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Abstract. By introducing extra shields on Shpilrain and Ushakov’s Ko-Lee-like protocol based on the
decomposition problem of group elements we propose two new key exchange schemes and then a number of
public key cryptographic protocols. We show that these protocols are free of known attacks. Particularly,
if the entities taking part in our protocols create their private keys composed by the generators of the
Mihailova subgroups of B,,, we show that the safety of our protocols are very highly guarantied by the
insolvability of subgroup membership problem of the Mihailova subgroups.
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1 Introduction

In 2000, Ko et al proposed a key exchange scheme (called Ko-Lee Scheme) in [30] based on the
conjugacy search problem in Braid groups. Followed then braid groups have been intensively taken
as platforms by people to set up public key mechanisms (see [3, 9, 15, 33, 45, 47, 48, 49, 51, 52] for
references). However, people also found a number of attacks on these protocols, for examle, the length
based attack [29, 34, 26, 21, 39, 40], the Burau representation attack [28, 34, 35], the Lawrence-Krammer
representation attack [10, 32], the super summit set attack [18], and the Ultra summit set attack [22].
Based on decomposition problem (DP, see [53]) in groups people also suggested a number of public key
cryptographic schemes [9, 44] which actually are the generalizations of Ko-Lee scheme. Unfortunately,
there are also some cryptanalyses [10, 39] on these schemes.

In this article, taking a non-abelian infinite group as a platform, we introduce a new technic by
attaching extra shields on the exchange data during the interactive process setting up protocols. We
show that with these enforced protections our proposed protocols are safe against all known attacks. In
[63] we have given an explicit presentation of Mihailova subgroup of the group Fy x Fy and therefore,
this Mihailova subgroup enjoys unsolvable subgroup menbership problem (GWP [53]). Collins [12] had
shown that for n > 6 there are subgroups of B,, isomorphic to Fy x F5. Therefore, in the application of
our proposed protocols if the entities take a braid group B, with n > 12 as the platform and use the
generators of Mihailova subgroup of B,, which are translated from the explicit presentation of Mihailova
subgroup [53] to create their private keys, the correspondent protocol would be also free of the quantum
computational attack (the attack based on Shor’s quantum computation algorithm [43]) due to the
insolvability of subgroup membership problem of Mihailova subgroup of the group Fb x Fb.

This paper is organized as follows. In Section 2, we propose a number of new public key crypt
protocols by adding extra shields during the exchange procedures. In Section 3, we first present the
translation into a braid group of the explicit presentation of a Mihailova subgroup given in [53], and then
we suggest that a braid group is chosen to be the platform for our proposed protocols and propose two
strategies of choosing private keys in the braid group where in one of the strategy we require that the

*Applications of the protection of intellectual property of all protocols proposed in this paper have been
made to State Intellectual Bureau of China with patent application numbers: 201310382299.7 in 27/08/2013 and
201380001693.X in 04/12/2013, and made to Patent Cooperation Treaty(PCT) with international application
numbers: PCT/CN2013/001119 in 22/09/2013 and PCT/CN2013/088475 in 04/12/2013.

fCorrespondence author.



private keys are created by the generators of Mihailova subgroups. Finally in section 4, we show that our
protocols are free of the most known attacks and point out that security of the protocols setting up by
taking the second strategy is in the very high level even against the quantum computational attack.

2 The shielded Ko-Lee-like schemes

Based on decomposition problem Shpilrain and Ushakov suggested the following key exchange pro-
tocol in [44] (also see [9]). We will call this protocol a Ko-Lee-like scheme since it would be traced back
to Ko-Lee scheme in [30].

Shpilrain and Ushakov’s Ko-Lee-like protocol

(0) Alice and Bob agree on a nonabelian group G and two subgroups A, B of G, such that ab = ba for
any a € A and any b € B.

(1) Alice privately chooses two elements a; € A and b; € B, a randomly chosen element g € G, and
computes = a;gb;. Alice then sends (z, g) to Bob.

(3) Bob privately chooses two elements as € A and by € B, and computes y = bagas and k = baxas =
baaygbias. Bob then sends y to Alice.

(4) Alice computes k' = a1yb; = a1bagasby.

Since a1bs = baa; and asb; = bias, k' = k which is then the shared key by Alice and Bob.

