating the low-degree extensions ãdd and m̃ult at (w1, w2, w3) ∈ F3s. We take two approaches.
The first approach requires pre-processing but applies to arbitrary circuits; we use this approach in our
prototype implementation (cf. §5). The second uses carefully generated circuits for which the verifier can
evaluate ãdd and m̃ult in polylogarithmic time, and hence avoid a pre-processing phase. We have not yet
implemented this circuit generator, leaving it to near-term future work. In more detail:
Approach 1. Our implemented compiler from high-level programs to circuits uses the multilinear extensions
ãdd and m̃ult. While this leads to O(|C|) pre-processing time for V , the costs can be amortized (§5 gives
details).
Approach 2. We adapt work of Ben-Sasson et al. [15] to turn arbitrary RAMs into small circuits with repeated
structure. There are cubic extensions of the wiring predicate of these circuits that V can evaluate at any point
in polylogarithmic time (and P1’s costs can be controlled when using these extensions, using techniques of
Thaler [74]; see below). Using this approach, V does not need to materialize the circuit, and thus does not
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incur the cost of compiling the high-level program into the circuit. In this approach, the verifier processes the
input in O(n) time, and the rest of the protocol requires polylogarithmic time in total.

P1’s and P2’s costs. In both Approach 1 and Approach 2, P1 in each round has to compute a univariate
polynomial, defined as a sum of up to |C|3 other univariate polynomials. However, techniques of CMT [31]
and Thaler [74] show that under both approaches, each gate in C contributes to O(1) terms in the sum,
allowing P1 to run in O(|C| log |C|) time. P2’s computation is identical in both approaches: the point-vs-plane
test requires P2 to evaluate W̃(·) at (log |C|+ 1)2 points. This can be done with 4|C| field multiplications per
point using a memoization idea from [76, §5.1]. In settings (such as our built system) in which V wants to
evaluate a circuit C on many inputs, both P1 and P2 can reuse some work across instances. In §5, we describe
such reusable work as setup costs for P1 and P2.

Remark. Thaler [74] also shows how to reduce the prover’s total work in the GKR-CMT protocol to be
proportional to |C| rather than |C| log |C| for a large class of wiring patterns, and demonstrates experimentally
that these techniques can reduce the prover’s runtime by two orders of magnitude relative to the original
CMT implementation that appeared in [31]. These techniques apply equally well to the first prover in our
MIP protocol. However, we have not yet incorporated them into our prototype implementation (indeed, our
prototype currently uses circuits that do not satisfy the conditions required by the optimizations of [74]).

The next subsection formalizes the costs and guarantees of Approach 2.

4.5.3 A complexity preserving MIP

Theorem 4.1. There is a two-prover MIP protocol satisfying the following properties. In order to check that
a T(n)-time S(n)-space Random-Access Machine M non-deterministically accepts an input x of length n, the
MIP verifier runs in time O(n · polylog(T(n))), and both MIP provers run in time O(T(n) · polylog(T(n)))
and space O(S(n) · polylog(T(n))) if given an (input, witness) pair (x ; w) for M. Moreover, each MIP prover
can be computed “gate-by-gate” as a circuit by an evaluator algorithm in time O(T(n) · polylog(T(n))) and
space O(S(n) · polylog(T(n))).

To clarify, Bitansky and Chiesa [23] obtained an identical result to Theorem 4.1 up to factors hid-
den by the polylog(T(n)) terms, using very different techniques from our own (their MIP uses m =
Θ(log S(n)/ log log(S(n)) many provers, but one can obtain a two-prover MIP from their construction
using a generic reduction that “only” blows up the costs by logarithmic factors). We state Theorem 4.1 not
for its novelty, but because it formalizes the costs and properties of our MIP.

We note, however, that our MIP has substantially improved quantitative costs compared to [23]. When
instantiated on a particular circuit C, both of our provers run in time O(|C| log2 |C|), whereas the provers
in the MIP of [23] appear to require total time at least Ω̃(|C| log6 |C|), even before invoking the reduction
to two provers. There are two main reasons for their higher costs. First, their protocol requires running
Ω(log |C|/ log log |C|) low-degree tests, compared to our single low-degree test. Second, each of the polyno-
mials to which they apply a low-degree test has total degree Ω̃(log2 |C|); in comparison, the polynomial used
in our MIP has total degree O(log |C|). This means that each low-degree test in the MIP of [23] requires the
prover to either evaluate the relevant polynomial at Ω̃(log4 |C|) points or compute this many coefficients, and
each such evaluation appears to require Ω̃(|C| log |C|) time.

Bitansky and Chiesa also showed how to transform any MIP with the properties guaranteed by Theorem
4.1 into a four-message complexity preserving argument system.

Proof of Theorem 4.1. The proof relies on the following lemma, which shows that it is possible to very
efficiently transform an arbitrary RAM program into an arithmetic circuit C for which there exist cubic
extensions of add and mult can be evaluated in polylogarithmic time. Moreover, when applying the sum-check
protocol to the polynomial hq derived from these extensions, the prover P1 can still be made to run in time
O(|C| log |C|).
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Lemma 4.2. Let M be an arbitrary (non-deterministic) Random Access Machine that on inputs of length n
runs in time T(n) and space S(n). M can be transformed into an equivalent (non-deterministic) arithmetic
circuit C over a field F of size polylog(T(n)). Moreover, there exist cubic extensions ãdd and m̃ult of the
wiring predicates add and mult of C that satisfy the following properties.

1. C has size O(T(n) · polylog(T(n))).

2. The cubic extensions ãdd and m̃ult of C can each be evaluated in time O(polylog(T(n))).

3. An (input, witness) pair (x ; w) that makes M accept can be mapped to a correct transcript W for C in
time O(T(n) · polylog(T(n))) and space O(S(n) · polylog(T(n))). Furthermore, w is a substring of the
transcript W, and any correct transcript W ′ for C possesses a witness w′ for (M, x) as a substring.

4. P1 can run in time O(|C| log |C|) when applying the sum-check protocol to the polynomial hq = G̃x,y ·gq

derived from ãdd, m̃ult, and the transcript W (see Equation (1)).

5. C can be evaluated “gate-by-gate” in time O(T(n) · polylog(T(n))) and space O(S(n) · polylog(T(n))).

The proof of Lemma 4.2 adapts techniques for transforming RAMs into circuits pursued by Ben-Sasson
et al. [15], combined with techniques of Thaler [74] for obtaining the appropriate cubic extensions. A detailed
sketch of this result is in Appendix D.

Given a (non-deterministic) Random Access Machine M, let C be the circuit whose existence is guaranteed
by Lemma 4.2. Insights of CMT [31] show that each gate in the circuit C contributes independently to
each of P1’s messages. Thus, P1 can compute each message in time O(T(n) · polylog(T(n))) and space
O(S(n) · polylog(T(n))) by evaluating the circuit gate-by-gate, computing the contribution of each gate to the
current message, and “forgetting” the value of the gate immediately after. While this requires P to reevaluate
the circuit for every message, P1 sends only 3 log |C| many messages in total, and therefore revaluation of C
introduces only a O(log |C|) factor overhead in P1’s runtime. (To clarify, if we did not care about keeping
the space complexity of P1 small, then P1 can store the value of each gate and avoid this overhead). We
conclude that when applying our MIP protocol to C, P1 runs in total time O(T(n) · polylog(T(n))) and space
O(S(n) · polylog(T(n))).

Similar observations imply that P2 can be made to run within the same time and space bounds when
applied to the circuit C, completing the proof of the theorem.

Proof-of-Knowledge. Bitansky and Chiesa [23] also give a hardness assumption under which any complex-
ity preserving MIP that satisfies a proof-of-knowledge (PoK) property can be transformed into a complexity
preserving SNARK. In Appendix C, we show that our MIP satisfies this PoK property, and hence the
transformation of [23] can turn it into a complexity-preserving SNARK.

5 Clover, the built system
As discussed earlier, Clover (the built system) does not yet incorporate complexity-preserving reductions
from high-level programs into the circuits required by Theorem 4.1. Instead, Clover relies on an existing
approach to circuit generation [26, 61, 70, 71, 76] that produces circuits for which the verifier cannot evaluate
low-degree extensions ãdd and m̃ult in polylogarithmic time. However, even for these circuits, the multilinear
extensions can be evaluated in time proportional to |C| by iterating over every gate in C and computing its
contribution to the evaluation [31, 76]. Borrowing an idea from Allspice [76, §4.2], we move this computation
to a setup phase and amortize its cost by reusing this work across a batch of inputs x(1), . . . , x(β). Our built
system includes some additional optimizations that require pre-processing (full details in Appendix B.2).
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V’s setup costs f · (9 · |C|+ 3 · (|x|+ |y|))
V’s per-instance costs f ·

(
(log |C|+ 1)2 + 11 log |C|+ |x|+ |y|

)
P1’s setup costs f · (22.5|C| log |C|+ 3|C|)
P1’s per-instance cost f · (18.5|C| log |C|+ 7|C|)

P2’s setup costs f · 3|C| · (1 + log |C|)2

P2’s per-instance cost f · |C| · (1 + log |C|)2

Network costs |p| · (log2 |C|+ 15 · log |C|+ 5)
Protocol rounds 3 · log |C|+ 1 with P1, 1 with P2

Soundness error (§A) εClover < 2−23 when |p| ≥ 300
εClover < 2−35 when |p| ≥ 400

|x|, |y|: number of elements in input, output
|C|: number of gates in C
|p|: length of an element in F

Figure 2—Costs of Clover (the built system) for a com-
putation represented as an arithmetic circuit C with |C|
gates. f represents the cost of field multiplication.

Costs of Clover. Figure 2 reports the concrete costs
of our built system. To briefly compare these costs to
those of built systems based on arguments with pre-
processing [17, 18, 26, 61, 69], the costs for the prover
and verifier in these systems are the same as, or lower
than, Clover’s—in asymptotic terms. However, in con-
crete terms, the argument systems require many ex-
pensive cryptographic operations. For instance, in Za-
atar [69], each operation in the setup phase requires a
modular exponentiation that costs two orders of mag-
nitude more [69, §5.1] than a field operation—the only
kind of operation required for Clover. Additional com-
parisons are in §2.

6 Experimental evaluation
We are interested in two performance metrics: (1) the ver-
ifier’s break-even batch size, i.e., the minimum number
of computation instances that the verifier must outsource
in a batch before the cost of local execution exceeds the cost of verification, and (2) the prover’s overhead, split
into per-instance and setup costs (see Figure 2). We note that item (1) accounts for the verifier’s per-instance
verification time and per-computation setup cost (which is the dominant cost in all of the protocols in the
literature).