However, as they pointed out in [46] that if an attacker can solve the following decomposition problem
(also see [53]) in G, he then is able to obtain the shared key.

Decomposition problem Given an element g of a group G, two subsets A, B C G and an element
u=xgy € G with z € A and y € B, find elements 2’ € A and 3’ € B such that 2wy’ = zwy.

Indeed, suppose that the attacker is able to solve the above problem in G to find '’ € A and V/ € B
such that a’gb’ = a1gb; and followed he can obtain the shared key by computing a’yb’ = a’bagast/ =
bza’gb’ag = b2a19b1a2 = k.

To avoid the above possible attack, in the following we proposed two new public key primitives by
introducing extra ”shields” on the exchange data during the interactive process setting up protocols.

The shielded key exchange protocol 1

(0) Alice and Bob agree on a nonabelian group G, an randomly chosen element ¢ € G and two
subgroups A, B of G, such that ab = ba for any a € A and any b € B.

(1) Alice chooses four elements aq,as,b1,be € A, computes x = byajgasbs, and then sends x to Bob.

(2) Bob chooses six elements ¢y, ¢a,dy,da, d3,dy € B, computes y = dycqgceads and w = dzcixcady, and
then sends (y,w) to Alice.

(3) Alice chooses two elements b3, by € A, computes z = bgaiyazbsy and u = bl_lwb;l7 and then sends
(z,u) to Bob.

4) Bob sends v = d; *zd; ! to Alice.
1 R0y
(5) Alice computes K4 = by 'vb, '

(6) Bob computes Kp = d3 'udy ' which is equal to K4 and then is Alice and Bob’s common secret
key.

Proof of why K = K 4:

Since a1, a9,b1,ba,b3,b4 € A, c1,¢0,d1,da,ds,dy € B, a1, as2,b1,bs, b3, by commute with ¢y, co,dy,ds,ds, dy
respectively, we have

Kp = d3'ud]!

dz tby fwby Tyt
d3 *by Y dzeyweadyby tdyt
b;101b1alga2b202b2_1
= (C1a1g9a2C2



and

Ka = bylob)!
by tdytzdy ot
= by 'd;'b3aryasbsdy byt
dflaldlclgCngangI
aic1gceas = Kp

The shielded key exchange protocol 2

(0) Alice and Bob agree on a nonabelian group G, an randomly chosen element ¢ € G and two
subgroups A, B of G, such that ab = ba for any a € A and any b € B.

(1) Alice chooses four elements a1,b; € A and ¢o,ds € B, computes x = byjajgcads, and then sends x
to Bob.

(2) Bob chooses six elements ag,bs,b3 € A and ¢1,dy,ds € B, computes y = djcigasbs and w =
dscizasbs, and then sends (y, w) to Alice.

3) Alice chooses two elements by € A and d4 € B, computes z = bgai1ycads and u = bilwdfl, and
( ; p Yy 1 Way
then sends (z,u) to Bob.

(4) Bob sends v = d; *2by " to Alice.
5) Alice computes K4 = by tvd; *.
g Vly

(6) Bob computes K = d;lubgl which is equal to K4 and then is Alice’s and Bob’s common secret
key.

Proof of why K = K 4:

Also since ay,as,by,be,b3,b4 € A, c1,C,dy,do,ds,dy € B, ay,as,by,bo, b3, by commute with ¢y, co,dy,ds, ds, dy
respectively, we have

Kp = dy'uby!

dz by fwdy o3t
dy by tdsciwagbsdy Tyt
bl_lclblalgczdgagdgl
€1a19C2a2

and
Ka = bylvd)?
= by tdytaby tdyt
= by td; baayycadsby tdyt
= dflaldlclgagbg@b;l
= ajcigazca = Kp

Based on the protocol 1 in the above, by using the technic in [30] one then can easily set up the
following public key encryption protocol and digital signature protocol. Analogously, one also can set up
correspondent public key application protocols based on our shielded key exchange protocol 2.

The shielded public key encryption protocol

Key generation:

Alice chooses a nonabelian group G, an element g € G, two subgroups A, B of G satisfying ab = ba
for any a € A and any b € B, and two elements by, by € A. Alice also chooses a collision free hash function
O : G — {0,1}* where k is a positive integer large enough such that {0,1}* can cover all the message.
Alice publishes

(G,A,B,g,0)

as her public key. Alice’s private key is (b, ba).