Points of comparison. Besides local computation, our points of comparison are CMT-batching [76] (the
refinement to CMT that is part of Allspice) and Zaatar [69]. To explain this choice of baseline, we give
a ballpark comparison among three systems for verifiable computation: Zaatar [69], Pinocchio [61], and
CMT-batching [76]. We choose these three because we are focused on the “back-end” in this paper. As noted
in Section 2, the other systems for general-purpose verifiable computation—BCTV [17, 18], Pantry [26], and
Buffet [77]—differ primarily in their “front-ends”; their back-end is Pinocchio or optimizations thereof.

For the verifier’s costs, Zaatar’s per-instance verification time is roughly three times Pinocchio’s, but
Pinocchio’s setup costs are considerably larger [78, Figs. 2-3]; as a result, Pinocchio’s break-even point is
roughly twice Zaatar’s [78, Fig. 4]. And when CMT is applicable, it has the best batch sizes in the literature,
by several orders of magnitude [76]. For the prover’s costs, Pinocchio’s prover costs roughly twice Zaatar’s;
for details, see [78, Fig. 5][76, §8][76, Fig. 10][26, §2.3,§9]. Summarizing, CMT-batching and Zaatar do
better on the key metrics (prover costs, verifier break-even points), so these are the comparison points for
Clover.6,7

Top-level summary of results. Clover achieves break-even batch sizes that are competitive with CMT-
batching (for computations for which CMT-batching even has a break-even batch size) and are significantly
superior to Zaatar, while simultaneously yielding prover costs that are competitive to both.

Method and setup. We evaluate Clover on the following benchmark computations: (1) m × m matrix
multiplication (m=128), (2) evaluating a degree-2 polynomial in m variables (m=512), (3) finding the roots

6An area where Zaatar is not the best is amortization behavior. Whereas Zaatar’s setup costs amortize only over a batch, Pinocchio’s
set-up costs amortize over an indefinite number of instances of the same computation. And BCTV’s amortize over an indefinite
number of instances of all computations of the same length. Clover and Zaatar work under the same amortization model.

7Our comparison here has considered the original version of Pinocchio. Very recently, BCTV [18] have released an optimized
implementation of this protocol that achieves approximately a 5× performance improvement [2], which would imply a performance
improvement over Zaatar of roughly 2.5×. Work is underway to incorporate this optimized protocol as a comparison point. In the
meantime, our comparison to Zaatar provides a high-level illustration of Clover’s costs compared to the systems based on arguments.
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Figure 3—Clover has a superior break-even size in all of our experiments.

of a degree-2 polynomial in m variables using bisection (m=256, L=8), (4) clustering a set of m data points,
where each data points have d dimensions, using PAM clustering (d=128, m=20), (5) Floyd-Warshall all-pairs
shortest paths in a graph with m vertices (m=25), and (6) finding the longest common subsequence of two
length-m strings (m=300). These computations were expressed in a high-level language and automatically
compiled into circuits. The sizes of the resulting circuits range from 1 million gates for polynomial evaluation
to 12.6 million gates for longest common subsequence. We evaluated Clover against CMT-batching for the
first three computations, and against Zaatar for the remaining ones.

We run CMT-batching and Zaatar over a finite field with a 128-bit prime modulus for computations that
take integer inputs and a field with a 220-bit prime modulus for computations that take floating-point inputs.
We run Clover with a 300-bit prime modulus field for all computations, corresponding to soundness error of
at most 2−23. Costs grow roughly linearly with the bit length; for example, increasing the modulus to 400 bits
to guarantee soundness error 2−35 results in a 20–41% increase in the numbers reported below.

We run the verifier and provers on different machines in the same local cluster and use getrusage to
measure their CPU usages. Each machine has two Intel Xeon E5-2680 2.7 GHz processors with 32GB of
RAM (Clover required approximately 8GB of RAM in our largest experiment.) To compute the verifier’s
break-even batch size, we run one instance locally and one instance under verification (splitting the verifier’s
costs into setup and per-instance costs), then solve for the point β at which verification of β instances is
cheaper running them locally.

Clover’s break-even batch size. Figures 3(a) and 3(b) show Clover’s break-even batch sizes in comparison
to CMT-batching and Zaatar, respectively. Clover’s break-even batch size is slightly smaller than CMT-
batching’s for matrix multiplication and polynomial evaluation and much smaller for root finding by bisection.
Against Zaatar, Clover fared even better, achieving a break-even batch size that is 20–40× smaller.

Clover’s prover overhead. Figures 4(a) and 4(b) show the running time of Clover’s two provers in com-
parison to the two baseline protocols’ provers and to local execution of the computation. Clover’s provers’
per-instance costs are competitive with both baseline protocols’ provers for all computations, despite having
to work in a larger 300-bit modulus field. Its total per-instance prover overhead is no more than twice that
of the baseline protocols, and it beats CMT-batching in the root finding computation. Clover’s provers have
setup costs that are not shown in the referenced figures. However, these costs are no more than 3× each
prover’s per-instance costs; they can be easily amortized away at reasonable batch sizes.

In summary, while we have not yet implemented the full theory, we are encouraged by our results: Clover
handles problems that existing interactive proofs cannot, and achieves performance comparable to, or better
than, state of the art single-prover protocols that inherently require a pre-processing phase for the verifier.
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Figure 4—Clover’s provers are competitive with both CMT-batching’s and Zaatar’s provers. Clover’s first prover’s setup
costs (not shown) are 1.5× its per-instance costs; Clover’s second provers’s setup costs are 2–3× its per-instance costs;
CMT-batching’s prover’s setup costs are 0.3× its per-instance costs; and Zaatar’s prover has no significant setup costs.
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A Soundness analysis
In this section, we detail our proof of soundness for our MIP. The starting point is the soundness guarantee
for the point vs. plane low-degree test obtained by Moshkovitz and Raz [60].

In the following, let A denote an oracle that on input w4 ∈ Fs returns some value A(w4) (purported to be
W̃(w4)). Let Q denote the set of all planes in Fs. Let A′ denote an oracle that on input Q ∈ Q returns some
bivariate polynomial A′(Q) of degree s in each variable (purported to be W̃ ◦ Q, the restriction of W̃ to the
plane specified by Q).

Lemma A.1 ([60]). Denote ε = 27s
(
|F|−1/8 + s2|F|−1/4

)
. For every pair of oracles A, A′, the following

holds. For every δ > 2ε, there exist t ≤ 2/δ polynomials T1, . . . , Tt : Fm → F with deg(Ti) ≤ s2, such that
with probability at least 1− δ − 2ε, either A and A′ make conflicting claims about W̃(w4), or the test picks a
point w4 ∈ Fs such that A(w4) = Ti(w4) for some i ∈ {1, . . . , 2/δ} (or both).

In our setting, P2 is equivalent to the oracle A′ in Lemma A.1, as V poses just a single question to P2.
Nonetheless, we still cannot directly apply Lemma A.1. The problem is that invoking the lemma would
require us to view P1 as an oracle mapping w4 to v4 (i.e. mapping w4 to the claimed value of W̃(w4)).
However, P1’s claim about the value of W̃(w4) can depend not just on w4, but instead on the entire protocol
history, i.e., the entire sequence of messages exchanged with V over the course of the protocol. Hence, P1
cannot be viewed as an oracle mapping w4 to v4, and this complicates the application of Lemma A.1.

Nonetheless, we are able to obtain the following variant of Lemma A.1 that suffices for our analysis.
A key observation in obtaining this lemma is that although P1 can provide different answers on different
histories that lead to the query w4, only 10

δ of these answers can be consistent with P2’s claim about w4
with probability at least δ/10 over V’s choice of a random plane through w4. We can safely ignore all other
answers on w4 without significantly affecting our estimate of the soundness error of the protocol.

Lemma A.2. Denote ε = 27s
(
|F|−1/8 + s2|F|−1/4

)
. For every pair of prover strategiesP1,P2 in our protocol,

the following holds.
For every δ > 2ε, there exist t ≤ 200/δ3 polynomials T1, . . . , Tt : Fm → F with deg(Ti) ≤ s2, such

that with probability at least 1− 1.25δ − 2ε, either P1 and P2 make conflicting claims about W̃(w4), or the
low-degree test picks a point w4 ∈ Fs such that v4 = Ti(w4) for some i ∈ {1, . . . , 200/δ3} (or both).

Proof. Over the course of the protocol, V sends P1 one field element per round, ultimately specifying
h = (w1, w2, w3, τ) ∈ F3s+1, eventually leading P1 to make a claim that W̃(w4) = v4, where w4 = `h(τ),
and `h is the degree-two curve passing through (w1, v1), (w2, v2), (w3, v3).

In order to invoke Lemma A.1, we would like to view P1 as an oracle mapping w4 to v4 (i.e., mapping w4
to the claimed value of W̃(w4)). However, for each w4 ∈ F3s, there are many h’s such that w4 = `h(τ), and
P1 may not provide the same answer on every history h such that `h(τ) = w4. Thus, it is not straightforward
to view P1 as an oracle as in Lemma A.1.

We observe that although P1 can provide different answers v4 on different h’s that lead to the query w4,
only 10

δ of these answers can pass the point vs. plane test (conditioned on the point being w4) with probability
δ/10. Formally, this follows from Markov’s inequality as explained next.

Recall that in the point vs. plane test, V sends P2 a random plane Q through the point w4. P2 responds
with a bivariate polynomial H∗Q of degree s in each variable claimed to equal W̃ ◦ Q. Let (t1, t2) be the point
such that Q(t1, t2) = w4. V considers H∗Q(t1, t2) to be P2’s claim about the value of W̃(w4).

Call a value v4 ∈ F good for query w4 ∈ Fs if PrQ:w4∈Q[H∗Q(t1, t2) = v4] ≥ δ/10, Here, the probability is
taken over all planes Q containing w4. Let Sw4 ⊆ F denote that set of all good values for the query w4. Then
it holds that
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1 ≥
∑

v4∈Sw4

Pr
Q:w4∈Q

[H∗Q(t1, t2) = v4] ≥ |Sw4 |δ/10.

Thus, |Sw4 | ≤ 10/δ as claimed. We can safely ignore all bad answers on w4 without affecting our estimate
of the acceptance probability of the point vs. line test by more than an additive δ/10 factor (we absorb this
additive factor into the statement of the theorem). We henceforth assume that on query w4, P1 outputs a value
v4 ∈ Sw4 regardless of the history h that led to the query w4.