Let m € {0, 1}* is the message which is going to be sent to Alice by Bob. Bob and then Alice processe
the following encryption.

Encryption:



(1) Bob chooses four elements ¢y, ¢a,dy,dy € B, computes y = djcigcads, and then sends y to Alice.

(2) Alice chooses four elements a1, as, b3, by € A, computes x = byajgasbs and z = bzajyasby, and then
sends (z, z) to Bob.

3) Bob chooses two elements ds, dy € B, computes w = dscixcady and v = dj 'zdy ', and then sends
1 2
(w,v) to Alice.

(4) Alice computes K4 = by wb;* and u = by 'wb; ', and then sends u to Bob.
(5) Bob computes Kp = d3'ud;" and t = O(Kp) @ m where @ is the exclusive or operation. Bob
then sends ¢ to Alice which is the ciphertext.
Decryption:
Alice recovers the message m by computing O(K4) @t = m.

Proof of why the above decryption works:
First we already have K4 = Kpg. Therefore,

@(KA)@t:@(KB)@G(KB)@m:m

The shield digital signature protocol
Let m € {0,1}* be the document which is going to be signed by Alice. Alice then processes the
following procedure.

Key generation:
Alice chooses a group G, an element g € G, two subgroups A, B of G such that ab = ba for any a € A
and any b € B, and two elements b1, by € A. Alice publishes

(G,A,B,g,0)
as her public key. Alice’s private key is (b, ba).
Signing the document m:
(1) Alice chooses two elements a1, as € A, computes & = bjajgasbse, and then sends x to Bob.

(2) Bob chooses six elements ¢, ¢a,d1,ds, d3, dy € B, computes y = dic1gceds and w = dzcixcady, and
then sends (y,w) to Alice.

(3) Alice chooses two elements b3, by € A, computes z = bsaiyasby and u = bflwbgl, and then sends
(z,u) to Bob.

(3) Bob computes v = dj 'zd; ', and then sends v to Alice.

(4) Alice computes e = b 'vb; * and sends Bob S = ©(me).

Verification:
(1) Bob computes ¢’ = d3 'udy!
(2) Bob computes S’ = ©(me’).
(3) Bob accepts S as a valid signature of Alice’s for m if S’ = S. Otherwise, he rejects it.
Proof of why the above verification works:
Since we already have known that e’ = e, indeed then S’ = S.

The shield Sibert-Dehornoy-Girault-like authentication protocol

Based on our shielded key exchange protocol 1 and the idea setting up an authentication protocol
given by Sibert et al in [49] we then have the following authentication protocol. One also can obtain an
analogous protocol based on our shielded key exchange protocol 2.

Here Alice is the prover and Bob the verifier.

Key generation:



Alice chooses a group G, an element g € G, two subgroups A, B of G such that ab = ba for
any a € A and any b € B, four elements ay,a2,b1,bo € A, and a collision free hash function
© : G — {0,1}* where k is a positive integer large enough such that {0,1}* can cover all the
message. Alice computes x = byajgasbs. Alice publishes

(G,A,B,g,ﬂ?,@)
as her public key. Alice’s private key is (b1, b2).

Authentication:
(1) Alice selects two element c1,co € B, and sends Bob the commitment z = O(cia1gascs).
(2) Bob chooses a random bit h and sends it to Alice.
(3) If h = 0, then Alice computes u = by '¢1, v = czby *, and sends (u,v) to Bob and Bob checks if the
equality z = O(uzv).

(4) If h =1, then Alice computes u = ¢1a1, v = asce, and sends (u,v) to Bob and Bob checks if the
equality z = O(ugv).