At this point, we can view P1 as a probabilistic function that on query w4 ∈ Fs outputs v4 ∈ Sw4 with
some probability p(v4|w4), where Sw4 has size at most 10/δ. Formally, let Hw4 = {h = (w1, w2, w3, τ) :
`h(τ) = w4} denote the set of histories that lead to the query w4, and let Hw4,v4 ⊆ Hw4 denote the set of
histories that lead to query w4 for which P1 outputs the value v4. Define p(v4|w4) = |Hw4,v4 |/|Hw4 |. Notice
that p(v4|w4) is the probability P1 outputs v4 conditioned on the query being w4.

We further assume that p(v4|w4) is an integer multiple of (δ/10)2 for all pairs (w4, v4) – if this is not the
case, we round p(v4|w4) to the nearest integer multiple of (δ/10)2 and re-normalize to ensure that for each
w4 ∈ Fs,

∑
v4∈F p(v4|w4) = 1. For each w4, the total variation distance between the rounded distribution

p(v4|w4) and the original distribution is at most 1
2
∑

v4∈Sw4
(δ/10)2 ≤ δ/20, and we absorb this δ/20 factor

into the statement of the theorem. For any query w4, we can now think of p(v4|w4) as the uniform distribution
over a multisetMw4 of (10/δ2) items, where we include an item v4 in the multiset with multiplicity c if
p(v4|w4) = c · (δ/10)2.

This enables us to view P1 as a convex combination of (10/δ)2 oracles Aj, where Aj(w4) is the jth
item in Mw4 . That is, for every w4 ∈ F3s, P1(w4) is distributed identically to the prover that chooses a
j at random from {1, . . . , (10/δ)2} and outputs Aj(w4) (where the probability is taken over all histories
h = (w1, w2, w3, τ) ∈ F3s+1 that lead to the query w4 = `h(τ)).

Lemma A.1 guarantees that for each such oracle Aj, there is a set Tj of 2/δ polynomials Tj,i such that
with probability at least 1 − δ − 2ε, either the low-degree test fails or it encounters a query w4 such that
Aj(w4) = Tj,i for some i ∈ {1, . . . , 2/δ}.

Let T be the union of the Tj,i’s over all Aj’s. T is a set of 200/δ3 polynomials. Let Ej denote the event that
given oracles Aj and A′, the low-degree test encounters a point that disagrees with all Tj,i’s and still accepts.
The probability that V encounters a point w4 for which P1 claims W̃(w4) = v4, Tj,i(w4) 6= v4 for all (j, i), and
the low-degree test passes is at most

(δ/10)2
∑

1≤j≤(10/δ)2

Pr[Ej] ≤ (δ/10)2

 ∑
j≤(10/δ)2

δ + 2ε

 = δ + 2ε.

Notice that the size t of the set of polynomials {Ti : i ≤ t} in Lemma A.2 is much larger than the size t
appearing in Lemma A.1. It turns out that this weakening is not significant in our setting, because the set size t
still contributes only low-order terms in our analysis. With Lemma A.2 in hand, the remainder of our analysis
shows that if P1 passes both the sum-check protocol and the low-degree test even with small probability, then
there must be a single polynomial in the set {Ti : i ≤ t} whose existence is guaranteed by Lemma A.2 with
which P1’s messages in all rounds of our MIP are consistent. Moreover, this polynomial must be an extension
of a correct transcript. We obtain the following theorem.

Theorem A.1. Denote ε = 27s
(
|F|−1/8 + s2|F|−1/4

)
. Let δ > 2ε. Suppose P1 and P2 pass the low-degree

test with probability 1 − 1.25δ − 2ε. Let T be the set of at most 200/δ3 polynomials whose existence
is guaranteed by Lemma A.2. Then if no Ti ∈ T is an extension of a valid transcript, P1 will fail some
consistency test in our MIP with probability at least 1− 601s3+3|C|

δ3|F| .
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The δ′ := 601s3

δ3|F| term in Theorem A.1 is a low-order term for the field sizes used in our implementation,
because ε’s dependence on |F| is worse than that of δ′ by a factor of 8 in the exponent.

Proof. We begin by considering the final round of P1’s interaction with V . Recall that this round is devoted
to reducing a claim about W̃(w1), W̃(w2), and W̃(w3) to a claim about W̃(w4) for a single point w4 (see
lines 7–21 in Figure 5). We show the following easy lemma.

Lemma A.3. In the final round of our MIP, if P1 does not send a polynomial K (cf. Line 12 of Figure 5) of
the form Ti ◦ `W for some Ti ∈ T , then P1 and P2 will fail the low-degree test with probability 1− 1.25δ− 2ε.

Proof of Lemma A.3. The polynomial K that P1 sends in the final round of the MIP must be of degree at
most 2s, and each Ti ◦ `W is a polynomial of degree at most s2. Thus, if K does not equal Ti ◦ `W for some
Ti ∈ T , then the Schwartz-Zippel lemma along with a union bound implies that K(τ) disagrees with all
polynomials of the form Ti ◦ `W with probability 1− 200s2

δ3|F| over the random choice of τ . In this event, Lemma
A.2 implies that the low-degree test rejects with probability 1− 1.25δ − 2ε.

Recall that in our MIP, V first sends a random element q ∈ F to P1 (cf. Line 5 of Figure 5), and then V
and P1 apply the sum-check protocol to the polynomial

hq(u1, u2, u3) = G̃x,y(u1, u2, u3) · gq(u1, u2, u3), (4)

where

G̃x,y(u1, u2, u3) =

(
ĩo(u1, u2, u3) · (Ĩx,y(u1)− W̃(u1))

+ ãdd(u1, u2, u3) · (W̃(u1)− (W̃(u2) + W̃(u3)))

+ m̃ult(u1, u2, u3) · (W̃(u1)− W̃(u2) · W̃(u3))

)
, (5)

and gq(u1, u2, u3) is the multilinear extension of the function (u1, u2, u3) 7→ q(u1,u2,u3). For notational
simplicity, throughout the remainder of the proof, we will assume that the polynomials ĩo, ãdd, and m̃ult
in the definition of hq are multilinear – the analysis is identical even if their degree is larger, and our stated
soundness bound is unaffected as long as the degree of each polynomial in each variable is at most s2.

Let G̃Ti
x,y denote the polynomial obtained by substituting the polynomial Ti in place of the polynomial W̃

within the right hand side of Equation (5), and let hTi
q (u1, u2, u3) = G̃Ti

x,y(u1, u2, u3) · gq(u1, u2, u3). Similarly,
let HTi

j denote the message from P1 prescribed in round j by the sum-check protocol when applied to the
polynomial hTi

q . Let Hj denote the messageP1 actually sends in round j of the sum-check protocol. If Hj = HTi
j ,

we say Hj is based on polynomial Ti. We also say that P1 is left with a consistent claim in round j + 1 if
Hj(rj) = HTi

j+1(0) + HTi
j+1(1) for some Ti ∈ T , and we say that P1 is left with an inconsistent claim otherwise.

Lemma A.4. If P1 is left with an inconsistent claim in round j of the sum-check protocol, then either V’s
check at round j will fail (cf. Line 11 of Figure 6), or P1 will be left with an inconsistent claim at round j + 1
with probability at least 1− 200s2+2

δ3|F| .

Proof of Theorem A.1, assuming Lemma A.4. Lemma A.4 implies that if P1’s message in the first round of
the sum-check protocol is not based on a polynomial Ti ∈ T , then either V will halt and reject at some round
during the sum-check protocol, or P1 will be left with an inconsistent claim in round 3s (i.e., in the final
round) of the sum-check protocol with probability at least 1− 600s3

δ3|F| . In the latter event, P1 will be forced to
send values v1, v2, and v3 (Line 22 of Figure 6) such that there is no Ti ∈ T satisfying Ti(wj) = vj for all
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j ∈ {1, 2, 3}; otherwise, V will reject in Line 32 of Figure 6 (i.e., v1, v2, and v3 will be inconsistent with P1’s
claim in the final round of the sum-check protocol). But if there is no Ti ∈ T satisfying Ti(wj) = vj for all
j ∈ {1, 2, 3}, then P1 will be forced to send a polynomial K in the final round of the entire MIP (cf. Line
12 of Figure 5) that is not of the form Ti ◦ `W for any Ti ∈ T ; otherwise, V will reject in Line 18 of Figure
5 (i.e., K will be inconsistent with v1, v2, and v3). By Lemma A.3, this implies that P1 and P2 will fail the
low-degree test with probability at least 1− 1.25δ − 2ε.

Hence, if P1 and P2 fail the low-degree test with probability less than 1− 1.25δ − 2ε, then P1’s message
in the first round of the sum-check protocol is based on a polynomial Ti ∈ T . By design, this implies that
0 =

∑
u∈{0,1}3s hTi

q (u).

Let FTi
x,y(t) denote the polynomial

∑
{0,1}3s G̃Ti

x,y(u) · gq(u) (i.e., FTi
x,y(t) is the polynomial obtained by

substituting G̃Ti
x,y for G̃x,y in Equation (2)). Then FTi

x,y(q) =
∑

u∈{0,1}3s hTi
q (u) = 0. Since FTi

x,y has degree at
most 3|C|, and q was chosen at random from F by V , the Schwartz-Zippel lemma implies that with probability
at least 1− 3|C|/F, FTi

x,y must be the zero polynomial. This in turn implies that Ti vanishes at all points in
{0, 1}3s, and hence that Ti is an extension of a valid transcript for the circuit C. This completes the proof.

Proof of Lemma A.4. For notational simplicity, we assume that j < s. If P1 is left with an inconsistent claim
at round j, then P1 must send a message Hj that does not equal HTi

j for any polynomial Ti ∈ T (otherwise,
V’s check in round j will fail, and V will reject – see Line 11 of Figure 5). We argue that if this is the case,
then P1’s message will disagree at all but a 200s2

δ3|F| fraction of points with all 200/δ3 messages HTi
k that are

based on a Ti ∈ T . This holds by the Schwartz-Zippel lemma, as P1’s message in each round is required to
be a polynomial of degree at most 3, and each message based on Ti ∈ T is of degree at most s2 + 2, since
each Ti itself has degree at most s2. In the event that V picks a point w1,j in Round j such that P1’s message
disagrees with all polynomials based on Ti ∈ T at this point, then P1 is left with a claim in round j + 1 that is
inconsistent with all Ti ∈ T .

B Systems innovations and optimizations in Clover
B.1 Systems innovations

As previously mentioned (§5), Clover works with irregular circuits and relies on batching to achieve a cost
savings for the verifier. It is implemented in 9839 lines of C++ code; a verifier process communicates with
two prover processes via Open MPI [1].

Expressiveness. Clover adapts the approach to circuit generation that was implemented in prior work on
Zaatar [69] and Allspice [76]. The Zaatar compiler transforms high-level programs into constraints, which are
slightly more general than arithmetic circuits: a constraint can involve a large number of variables, in contrast
to a gate of fan-in 2. To produce arithmetic circuits, the Clover compiler post-processes Zaatar constraints,
breaking any constraint involving a large number of variables into many gates of fan-in two.

Clover handles inequalities and comparisons by adding a compute-advice and a check-advice subcircuit
for each such operation; the approach is borrowed from Allspice [76, §4.1]. We modify the io(a, b, c) function
to output 1 when a is the output of a check-advice circuit. The end result is a built system that is just as
general as Zaatar.

Memory management. A fundamental issue in realizing our MIP protocol in a built system is that the
entire transcript must be kept in a prover’s memory at once. The high-level solution consists of several pieces.
First, we develop a cache tailored to our application. Our cache provides an array-like interface, and its user
can pretend that all of the field elements in the transcript are in a contiguous array. The cache transparently
evicts elements to disk when it runs out of memory and reads in elements from disk as needed. Second, we
compute multilinear extensions using memory that is linear in log |C|, building on an idea of Allspice We
describe our technique in Appendix B.2.2.
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B.2 Algorithmic optimizations in Clover

B.2.1 Optimizing P1’s runtime

Each of P1’s prescribed messages within the sum-check protocol applied to the polynomial hq defined in
Section 4.2 is a univariate polynomial Hj of degree at most 3, which can be specified via its evaluations at
inputs {0, 1, 2, 3}. Vu et al. [76] showed that, given Hj(0), the evaluation Hj(1) can be computed in constant
time. Thus, computing Hj(1) is essentially free for P1, and P1 must only do substantial work to compute
Hj(0) and Hj(2), Hj(3).

Thus, if Hj had degree 2, P1 would run approximately 30% faster, as P1 would not have to compute
Hj(3). We show how to achieve this.

In Equation (3) of Section 4.2, we showed how to compute the quantity Fx,y(q) by applying the sum-check
protocol to a polynomial hq of degree at most 3 in each variable. Here, we give a polynomial h′q of degree only
two in each variable that can be used in place of hq. When we use h′q in place of hq, verifier in the resulting
MIP protocol may require a pre-processing phase regardless of whether the circuit C satisfies the regularity
conditions required by Lemma 4.2. However, our built system requires a pre-processing phase anyway, and
hence there is no reason not to use the polynomial h′q in our built system. We define the polynomial h′q as
follows.

Let ĩoq denote the unique multilinear polynomial satisfying the following property: for each Boolean
input (u1, u2, u3) ∈ {0, 1}3s, ĩoq(u1, u2, u3) = ĩo(u1, u2, u3)q(u1,u2,u3). Similarly, let ãddq and m̃ultq denote the
multilinear polynomials defined such that for each Boolean input (u1, u2, u3) ∈ {0, 1}3s, ãddq(u1, u2, u3) =

ãdd(u1, u2, u3)q(u1,u2,u3), and m̃ultq(u1, u2, u3) = m̃ult(u1, u2, u3)q(u1,u2,u3).
Then we easily obtain the following analog of Equation (3):

Fx,y(q) =
∑

(u1,u2,u3)∈{0,1}3s

h′q(u1, u2, u3),

where

h′q(u1, u2, u3) = ĩoq(u1, u2, u3) · (Ĩx,y(u1)− W̃(u1))

+ ãddq(u1, u2, u3) · (W̃(u1)− (W̃(u2) + W̃(u3)))

+ m̃ultq(u1, u2, u3) · (W̃(u1)− W̃(u2) · W̃(u3)).

This completes the description of the polynomial h′q. At the end of the sum-check protocol applied to
h′q, V must evaluate h′q at a random point (w1, w2, w3) ∈ F3s. Given the evaluations W̃(w1), W̃(w2) and
W̃(w3), the bottleneck in V’s computation of h′q(w1, w2, w3) is in the evaluation of ãddq(w1, w2, w3), and

m̃ultq(w1, w2, w3). Using the techniques of CMT combined with memoization ideas of Allspice, each of
these quantities can be evaluated in time O(|C|) by enumerating over each gate in C and computing that gate’s
contribution to ãddq(w1, w2, w3) and m̃ultq(w1, w2, w3).

B.2.2 Computing W̃ in O(log |C|) space.

P2’s message (and P1’s message after the sum-check protocol) requires it to evaluate W̃ at many points.
Vu et al. [76, §5.1] showed that it is possible to perform this evaluation in 4|C| field multiplications using
O(|C|) space. We build upon this approach to develop a way to evaluate W̃ with the same number of field
multiplications but using O(log |C|) space.8

First, let χ(0)(t) = 1 − t and χ(1)(t) = t. We define a family of functions χg1,...,gs : Fs → F, where
χg1,...,gs(u1, . . . , us) =

∏n
i=1 χ

(gi)(ui) (note that in this context, g = (g1, . . . , gs) is a gate label). (note that in
this context, g is a gate label). W̃ can be written as W̃(u) =

∑
g∈{0,1}s χg(u) ·W(g).

8We do not consider the space required to store the gate values (i.e., the evaluations of W) as they can be easily streamed in from disk.
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Vu et al.’s technique involves using 3|C| field multiplications to computing a table containing the value of
χg(u) for all g where W(g) 6= 0, thus requiring space to store |C| field elements. However, notice that there is
no need to store all such evaluations of χg, since we only ever use each evaluation once. Instead, we do the
following. When computing χg(u) for some g, we save the partial products

∏k
i=1 χgi(ui) for k ∈ [s]. This

requires space linear in s = dlog |C|e. Then, when we must compute χg′(u) for some other g′ ∈ {0, 1}s, we
need only use s− k multiplications, where k is the number of consecutive leading bits of g and g′ that agree.
In the worst case, this is simply s multiplications, but at best it is 1. We then save the new partial products of
χg′(u), throwing away those for χg(u).

Our technique, as described so far, requires space linear in log |C|, but by itself does not guarantee that
we can compute W̃ in 4|C| multiplications. To achieve this, we must compute the needed evaluations of
χg(u) in a well-defined order: specifically, we begin with χ0,...,0(u) then χ0,...,1(u), then χ0,...,1,0(u), and so
on in lexicographic order until we reach χ1,...,1(u). Evaluating χ(0,...,0,0)(u) requires n multiplications, but
χ(0,...,0,1)(u) only requires one, and χ(0,...,1,0)(u) requires two. In fact, if we evaluate in this order, we need to
do one multiply for each of the 2n evaluations, then another for each of the 2n−1 evaluations where 2 divides
g, another for the 2n−2 where 4 divides g, etc. The total number of multiplication is

∑n
i=1 2i < 2n+1. By

skipping any evaluations of χg(u) where W(g) = 0, the number of multiplications is reduced to 3|C|. Thus,
we require 4|C| multiplications to evaluate W̃.

This technique can also be used to compute ãddq, m̃ultq, and ĩoq in O(log |C|) space.

B.2.3 Optimizing the evaluation of W̃ and Ĩx,y when batching.

In this section, we will use Ĩx,y
(i)

and W̃(i) to refer to the multilinear extensions of the input/output gates and
the evaluation function, respectively, for the ith instance.

Because Clover re-uses randomness across all instances in a batch, there are points within the protocol

where V , P1, or P2 must, evaluate W̃(i) or Ĩx,y
(i)

at the same point for every i. Instead of evaluating each
W̃(i) independently (thereby taking 4|C| field multiplications per instance), Clover merges the evaluations
that share an input point into a setup phase requiring 3|C| multiplications, and an online phase requiring |C|
multiplications per instance. We will describe how Clover does this for W̃(i). The Ĩx,y

(i)
case is analogous.

Recall from Appendix B.2.2 that for every instance i, W̃(i) =
∑

g∈{0,1}s χg(u) ·W(i)(g), where W(i) is the
ith instance’s evaluation function. Note that the factors χg(u) for g ∈ {0, 1}s are constant across all instances
(because u is constant), so we need only compute them once per batch. Clover can compute all required
factors in 3|C| multiplications. Then for every instance, Clover must expend another |C| multiplications to
multiply the factors with W(i)(b1, . . . , bn).

C Proof of Knowledge
Bitansky and Chiesa [23] show that under a certain natural but non-standard hardness assumption, any
complexity preserving MIP of knowledge can be transformed into a complexity preserving non-interactive
succinct argument of knowledge (SNARK). Here, we show that our MIP for circuit satisfiability in fact
satisfies this proof-of-knowledge property, and hence can be transformed into a complexity-preserving
SNARK.

Bitansky and Chiesa’s formalization of their transformation from MIPs of knowledge to SNARKs utilizes
the universal relationRU and its associated language, defined as follows. Let M denote a specification of a
non-deterministic RAM.RU is the relation of instance-witness pairs (y ; w), where y = (M ; x ; T), |w| ≤ T ,
and M accepts (x ; w) after at most T steps. Let LRU denote the language {y : ∃w such that(y, w) ∈ RU}.

Bitansky and Chiesa show how to transform an MIP of knowledge for LRU into a corresponding SNARK.
Their construction of an MIP of knowledge for LRU works as follows. They first use the circuit-generation
techniques of Ben-Sasson et al. [15] to reduce an instance of LRU to an instance circuit satisfiability, and
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then they run their MIP of knowledge for circuit satisfiability. We will take the same approach, using our MIP
protocol for circuit satisfiability in place of Bitansky and Chiesa’s.

Definition C.1. A two-prover MIP protocol with verifier V for LRU is an MIP of knowledge with knowledge
threshold τ if the following property holds. There is a polynomial time probabilistic oracle machine E,
referred to as the extractor algorithm, such that for any pair of provers (P∗1 ,P∗2 ) that cause V to accept on
input y = (M ; x ; T) with probability at least τ , it holds that (y, E(P∗1 ,P∗2 )(y, 1T)) ∈ RU with probability at
least 1/nc for some universal constant c > 0.

Theorem C.1. The MIP protocol of Theorem 4.1 is an MIP of knowledge with knowledge threshold τ = .96.