Proof of why the above verification works:
If Alice knows a1, as and answers correctly, she is accepted by Bob: for h = 0, since by, by commute
with cq, co respectively, we have

Ouzv) = O(by crzeabyt)
@(bflclblalgagbg@b;l)
@(Cla19a262)

= =z

While, for h = 1, since v = ca we have

O(uzv) O(aic1g9azca))
O(cra1gcaaz)

= Z

One can see that if Alice want to cheat by sending a correct answer in both cases: in the case h = 0,
it suffices that Alice has to have gussied in advance that h = 0 and then had created the commitment
z = O(uzv) with u = ¢; and v = ¢9; and in the case h = 1, it suffices that Alice has to have gussied in
advance that h = 1 and then had created the commitment z = ©(ugv) with v = ¢; and v = ¢;. But a
cheater cannot choose his commitment so as to answer correctly in both cases: if he anticipates h = 0,
the probability of answering correctly for h = 1 is negligible, and, symmetrically, if he anticipates h =1,
the probability of answering correctly for A = 0 is negligible. So, globally, a cheater has no more than
0.5 chance to be accepted. Thus, by repeating the exchanges [ times, we can make the probability that
a cheater be accepted as small as 1/2!.

3 Platform group and parameters

3.1 Braid groups

We suggest that the infinite nonabelian braid groups B,, with n > 12 can be taken as the platform
groups for the protocols in the above section where B, is defined by the following presentation.

Definition 3.1 The n-th braid group has a presentation as the following:

By, = (o1, -+ ,0n-1|040j = 0j0;,0i410i0i41 = 00110, 1 <i<n—1,|i —j| > 1,)



where 01,07, ,0n,_1 are called the Artin generators of B,,, and each element of B,, is called an n-braid.
For more details of the fundamental facts of Braid groups we refer the reader to [4, 15].

Denote B, the submonoid generated by 01,01, -+ ,0,-1 and call each element of B, a positive
braid. Let A,, denoted the positive braid inductively defined by

A =1, 80 =01A1, -+, Ajp1 = (01 09)A;, 1<i<n

In particular, A,, is called the fundamental braids and denoted as A := A,,.

For u,v € By, we denote v < w if and only if there exist positive braids a, 3 € B;} such that w = avp.
Obviously < is a partial ordering relation on the set of all elements of B,. An element o € B,, is then
said to be a canonical factor if o < A.

A factorization v = af8 of a positive braid = into a canonical factor a and a positive braid 5 is said
to be left-weighted if and only if o has the maximal length among all such decompositions. Similarly, one
can define the idea of a right-weighted factorization. For any braid w € B,,, notation sup w is the greatest
i € Z with A" < w, and the notation inf w is the smallest i € Z with w < A?. Now, every braid a € B,
can be written uniquely as

a=A"Wy- - W,

where r = infw, s = supw — infw and each W; are canonical factors such that W;W;; is left-weighted
for 1 <14 < s (see [20, 16, 30]). This expression of « in the above is called the A-normal form of o with
canonical length s. There are three facts [30] (also see [17, 16]) about the computation complexities of
A-normals of n-braids.

e Let a be a word on {o1,09,- - ,0,-1} with word length . Then the A-normal form of « can be
computed in time O(I*nlogn).

o Let = A"Wj--- W, and v = AU, - - - U, be the A-normal forms of n-braids o and v , respectively.
Then one can compute the A-normal form of ay in time O(pgn logn).

o If A"W; .- W, is the A-normal form of an n-braid «, then one can compute the A-normal of a~ !
in time O(pn).

Given a braid group B,, let

LBTL = <01702; . '?O-L%J—1>

and
RB, = <ULgJ+17 OlZ]+2)--+> O—n71>

be the subgroups of B,, generated by {01, 09, ..., UL%J,l} and {O’L%J+1, TR On—1}, respectively.
Then by the definition of B,,, we have ab = ba for any a € LB,, and any b € RB,,. We call LB,, the left
half subgroup of B, and RB,, the right half subgroup of B,.
For a braid group B,, with n > 6, by a result of Collins [12] there is a subgroup of B,, of the following
form
Gi:<0'i2aai2+1aai2+3aai2+4>’ I<i<n-=5

such that G; is isomorphic to the direct product F» x Fy with F5 the free group of rank 2.

3.2 Presentations of Mihailova subgroups of B,

Since the group H defined by Presentation C in [53] is generated by two elements ¢, u and the the
subgroups
G; = (01-2,Ui2+1,0i2+3,0i2+4>, 1<i<n-5

of B, with n > 6 in §3.1 is isomorphic to the group Fy x Fy, we now can apply Theorem 3.3 of [53] to
present an explicit countable presentation for Mihailova subgroup Mg, (H) of G;. To do so we introduce
some notations as follows.