Proof. In the MIP protocol of Theorem 4.1, the instance (M, x, t) is transformed into a circuit C using the
techniques of Ben-Sasson et al. [15], in such a way that any correct transcript W for C possesses a witness w
for (M, x) as a substring (see Lemma 4.2). In the MIP protocol, P1 then claims to be holding an extension W̃
of a valid transcript W for C, and V forces P1 to send a value v4 claimed to equal W̃(w4), for a value w4 of
the verifier’s choosing. We let A denote the function w4 7→ v4 represented by P1. (Strictly speaking, P1 may
not be a function from w4 to v4, as there are many different “histories” that lead V to ultimately query the
point w4, and P1’s response may depend on this history. Assume for the moment, however, that P1 is indeed
a function w4 7→ v4.)

Our soundness analysis (Appendix A) exploits the so-called list-decoding property of the point vs. plane
low-degree test [60, Theorem 1]. In order to establish our proof-of-knowledge property, we need only invoke
the simpler decoding property of the point vs. plane test [60, Theorem 1]. This property guarantees that if
P1 and P2 pass the low-degree test with probability 1− γ, then there is a polynomial T of degree at most
O(log2 |C|) such that Pr[A(w4) = T(w4)] > 1 − γ − ε, where ε = 27 log |C|

(
1/|F|1/8 + log2 |C|/|F|1/4

)
.

For fields of size poly(|C|), ε < .01, and we conclude that for any constant γ > 0, the following holds: let
γ′ = γ − .01. If the verifier accepts input y with probability equal to 1− γ′, then there is some polynomial T
that agrees with A at .99− γ′ fraction of points.

With this property in hand, our analysis in Appendix A straightforwardly implies the following: if P∗1
passes all of V’s checks within the sum-check protocol with probability ω(log |C|/|F|), then T extends a valid
transcript W. This transcript must contain a witness w for (M, x) as a substring.

If γ′ < .04, then T is the closest polynomial of degree O(log2 |C|) to A. Indeed, if there is another
polynomial T ′ or degree O(log2 |C|) that agrees with A at a .99− γ′ > .95 fraction of points, then T and T ′

must agree on at least a .9 fraction of points. But the Schwartz-Zippel lemma (Lemma 3.1) implies that T and
T ′ agree on at most O(log2 |C|/|F|)� 2γ fraction of points.

Hence, given oracle access to P1 (and hence to A), E can recover any desired evaluation of T using local
Reed-Muller decoding. Since any correct transcript (and hence the also extension T) must contain the value
of a witness w for (M, x) as a sub-function, this permits the extractor E to recover w.

In the case that P1 is not a function w4 7→ v4 (i.e., if P1’s responses depend on the “history” of queries
that led to the final query w4), we let A(w4) denote the value P1 is most likely to output conditioned on the
final query being w4, breaking ties arbitrarily. As above, suppose P∗1 and P∗2 pass the point vs. plane test
with probability at least 1− γ′. If E plays the verifier V’s role in our MIP, ultimately querying P1 at a point
w4 determined by V’s internal randomness, then the probability that P1’s response disagrees with A(w4) is
p ≤ 2γ′. Indeed, if this is not the case, then the probability that P∗1 and P∗2 ’s claims within the low-degree
test agree is at most 1− 1/2 · p ≤ 1− γ′, contradicting the assumption that P∗1 and P∗2 pass the low-degree
test with probability at least 1− γ′.

Thus, E can run Reed-Muller decoding as above, treating P1’s responses as A(w4). Standard Chernoff
bounds imply that, with high probability, if E queries the Reed-Muller codeword at poly(n) many points,
P1’s responses for at most a 3γ′ fraction of the queried points will disagree with A(w4). For γ′ < .04, we can
repeat our earlier analysis, in which we assumed that P1’s responses are independent of the history w4, to
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conclude that there is a polynomial T of degree O(log2 |C|) that agrees with A at a .99− 4γ′ > .83 fraction
of points, and T extends a correct transcript for C. Moreover, just as we argued above, T must be the closest
polynomial of degree O(log2 |C|) to A. Hence, local Reed-Muller decoding can still be used to recover the
witness w for (M, x) that appears as a substring in the transcript that T extends.

D Proof of Lemma 4.2
D.1 Description of the Circuit

Given a Random Access Machine M that runs in time T(n) and space S(n), we adapt techniques of Ben
Sasson et al. [15] to describe an arithmetic circuit C of size O(T(n)polylog(T(n))) that is equivalent to M
and can be evaluated gate-by-gate in space O(S(n)polylog(T(n)). In this subsection, it will be convenient
to describe a Boolean circuit, i.e., a circuit consisting of AND, OR, and NOT gates that takes bits as input.
Standard techniques allow one to transform the Boolean circuit to an equivalent arithmetic circuit over
a finite field with at most a constant-factor blowup in size and depth (e.g., by replacing each AND gate
with multiplication over the underlying field, and each OR and NOT gate with a corresponding arithmetic
operation).

At a high level, the circuit takes an entire transcript (sorted by time) of the RAM computation as a
non-deterministic input (we refer to these non-deterministic input bits as transcript bits), where a transcript
consists of (timestamp, configuration) pairs, one for each step taken by the RAM. Here, a configuration of M
specifies the bits contained in the current program counter and the values of all of M’s registers. The circuit
then checks that the transcript is valid. This requires checking the transcript for both time consistency (i.e.,
that the claimed state of the machine at time i correctly follows from the machine’s claimed state at time
i− 1) and memory consistency (i.e., that every time a value is read from memory location, the value that is
returned is equal to the last value written to that location).

The circuit checks time-consistency by representing the transition function of the RAM as a small
sub-circuit – if the RAM has a word-size of O(log n), then the transition function can always be represented
as a circuit of size polylog(n). It then applies this sub-circuit to each entry i of the transcript and checks that
the output is equal to entry i + 1 of the transcript. The circuit checks memory consistency by using routing
techniques to re-sort the transcript based on memory location (with ties broken by time), at which point it is
straightforward to check that every memory read from a given location returns the last value written to that
location. We give more detail on these routing techniques below, closely following some of the exposition of
Ben-Sasson et al. [15].

Routing networks. A routing network is a graph with a designated set of source vertices and a designated set
of sink vertices (both sets of the same cardinality) satisfying the following property: for any perfect matching
between sources and sinks, there is a set of node-disjoint paths that connects each source to the sink to which
it is matched. This property is referred to as rearrangability.

De Bruijn graphs are a class of routing networks that play a central role in the circuits we will use.

Definition D.1. Let L = 2` be a power of 2. The (κ, L) De Bruijn graph, denoted DB(κ, L) is a directed
2-regular graph with L layers, where each layer contains 2κ vertices identified by κ-bit strings. The nodes in
layer 0 are considered the sources and the nodes in layer L− 1 are the sinks.

A vertex in layer i ∈ {0, . . . , L− 2} with identifier w ∈ {0, 1}κ has two neighbors at layer i + 1, with
identifiers sr(w) and sr(w)⊕ e1, where sr denotes the shift-right operation, e1 is the κ-bit string with first
entry equal to 1 and all other entries equal to zero, and ⊕ denotes the bitwise XOR operation.

De Bruijn graphs of logarithmic width are rearrangeable, as stated in the next theorem.

Theorem D.1. [15, Claim 6.5] Let κ be a positive integer and π : {0, 1}κ → {0, 1}κ a permutation. There
exists a set Sπ of 2κ node-disjoint paths such that each vertex (0, w) in DB(κ, 4κ − 1) is connected to
(L− 1,π(w)). Moreover, Sπ can be found in time and space O(κ · 2κ) and parallel time O(κ2).
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We will refer to the set of node-disjoint paths whose existence is guaranteed by Theorem D.1 as a routing.
Notice that in a routing, each node v in layers {1, . . .L− 1} is in exactly one of the paths, and therefore v
has a single in-neighbor in the routing (we think of this in-neighbor as forwarding its packet to v), and each
node v in layers {0, . . . , L− 2} has exactly one out-neighbor in the routing. Thus, a routing in DB(κ, 4κ− 1)
can be specified by assigning each node v in layers {0, . . . L− 2} a single bit that specifies which of v’s two
out-neighbors in DB(κ, 4κ− 1) get forwarded a packet by v.

Using routing networks to ensure memory consistency. Recall that our circuit will take an entire transcript
(sorted by time) of the RAM computation as non-deterministic (i.e., auxiliary) input, and checks that the
transcript is valid. This requires checking the transcript for both time consistency and memory consistency.

To check memory consistency, our circuit will sort the transcript based on memory-order, which is a partial
order on (timestamp, configuration) pairs. Intuitively, sorting a transcript into memory-order is equivalent
to sorting the transcript based on memory location with ties broken by time. In more detail, a (time-stamp,
configuration) pair (τ , S) precedes a configuration (τ ′, S′) in memory-order if configurations S and S′ are the
immediate result of loads or stores from memory (say, to memory locations r and r′ respectively), and one of
the following properties is satisfied: 1) r < r′ (i.e., if S and S′ operate on different memory locations, we sort
based on this location) and 2) τ < τ ′ and r = r′ (i.e., if S and S′ operate on the same memory location, we
break the tie based on time).

Given a sorting of the transcript that respects memory-order, the transcript satisfies memory-consistency
if and only if for all pairs (τ , S), (τ ′, S) satisfying Condition 2 above for which S′ is the immediate result
of a load operation from memory location r′, the value just loaded in configuration S′ equals the value just
loaded from or written to this memory location in configuration S. Thus, our circuit will sort the (timestamp,
configuration) pairs to respect memory-order, and then check for all adjacent pairs in the sorting that this
property holds.

To perform the sorting step, the circuit will take additional bits as non-deterministic input. These bits
represent the bit-wise specification of a routing as described above, and we refer to these auxiliary input bits
as routing bits. In practice, the prover would find the necessary routing bits using the algorithm referred to in
Theorem D.1.

Remark: The space requirements of the routing algorithm described in Theorem D.1 are linear in the size
of the De Bruijn graph, which is in turn quasilinear in the runtime T(n) of the original RAM M. This will
exceed the space complexity S(n) of the of the original Random Access Machine M unless S(n) = Θ̃(T(n)).
Ben-Sasson et al. [15] briefly sketch the following approach to circumvent this issue: they first transform
the RAM M into a new RAM M′ that, every S(n) time-steps, reads all S(n) memory cells in order twice in a
row. Note this transformation only increases the runtime of M by a constant factor. Now when sorting the
transcript of M′ from time-order into memory-order, no (timestamp, configuration) pair needs to be routed
more than 2S(n) locations away from its time-ordered position, as every memory location is accessed by M′

every (at most) 2S(n) steps. This enables use of a routing algorithm that uses space Õ(S(n)). We omit further
details for brevity.