If a relation R; in Presentation D in [53] is of the form

R;: RV (u,t) = R\ (u,t)



with both Rgl)(m t) and R;T) (u,t) being words on the set {u,t,u~*,¢~!} then we denote
Sy = (B (07, 0%1)) ' B (07, 024)

by replacing all occurrences of u with o7 and all occurrences of ¢t with o7 "1, and denote

r )
Ty = (R (02,5,0%,4)) 'RV (02,5.0%,4)

by replacing all occurrences of u with 67, ; and all occurrences of ¢ with o2, ,.
In Theorem 1.1 of [6], we let k = 2 and ¢ be the isomorphism sending the group Fy x Fy with F,
generated by (z1,x2) to the subgroup G; with 1 <i <n —5 and n > 6 defined by

(b : (:L‘1, 1) = 01'27 (1‘2,1) — 01'2+1a (171'1) = 0?4—37 (17372) — 01‘24.4

Therefore, the generators of the presentation in Presentation D of [53] are dy = 0707, 5, d2 = 07,107,
lTij = Tij7 and 15” = Oij, j = 1,2,' N ,27

Clearly, one can check that root(S;;) = S;; and root(T;;) = T35, j = 1,2,--- ,27. Thus, by replacing
each occurrence of u with 0202, 4 and each occurrence of ¢ with o7, ;07 , of each R; we then have

r — l .
Tij = (R( )(U Uz+37 z+1012+4)) 1R§)(Ui2012+37012+10.z'2+3)7 J= 1a27 e a27

where 7;; is defined as r; in the the presentation given in Theorem 1.1 [6].

Finally, by Theorem 1.1 [6] we then have an explicit countable presentation with 56 generators for
Mihailova subgroup Mg, (H) of B,, with n > 6 as the following.
Presentation D

56 generators:

2 .
0; 01+37 1+1Jz+4ﬂ Szy, ijy J = 1727"' 727

Countable number of relators:

S5t 15“6 20 TS (0TS ), TN TS ) T T (67 S o)

J
S5O T ) S 6T TR ), T T ) T (5 T )
Tigl’ri—jlﬂjrija Siglri_jl‘gijrija jak = 1727 e 727
where § € (07, 07,1) U {07,5,07,4)-

For being used in setting up a public cryptograph mechanism in the following sections we give the

details of the descriptions of all the generators S;;, j = 1,2,---,27 in Presentation D as follows. We
point out that one can obtain all the descriptions of generators 7;; in Presentation D by replacing all
occurrences of o with o2, 5 and all occurrences of o7, with 62, in S;;, j =1,2,---,27.
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Now, since the word problem of the group G defined by Presentation C is unsolvable, Mihailova’s
theorem[38] implies the following conclusion.

Theorem 3.2 The membership problem for Mihailova subgroups Mq,(H) of B, with n > 6 are unsolv-
able.

For n > 12, one can see that Mihailova subgroup Mg , _, (H) of By, is also a subgroup of the left half
2
subgroup LB,,, and Mihailova subgroup Mg, ., (H) of B, is also a subgroup of the right half subgroup
2
RB,.

3.3 Requirements

We suggest that in the application of our proposed protocols in §2 the platform group G is chosen to
be a braid group B,, with n > 12, and the subgroups A and B of GG in the protocols is chosen to be the
left half subgroup LB,, and the right half subgroup RB,, of B,,, respectively. Furthermore, there are two
strategies of elements choosing as follows.

Strategy 1
The elements aq,as, bi,bs, b3, by are chosen from LB, and the elements cy,co, dy,ds, d3,dy are
chosen from RB,,.

Strategy 2
(1) The elements ay, as, bs, by are chosen from LB, and the elements ¢y, c2, ds,dys are chosen from
RB,.
(2) The elements b1, by should be chosen from the Mihailova subgroup Mg ,_,(H), and the elements
2
d1,dz should be chosen from the Mihailova subgroup Mg, ., ,, (H).
2

4 The security analysis

We first point out that in the application of Shpilrain and Ushakov’s Ko-Lee-like protocol if Alice
and Bob agree on the braid group B,, with n > 12, and subgroups A and B of B,, in the protocols being
chosen to be the Mihailova subgroup MGL% |5 (H) and the Mihailova subgroup MGL% 111 (), respectively.
Thus Alice’s private keys are a; € MGL%J75(H) and by € MGLng(H)v and Bob’s private keys are as €
MGL% s (H) and by € MGL% 41 (H). However, its not necessary for the attacker to solve the membership
problem and decomposition problem to find elements a’ €€ MG[%j—S(H) and o € MGL%Hl(H) such
that a’gh’ = a;gb; to obtain the shared key by computing a’yb’ = a’bagasb’ = bya’gb’as = boaigbias = k,
since it is sufficient for her to attack the shared key by just solving the decomposition problem to find
a' € LB, and / € RB,, such that a’gb’ = a1gb; and then obviously she also can obtain the shared key.