Putting it all together. Let M be an arbitrary (non-deterministic) Random Access Machine that on an input
x of length n runs in time at most T(n). We turn M into an equivalent non-deterministic circuit C. The explicit
input of C is x, and the non-deterministic inputs of C specify a sequence of T(n) (timestamp, configuration)
pairs representing a computation transcript sorted by timestep, followed by routing bits that are used in
conjunction with a De Bruijn graph to sort the transcript into memory-order. Let b(M) be the number of bits
required to specify a configuration of M; assuming that M has logarithmic word size and a constant number
of registers, it holds that b(M) = O(log n).

Our circuit C consists of several different parts, and each part has a hierarchical structure. These parts can
be summarized as follows. The first part checks the transcript for time-consistency. The second part sorts the
transcript into memory-order using the routing bits. The third part checks that the routing bits in fact specify
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a valid routing (this is essential to ensure that the routing part did not duplicate or erase any (timestamp,
configuration) pairs from the transcript). The fourth part checks that the output of the routing part is indeed in
memory-order. The fifth part checks the output of the routing part for memory consistency. Details of each
part follow.

• The first part of the circuit checks the transcript for memory consistency, and we refer to this as the
time-consistency check part of C. There exists a polylogarithmic-sized sub-circuit C1 that takes as
input two (timestamp, configuration) pairs (i, S) and (i′, S′), and outputs 1 if and only if i′ = i + 1
and configuration S′ correctly follows from executing one step of the RAM on configuration S. The
time-consistency check part of C thus consists of a two-level hierarchy. The top level of the hierarchy
contains a gate for each time step i ∈ [T(n)]. At the second level of the hierarchy, each gate i < T(n)−1
at the top level is expanded into a copy of C1 that is applied to the i’th and (i + 1)’th (timestamp,
configuration) pairs in the computation transcript that is provided to C as auxiliary input.

• The second part of C is devoted to sorting the transcript of the RAM computation into memory-order.
We refer to this as the routing part of the circuit. The routing part contains a three-level hierarchy of
gates. At the highest level of the routing part’s hierarchy is a (κ, 4κ− 1) De Bruijn graph used to sort
the transcript into memory-order. Here, κ = log T(n).

Because each vertex in the De Bruijn graph is used to route an entire (timestamp, configuration) pair
rather than a single bit, at the second level of the routing part’s hierarchy, each vertex u in the De Bruijn
graph is expanded into b(M) + log T(n) gates used to “store” the (timestamp, configuration) pair that
was forwarded to u in the routing. We can identify any gate at the second level of the hierarchy as (u, v),
where u specifies the vertex in the De Bruijn graph, and v specifies which bit of the corresponding
(timestamp, configuration) pair is stored at this node.

At the third level of the routing part’s hierarchy, each gate (u, v) is expanded into a constant-sized
sub-circuit C2 meant to accomplish the following: C2 looks at the routing bit for u to determine which
of u’s in-neighbors forwards a packet to u (let f (u) denote the identity of this in-neighbor) and then
sets the value of its output gate to equal the value of gate (f (u), v). Thus, we can let C2 be the circuit
that takes 3 bits as input and outputs its second input if the first input equals 0, and otherwise outputs
its third input. We expand gate (u, v) at the second level of the hierarchy into the sub-circuit C2 applied
to the routing bit for u, and the output of the copies of C2 corresponding to the two in-neighbors of gate
(u, v).

• The third part of C is devoted to ensuring that the routing bits indeed specify a valid routing – we refer
to this as the routing-validity check part of the circuit. This simply requires checking that each node
u in the De Bruijn graph at the highest level of the routing part’s hierarchy is forwarded a packet by
exactly one of its in-neighbors in DB(κ, 4κ− 1) (this is equivalent to ensuring that the routing bits of
both of its in-neighbors are 1). Thus, we can let C3 simply be an AND gate, and for each node u in the
De Bruijn graph, we feed the routing bits of each of the in-neighbors of u into C3.

• The fourth part of C is devoted ensuring that the output of the routing part is indeed in memory-order.
We refer to this part as the memory-order check part of the circuit. There exists a polylogarithmic-sized
sub-circuit C4 that takes as input two (timestamp, configuration) pairs and outputs 1 if and only if
the second pair does not precede the first in memory-order. Thus, the memory-order check part of C
consists of a two-level hierarchy entirely analogous to the time-consistency check part. The top level of
the hierarchy contains a gate for each time step i ∈ [T(n)]. At the second level of the hierarchy, each
gate i < T(n)− 1 at the top level is expanded into a copy of C4 that is applied to the i’th and (i + 1)’th
(timestamp, configuration) pairs in the computation transcript output by the routing part of C.
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• The fifth part of C checks the output of the routing part for memory consistency. We refer to this part as
the memory-consistency check part of the circuit. There exists a polylogarithmic-sized sub-circuit C5
that takes as input two (timestamp, configuration) pairs and outputs 1 if and only if the second pair is
memory-consistent with the first pair (that is, if the two configurations access the same memory location
and the second configuration corresponds to a load operation, then the value loaded in the second
configuration must equal the value loaded from or read to that location by the first configuration).

Thus, the memory-order check part of C consists of a two-level hierarchy entirely analogous to the
time-consistency check and memory-order check parts. The top level of the hierarchy contains a gate
for each time step i ∈ [T(n)]. At the second level of the hierarchy, each gate i < T(n)− 1 at the top
level is expanded into a copy of C5 that is applied to the i’th and (i + 1)’th (timestamp, configuration)
pairs in the computation transcript output by the routing part of C.

D.2 Arithmetizing the Circuit

In this subsection, we use C to denote the arithmetic circuit that is equivalent to the Boolean circuit described
in Section D.1.

A labeling of the gates in C. Recall from Section 4.2 that the function add(a, b, c) (resp., mult) take as input
3 gate labels each consisting of s bits, and outputs 1 if and only if the gate with label a in C adds (resp.,
multiplies) the outputs of gates b and c. To define these functions for C, we must therefore label each gate
with a binary string of length s = O(log |C|) as follows.

The first 3 bits of the string identify which part of the circuit the gate is in (here, we consider there to be
exactly eight parts of the circuit, as in addition to the five parts described in Section D.1, we consider the
input x, the non-deterministic transcript bits, and the non-deterministic routing bits to each be a separate part).
We will refer to these as the part-specifiers within a gate label. For concreteness, we let the part specifiers of
the label of every gate comprising the input x be 000, those of gates in the time-consistency check part be 001,
those of gates in the routing part be 010, and so on. We let the part specifiers in the label of every transcript
gate be 110, and the part specifiers in the label of every routing bit be 111. We choose this numbering scheme
for ease of exposition and notation, as this ensures that the part specifier of part j of C for j ∈ {1, . . . , 5} (i.e.
the non-input parts of the circuit specified above) is precisely the binary representation of j.

Notice also that each part j ∈ {1, . . . , 5} of our circuit ultimately consists of many repeated instances of
some sub-circuit Cj, with each instance of Cj being fed different inputs. While it is typical to think of a circuit
Cj as having input wires, we replace each input wire of Cj with a gate. We call this an input gate to Cj, and we
implement it as an addition gate with its first in-neighbor set to the corresponding value being fed into Cj, and
its second in-neighbor set to a fixed gate z ∈ {0, 1}s whose value is fixed to 0.

We let the 4th bit of each gate label be an input-gate indicator bit. That is, we set this bit to 1 if and only
if the gate is an input gate for Cj.

The remaining bits specify a gate’s label within its part – this simply involves specifying which copy of
Cj the gate is in, followed by the identify of the actual gate within Cj. For example, the label of a gate in the
routing part of C will be of the form 010 ◦ b4 ◦ (u, v, w), where ◦ denotes concatenation, b4 is set to 1 if and
only if the gate is an input gate of the constant-sized sub-circuit C2, u specifies a node in the (κ, 4κ− 1) De
Bruijn graph, v ∈ [b(M) + log T(n)] specifies a bit in a (timestamp, configuration) pair, and w specifies a gate
within the constant-sized sub-circuit C2. Notice that the hierarchical structure of each part of C easily lends
itself to a labeling plan obtained by labeling each level of the hierarchy separately and concatenating the
labels together to obtain a single label. In general, we will denote a gate’s label as (b1, b2, b3, b4, u, v) where
(b1, b2, b3) specify the part of C in which the gate resides, b4 specifies whether or not the gate is an input gate
to Ci, u specifies the copy of Ci in which the gate resides, and v identifies the actual gate within Ci.

To clarify, each gate in C must have a label of the same length s – to cope with the fact that some parts of
C have more gates than other parts, we simply pad out the labels of gates in smaller parts to ensure that every
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gate in C is assigned a binary string of length exactly s. In what follows, we will suppress reference to these
padding bits to simplify notation.

A low-degree extension of the wiring predicates. We will focus on specifying a low-degree extension of
the wiring predicate add : {0, 1}s → {0, 1} for C as the case of mult : {0, 1}s → {0, 1} is entirely analogous.

An essential consequence of the fact that our circuit C consists of five independent parts is that we
can arithmetize the wiring predicate of each part separately and combine the results into a single unified
wiring predicate whose degree in each variable is no larger than each of the parts individually. That is, let
addi(a, b, c) : {0, 1}3s → {0, 1} denote the function that takes as input three gate labels, and outputs 1 only if
the gate with label a is in part i of C, and gate a adds the outputs of gates b and c. Let ãddi be any low-degree
extension of addi. Then the polynomial

ãdd(a, b, c) :=
5∑

i=1

ãddi(a, b, c) (6)

is an extension of add; to see this, note that for any (a, b, c) ∈ {0, 1}3s for which gate a is in Part i of C,
ãddj(a, b, c) = 0 for all j 6= i, and hence ãdd(a, b, c) = ãddi(a, b, c) = add(a, b, c). Furthermore, the degree
of ãdd in each variable is no larger than (the maximum degree of) each of the constituent polynomials ãddi.

Since each part i consists of many repeated applications of an (at most) polylogarithmic-sized sub-circuit
Ci, it is relatively straightforward to compute ãddi for each i. Essentially, for each copy of Ci, we arithmetize
the wiring information of the input gates of Ci and the internal gates of Ci separately.

Notation. Fix an s∗ > 0. Let β(2,s∗)(p, p′) : F2s∗ → F denote the polynomial

β(2,s∗)(p, p) =
s∗∏

j=1

(
pjp′j + (1− pj)(1− p′j)

)
.