We only give the analysis of the security of key exchange protocol 1 since the analysis for key exchange
protocol 2 is similar.
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The security of Strategy 1 of key exchange protocol 1
First, in the exchange procedure of the protocol what the attacker Eve can have would be the braid
group B, two subgroups LB,,, RB, of B,, and the following elements of B,,

g7x7y727w7u7v

where
T = biai1gasba,y = dicigeads, z = bzardicigeadaasbs, w = dzcibragasbacady

and
u = dzc1a1gascady = bl_lwbgl, v = bgajicigcoasby = all_lzd2_1

Therefore, to attack the shared key Eve has to get rid of the shields b; and b2 in x to have the element
a1gas as well as the shields d; and ds in y to have the element ¢1gco. Then she would try to solve the
decomposition problem by finding elements a},a) in LB,, and ¢}, ¢, in RB,, such that a}ga) = a;gas and
cigch = c1gca. Followed therefore she can obtain the shared key by computing

!/ /! / / li /
a7019Caly = G71C19Caby = crajgasca = craigascs = Ka = Kp

Clearly, for the pair (g, ) of elements g and x, what Eve is capable do is to solve the decomposition
problem by finding elements hy, hy € LB, such that higho = biajgasbs = x. However, she couldn’t
guaranty that hy = bia; and hy = agbs. Even though in the case that she does have h; = bya; and
ho = asby, she clearly has no way to factorize them to obtain elements ay, b1, as, and by. So, she
couldn’t have the element ajgas from the equation higho = biaygasbs = x. Similarly, Eve also couldn’t
do anything over element pairs (y, ), (z,v), and (w, x).

Therefore, for Eve to launch the attack she may have to solve the decomposition problem with the
elements pairs (w,w), and (z,v) with relations w = byuby and z = dyvds.

One can check that among all known attacks on the Braid based public key protocols there are
three cryptanalysis methods of solving decomposition problem in braid groups: the Burau representation
attack in [35], the Lawrence-Krammer representation attack in [10], and the length based attack in [39].
However, by using one of these methods, what the attacker Eve at most can do is only capable of finding
elements b},b, € LB,, and d},d, € RB,, such that bjubl = byubs = w and djvd = dyvdy = z. However,
in most cases, there are infinitely many such pair of elements b},b, € LB, and d},d, € RB,. For
example, let n = 2m > 12, g be an element of G represented by o,,, a1, as be elements of the subgroup
of LB, generated by o1, 09, and b}, b, € LB,, be such a pair with bjuby = w. Then for any integer [ the
element by represented by o, the pair of elements b} by, by 1b’2 € LB,, are also satisfying

by bouby 'ty = by bodsciargascadaby by = b dsciar gascadsboby tbly = by dzciar gagcadabhbiubly = w

since by commutes with ds, c1, a1, g, ag, c2,ds. Therefore, Eve must verify if b} = by, by = by, d} = dy,
and d), = dy since these equalities are what Eve has to have for her to get rid of the shields in = and y.
Obviously Eve has no way to do the verifications.

The security of Strategy 2 of key exchange protocol 1 In case the quantum computation systems
come to reality, we suggest that one takes the consideration of using Strategy 2 since in the analysis above,
after the attacker Eve has found elements b),0, € LB,, and d},d € RB,, such that bjub, = bjubs = w
and djvd, = dyvds = z, she must verify if b = by, by = be, d} = dy, and dy = ds. Hence she must
solve the membership problem to decide if b}, b, are elements of MGL% ,_5(H) and if di, dj are elements
of MGL% | +1(H ). These are definitely impossible since the two subgroups enjoy unsolvable subgroup
membership problem and hence the protocol is secured against the quantum computational attack.
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