It is easy to check that if (p, p′) ∈ {0, 1}2s∗ , then β(2,s∗)(p, p′) = 1 if p = p′ and β(p, p′) = 0 otherwise. That
is, β(2,s∗) is the multilinear extension of the function that takes two length-s∗ Boolean vectors as inputs and
outputs 1 if and only if the two vectors are equal. Similarly, let

β(3,s∗)(p, p′, p′′) =
s∗∏

j=1

(
pjp′jp

′′
j + (1− pj)(1− p′j)(1− p′′j )

)
denote the multilinear extension of the function that takes three Boolean vectors as inputs and outputs 1 if
and only if all three vectors are equal, and β(4,s∗)(p, p′, p′′, p′′′) denote the analogous function that takes 4
vectors as inputs.

Let si denote log |Ci|, and let ti denote the number of copies of Ci that appear in part i of C. For a part
i ∈ {1, . . . , 5}, let (i1, i2, i3) ∈ {0, 1}3 denote the binary representation of i.

Handling the internal gates of Ci. Let ãddCi : F3si → F denote the multilinear extension of the wiring
predicate addCi : {0, 1}3si → {0, 1} for the sub-circuit Ci. Notice that ãddCi can be written as an arithmetic
circuit of size O(|Ci|si) using the expression

ãddCi(u1, u2, u3) =
∑

a∈{0,1}si

β(2,3si) ((a, in1(a), in2(a)) , (u1, u2, u3)) ,

where in1(a) denotes the label of the first in-neighbor of gate a in Ci.
Recall that each gate label in C is of the form (b1, b2, b3, b4, u, v) where (b1, b2, b3) specifies which

part i of C the gate is in, b4 specifies whether the gate is an input gate to Ci, u ∈ {0, 1}ti specifies which
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copy of Ci the gate is in, and v ∈ {0, 1}si specifies the gate within Ci. Consider three gate labels `1 =

(b(1)1 , b(1)2 , b(1)3 , b(1)4 , u(1), v(1)), `2 = (b(2)1 , b(2)2 , b(2)3 , b(2)4 , u(2), v(2)), and `3 = (b(3)1 , b(3)2 , b(3)3 , b(3)4 , u(3), v(3)),
and consider the polynomial

ãddi,internal(`1, `2, `3) = β(4,3)
(

i1, i2, i3, b(1)1 , b(1)2 , b(1)3 , b(2)1 , b(2)2 , b(2)3 , b(3)1 , b(3)2 , b(3)3

)
·

β(4,1)(0, b(1)4 , b(2)4 , b(3)4 ) · β(3,ti)(u(1), u(2), u(3)) · ãddCi(v(1), v(2), v(3)).

Intuitively, in the right hand side of the equation above, the first term in the product ensures that all three
gates are in part i of C, the second term ensures that each gate `1, `2, `3 is not a (copy of) an input gate to
Ci, the third term ensures that all three gates are in the same copy of Ci, and the ãddCi(v(1), v(2), v(3)) term
ensures that `2 and `3 are (copies of) the in-neighbors of `1 within Ci.

It is straightforward to check that ãddi,internal is a multilinear polynomial that satisfies the following
property: ãddi,internal evaluates to 1 on input (`1, `2, `3) ∈ {0, 1}3s if all three gates are in part i of C, and `1 is
not a (copy of) an input gate to Ci, and `2 and `3 are indeed the first and second in-neighbors of gate `1 in C.
Moreover, ãddi,internal evaluates to 0 on all other Boolean inputs.

Handling the input gates of Ci. Handling input gates to Ci is somewhat more complicated: each part must
be handled separately, and this is where the use of cubic rather than multilinear extensions will be necessary.

Our goal is to construct a low-degree extension of the function addi,input(`1, `2, `3) : {0, 1}s → {0, 1}
that given three gate-labels as input outputs 1 if and only if `1 is a (copy of) an input gate to Ci and `2 and `3
are its first and second in-neighbors in C respectively. If we succeed in this task, then it will suffice to define
ãddi(`1, `2, `3) := ãddi,internal + ãddi,input.

We will work through the details in the context of the time-consistency check part and routing part of C
respectively, as the case of the remaining parts are similar.

• Recall that in the time-consistency check part of C, the u’th copy of the sub-circuit C1 is fed the u’th
and (u + 1)’th (timestamp, configuration) pairs in the computation transcript that is provided to C as
auxiliary input. Here C1 is a circuit that takes two (timestamp, configuration) pairs (i, S) and (i′, S′),
and outputs 1 if and only if i′ = i + 1 and configuration S′ correctly follows from executing one step of
the RAM on configuration S.

We associate the input gates to C1 with the labels (d1, v′) ∈ {0, 1}1+bM , where the bit d1 specifies
whether the input is in the first or second (timestamp, configuration) pair, the v′ ∈ {0, 1}bM specifies
the bit within the (timestamp, configuration) pair. Notice that any gate in C that is a copy of an input
gate to C1 has a label of the form `1 = (0, 0, 1, 1, u, v) with u ∈ {0, 1}t1 and v = (d1, v′) ∈ {0, 1}1+bM .
The first in-neighbor of `1 in C is the gate (1, 1, 0, 0, u + d1, v′), where the expression u + d1 interprets
u and d1 as integers and denotes the binary representation of their sum. The second in-neighbor of `1 is
the designated gate z whose value is fixed to 0.

To arithmetize this wiring pattern, we would ideally like to use the multilinear extension of the function
that takes binary vectors u, u′ ∈ {0, 1}log T(n) and outputs 1 if and only if u′ = u + 1. Unfortunately, it
is not at all evident that the multilinear extension of this function can be evaluated in time polynomial
in the length of the vectors u and u′. Fortunately, Thaler [74] considers essentially the same scenario.
More specifically, Thaler analyzes a wiring predicate that arises in a circuit solving the pattern matching
problem – in this circuit, the first in-neighbor of a gate with label (i, j) of the circuit is the (i+ j)’th input
to the circuit, and handling this pattern necessitated developing techniques that broadly applied to wiring
patterns involving interpreting labels as integers and adding or subtracting them. For completeness, we
work through the details of this technique in our setting below.

Details of the arithmetization of add1. Essentially, the technique in our context appends t1 = log T(n)
“dummy bits” to the label of each gate of C corresponding to a (timestamp, configuration) pair in the
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computation transcript that is provided to C as auxiliary input. The value of the dummy bits appended
to the label of a gate in the u’th (timestamp, configuration) pair is the “carry bits” that arise when
adding together 1 and u in binary. Thaler shows that under this labeling, there is a cubic extension of
the wiring predicate that the verifier can evaluate in polylogarithmic time, and the prover can still be
made to run in time O(|C| log |C|) when using this extension of the wiring predicate.

More formally, let inc(u, c, u′) : {0, 1}3 log T(n) → {0, 1} denote the function that takes 3 Boolean
vectors of length log T(n) as input and outputs 1 if and only if u′ = u + 1 and the vector c equals the
vector of carry bits that arise when adding 1 to u in binary.

Let φ : {0, 1}4 → {0, 1} be the function that evaluates to 1 on input (i1, k1, c0, c1) if and only if c1 = 0
and i1 + k1 + c0 < 2 or c1 = 1 and i1 + k1 + c0 ≥ 2. That is, φ outputs 1 if and only if c1 is equal
to the carry bit when adding i1, k1, and c0. Let φ̃ be the multilinear extension of φ. Notice φ̃ can be
evaluated at any point r ∈ F4 in O(1) time.

Now let (i, c) denote a vector in F2 log T(n) and define

Φ(i, c) := φ̃(i1, 1, 0, c1) ·
log T(n)∏

j=2

φ̃(ij, 0, cj−1, cj).

For any Boolean vector (i, c) ∈ {0, 1}2 log T(n), it is easily verified that Φ(u, c) = 1 if and only if for all
j, cj equals the jth carry bit when adding the numbers u and 1 in binary.

Finally, let γ : {0, 1}3 → {0, 1} be the function that evaluates to 1 on input (i1, k1, c1) if and only if
i1 + k1 + c1 = 1 mod 2. Let γ̃ be the multilinear extension of γ. Notice γ̃ can be evaluated at any
point r ∈ F3 in O(1) time.

Now consider the following (3 log T(n))-variate polynomial over F:

ĩnc(u, c, u′) = Φ(u, c) · β(2,1)(γ̃(u1, 1, 0), u′1) ·
log T(n)∏

j=2

β(2,1)(γ̃(uj, 0, cj), u′j).

It is straightforward to check that ĩnc has degree at most three in each variable of (u, c, u′), and that ĩnc
extends the function inc. Intuitively, the Φ(u, c) term in the above expression checks that the vector c
contains the carry bits obtained when adding 1 to u, while the remaining terms ensure that u′ is the
result of applying the grade school addition algorithm to compute u + 1 given that the carry bits are c.

At last we are in a position to define ãdd1,input(`1, `2, `3). For purposes of this definition, for i ∈ {1, 2, 3}
we parse the gate labels as `i = (b(i)1 , b(i)2 , b(i)3 , b(i)4 , u(i), c(i), v(i)). Intuitively, u(1) ∈ {0, 1}t1 will be
interpreted as specifying a (timestamp, configuration) pair, c(1) will be interpreted as specifying carry
bits, and v(1) = (d(1)

1 , v′(1)) ∈ {0, 1}1+bM will be interpreted as specifying whether `1 is a (copy of) a
gate in the first or second (timestamp, configuration) pair being fed into C1, as well as the bit within the
(timestamp, configuration) pair. We define:

ãdd1,input(`1, `2, `3) = β(2,4)(0, 0, 1, 1, b(1)1 , b(1)2 , b(1)3 , b(1)4 ) · β(2,4)
(

1, 1, 0, 0, b(2)1 , b(2)2 , b(2)3 , b(2)4

)
·
(

(1− d(1)
1 ) · β(2,t1)(u(1), u(2)) + d(1)

1 · ĩnc
(

u(1), c(1), u(2)
))
· β(2,log bM)(v′(1), v′(2)) · β(2,s)(z, `3)

It can be seen that ãdd1,input is a polynomial of degree (at most) 3 in each variable, and that it extends
the function add1,input(`1, `2, `3) : {0, 1}s → {0, 1}. Intuitively, the first term in the equation above
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ensures that `1 is the label of an input gate to C1, the second term ensures that `2 is a (non-deterministic)
transcript gate to C, the third term ensures that `2 is in the appropriate (timestamp, configuration) pair
(i.e., is in the u’th pair if d(1)

1 = 0 and the (u + 1)’th pair if d(1) = 1). The fourth term ensures that
`2 is the appropriate gate within the u’th or (u + 1)’th (timestamp, configuration) pair. The final term
ensures that `3 is equal to z, the label of the designated gate whose value is fixed to zero.

Sketch of Prover’s computation. Thaler’s observations in Appendix B of the full version of [74]
imply that P1 can be made to run in Õ(|C|) time even if we use the cubic extension ãdd1 of add1
described above. We briefly sketch these observations. Recall that the sum-check protocol allows the
verifier to outsource computation of the quantity

∑
x∈{0,1}3s hq(x), and that the sum-check protocol

requires one round for each of the 3s variables being summed over. In each round i of the sum-check
protocol, P1 must compute a sum over |C|3/2i terms, and therefore P1 may not have the time even
to consider each term in the sum explicitly. It is therefore crucial that we argue that in all rounds, all
but Õ(|C|) of the terms in the sum are zero. This property is guaranteed if we use the cubic extension
ãdd1, as long as the sum-check protocol considers the variables in the vector in a specific order.
More specifically, recall that when arithmetizing the wiring predicate of the time-consistency check
part of C, we parse gate labels as `i = (b(i)1 , b(i)2 , b(i)3 , b(i)4 , u(i), c(i), v(i)). To ensure P1 is efficient, for
each i ∈ {1, . . . , log(T(n))}, the sum-check protocol must consider variables u(1)j , c(1)j and u(2)j in
consecutive rounds for all j ∈ {1, . . . , log(T(n))}. This ensures that the following property holds: each
gate in C contributes to only O(1) terms of the sum, and the contribution of each gate can be computed
independently in logarithmic time. At a high level, this property holds because ãdd1 is multilinear in
all variables except those of u(1) and c(1), and it is only non-multilinear in the remaining variables
because of use of the function Φ(u, c) within the definition of ãdd1. Fortunately, Φ(u, c) considers each
triple of variables (uj, cj, cj−1) independently, and thus when considering any Boolean setting of the
variables uj and cj−1 within the sum defining one of P1’s messages in the sum-check protocol, the only
setting of cj that P1 must consider is the setting corresponding to the carry bit of uj + cj−1, i.e., P1 need
only consider the unique setting of cj ∈ {0, 1} such that φ(uj, cj, cj−1) = 1. For the other setting of cj,
φ(uj, 0, cj−1, cj) will evaluate to zero, ensuring that the corresponding term in the sum defining P1’s
message within the sum-check protocol is zero. This ensures that P1 need not consider all possible
settings of the variables in (u(1), c(1)), but only the settings of these variables such that c(1) indeed
corresponds to the carry bits obtained when interpreting u(1) as an integer and computing u(1) + 1.

Thus, when using the cubic extension ãdd1 of add1, P1 can compute each message in the sum-check
protocol with a single pass over the gates of C. This pass requires time Õ(|C|), and there are only
O(log |C|) rounds in total, resulting in a total runtime of Õ(|C|).

We remark that when using the multilinear extensions of add and mult, each gate contributes to exactly
1 term in the sum, and it is irrelevant what order the sum is computed in – in our case, the order in
which the sum is computed is crucial, and each gate contributes to O(1) rather than exactly 1 term in
the sum.

• Recall that the label `1 of a gate in the routing part of C will be parsed as `1 = 010 ◦ b4 ◦ (u, v, w),
where ◦ denotes concatenation, b4 is set to 1 if and only if the gate is an input gate of the constant-sized
sub-circuit C2, u = (i, u′) specifies a node in the (κ, 4κ− 1) De Bruijn graph (here, i denotes the layer
of the De Bruijn graph in which the node resides, and u denotes the identity of the gate within the
layer), v ∈ [b(M) + log T(n)] specifies a bit in a (timestamp, configuration) pair, and w specifies a
gate within the constant-sized sub-circuit C2. Since C2 has three inputs and one output, we will let winj

denote the label of the jth input gate to C2 for j ∈ {1, 2, 3}, and wout denote the label of the unique
output gate of C2.

32



If `1 is a (copy of) an input gate to C2, then its second in-neighbor is always the designated gate z
whose value is fixed to 0, and its first in-neighbor is one of the following: 1) If w = win1 , then the first
in-neighbor of `1 is the routing bit corresponding to node u in the De Bruijn graph that was supplied
as non-deterministic input to the circuit C – this routing bit has label 111 ◦ 0 ◦ u. 2) If w = win2 , then
the first in-neighbor of `1 is the output gate of the copy of C2 corresponding to u’s first in-neighbor
in the De Bruijn graph and to the vth bit of the (timestamp, configuration) pair. This gate has label
010◦0◦ ((i−1, sr(u′)), v, wout), where as usual sr denotes the shift-right operation. 3) If w = win3 , then
the first in-neighbor of `1 is the output gate of the copy of C2 corresponding to u’s second in-neighbor
in the De Bruijn graph and to the vth bit of the (timestamp, configuration) pair. This gate has label
010 ◦ 0 ◦ ((i− 1, sr(u′)⊕ e1), v, wout).

A crucial observation in arithmetizing this wiring predicate is that the wiring pattern of De Bruijn
graphs are “algebraically regular”: the in-neighbors of gate u = (i, u′) in the De Bruijn graph are
of the form and (i− 1, sr(u′)) and (i− 1, sr(u)⊕ e1). The transformation i 7→ i− 1 can be handled
exactly as in Part 1 of the circuit (alternatively, as there are only log T(n) layers in the De Bruijn
graph, we can afford to represent each layer of the De Bruijn in unary rather than binary. This will
increase the bit-length of each gate label by at most an additive log T(n) factor, and permits use
of the multilinear extension of add2 rather than a cubic extension). Meanwhile, the transformations
u′ 7→ sr(u′) and u′ 7→ sr(u′)⊕ e1 are easy to arithmetize using multilinear extensions. For example,
the multilinear extension of the function sr-func(u1, u2) : {0, 1}2 log T(n) → {0, 1} that takes as input
two binary vectors u1, u2 of length T(n) and outputs 1 if and only if u2 = sr(u1) is simply the function
s̃r-func(u1, u2) = β2,1(u1,1, u2,2) · β2,1(u1,2u2,3) · · · · · β2,1(u1,log T(n), u2,1).
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E Pseudocode

1: function VERIFYOUTPUTS(Circuit C, Input x, Output y)
2: // s is the number of bits needed to represent a gate label.
3: s← dlog(Size(C))e
4: q R←− F
5: SendToProver(P1, q)
6: // sum-check protocol is being applied to polynomial hq

7: (w1, w2, w3, v1, v2, v3)← SUMCHECK(P1, q, C, x, y)
8:

9: // reduce v1
?
= W̃(w1), v2

?
= W̃(w2), v3

?
= W̃(w3)

10: // to v4
?
= W̃(w4)

11:

12: k0, k1, . . . , k2s ← GetFromProver(P1)
13: // above, correct prover returns 2s + 1 field elements,
14: // specifically K(0), K(1), . . . , K(2s) ∈ F, where
15: // K = W̃ ◦ `, for ` : F→ Fs, where
16: // `(t) = 2−1(t − 2)(t − 1) · w1 − (t − 2)t · w2 + 2−1t(t − 1) · w3
17: if k0 6= v1 or k1 6= v2 or k2 6= v3 then
18: return reject
19: τ

R←− F
20: w4 ← `(τ)
21: v4 ← K∗(τ) // K∗ is poly. interpolation of k0, . . . , k2s
22:

23: v′4 ← LOWDEGREEQUERY(P2, w4)
24: if v′4 = v4 then
25: return accept
26: return reject

Figure 5—V’s side of our MIP protocol. The SUMCHECK and LOWDEGREEQUERY protocols are given in Figures 6
and 7.
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1: function SUMCHECK((Pi, q, C, x, y))
2: s← dlog(|C|))e
3: r R←− F3s

4: e← 0
5: for j = 1, 2, . . . , 3s do
6: Hj(·)← GetFromProver(Pi)
7: // Pi returns Hj(·) as {Hj(0), Hj(1), Hj(2), Hj(3)}, which
8: // is sufficient to reconstruct Hj because Hj is degree-3
9:

10: if Hj(0) + Hj(1) 6= e then
11: return reject
12:

13: SendToProver(Pi, rj)
14: e← Hj(rj)

15:

16: // notation
17: w1 ← (r1, . . . , rs)
18: w2 ← (rs+1, . . . , r2s)
19: w3 ← (r2s+1, . . . , r3s)
20:

21: // Pi is supposed to set vi = W̃(wi), for i = 1, 2, 3.
22: v1, v2, v3 ← GetFromProver(Pi)
23:

24: // Below, V performs the final check. In preparation:
25: // locally evaluate ĩo(w1, w2, w3), ãdd(w1, w2, w3),
26: // m̃ult(w1, w2, w3), gq(w1, w2, w3), and Ĩx,y(w1).
27:

28: a′ ← gq(w1, w2, w3) · (ĩo(w1, w2, w3) · (Ĩx,y(w1)− v1)+

29: ãdd(w1, w2, w3) · (v1 − (v2 + v3))+

30: m̃ult(w1, w2, w3) · (v1 − v2 · v3))
31:

32: if a′ 6= e then
33: return reject
34: return (w1, w2, w3, v1, v2, v3)

Figure 6—V’s side of the sum-check protocol within our MIP. The intent of the protocol is to prove to V that
0 =

∑
u∈{0,1}3s hq(u). The inputs are Pi (the identity of the prover), q (used in the definition of the polynomial hq),

the circuit C, the input x, and the purported output y; the protocol returns (w1, w2, w3, v1, v2, v3). Roughly speaking,
the protocol’s guarantee is that if V does not reject and if there is a low-degree polynomial W̃ such that W̃(w1) = v1,
W̃(w2) = v2, and W̃(w3) = v3, then with high probability W̃ is an extension of a correct transcript for C on input x and
purported outputs y.
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1: function LOWDEGREEQUERY((Pi, w))
2: s← dlog |C|e
3: Let Q : F2 → Fs be a random plane passing through w.
4: Let (r1, r2) ∈ F2 be such that Q(r1, r2) = w.
5: SendToProver(Pi, Q)
6: // above, Q can be specified by sending Q(0, 0), Q(0, 1),
7: // and Q(1, 1).
8:

9: k0,0, . . . ks,s ← GetFromProver(Pi)
10: // above, correct prover returns (s + 1)2 field elements,
11: // specifically K(i, j) ∈ F for
12: // (i, j) ∈ {0, . . . , s} × {0, . . . , s}, where K = W̃ ◦ Q.
13: v← K∗(r1, r2) // K∗ is poly. interpolation of k0,0, . . . , ks,s
14: return v

Figure 7—V’s side of the point vs. plane low-degree test [60]. This protocol forces Pi to make an independent claim
about W̃(w).
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