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Abstract. A presentation of a group with two generators having unsolvable word problem and an
explicit countable presentation of Mihailova subgroup of F2 × F2 with finite number of generators are
given. Where Mihailova subgroup of F2 × F2 enjoys the unsolvable subgroup membership problem. One
then can use the presentation to create entities’ private keys in a public key cryptsystem.
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1 Introduction

In 1997, Shor published in [37] his distinguished quantum computational algorithms and he pointed
out in this paper that with his algorithms the factorization of an integer and the computation of discrete
logarithm are computable in a polynomial time. Therefore, the most used public key cryptsystems (such
as RSA, ECC, et cetera) are really in jeopardy since people believe that quantum computers or quantum
computation systems are in fact not far from the reality. Therefore, one of the most urgent task for the
cryptologists is to find new public key cryptsystems which are much more safe and free of the quantum
computational attack.

In the last decade, due to the works done by Anshel et al [1], and Ko et al [24], the decision problems
from combinatorial group theory (i.e. the conjugacy search problem, the decomposition problem, the root
extraction search problem, and the subgroup membership problem) have been intensively employed as the
core for the establishment of alleged secure and effective cryptographic primitives. In particular, due to
having very complicated structures, very nice geometrical interpretations, exponential growth, and unique
normal form for all words representing any fixed element, the non-commutative braid groups Bn have
been used as the platforms of setting up cryptographic schemes [2, 3, 25, 8, 13, 27, 38, 40, 41, 42, 44, 45]
with the hope that the corresponding protocols have high level security. Unfortunately, it was shown
that some of these primitives are feasible to the attackers, for examples see [9, 14, 15, 16, 17, 19, 21, 22,
23, 26, 28, 29, 30, 31, 34, 36].

Clearly, one of the resolutions is to find a group with word problem solvable in polynomial time and
with some decision problem very hard decidable. Followed then, taking the group as the platform one can
try to set up public key cryptographic primitives with safety guaranteed by the hard decision problem.

Collins [12] proved that there are subgroups of a braid group Bn with n ≥ 6 which are isomorphic to
the group F2 ×F2, where the group F2 is the free group of rank 2. Then, as Shpilrain and Ushakov have
pointed out in [39] that there are some Mihailova subgroups [32] in a braid group Bn with n ≥ 6 such that
the subgroup membership problem of these subgroups is unsolvable. Therefore, one of the key points of
this undecidability is able to be applied to propose new cryptsystems is to give an explicit presentation
of Mihailova subgroups of Bn.

∗Correspondence author.



2 Subgroups with unsolvable GWP

2.1 Some decision problems of groups

In this section, for the use in the sequel, we present some decision problems of groups.
A presentation of a group G is as the following

P = 〈x1, x2, x3, · · · |R1, R2, R3, · · · 〉

where the set X = {x1, x2, x3, · · · } is called an alphabet and the Rj ’s are words on X ∪ X−1 with
X−1 = {x−11 , x−12 , x−13 , · · · }. The group presented by P denoted G(P) is the quotient group of the free
group on X by the normal closure of the set {R1, R2, R3, · · · } in the free group. Usually it is not necessary
to distinguish so carefully between a group and its presentation and we often write simply

G = 〈x1, x2, x3, · · · |R1, R2, R3, · · · 〉

to mean the G is the group defined by the given presentation, and we call that the elements in X are
generators of G, the words Rj ’s are defining relators. When the sets X is finite we then say that G is
finitely generated, and when both sets X and {R1, R2, R3, · · · } are finite we then say that G is finitely
presented. Sometimes, one may uses so-called defining relations of the form Rl = Rr (which is equivalent
to being a relator of the form RlR

−1
r ) to replace relators in a presentation of a group G.

Suppose that G is a finitely presented group defined by a presentation as above. We present some
decision problems in G.

Word problem (WP):
Given any two words w and u on X ∪X−1, decide if w = u in G.

Generalized word problem or subgroup membership problem (GWP):
Given a subgroup H of G generated by elements a1, a2, · · · , al, and an element g of G, decide if g is

an element of H, or equivalently if g can be written as a word on the set

{a1, a2, · · · , al} ∪ {a−11 , a−12 , · · · , a−1l }

2.2 Presentation of groups with two generators having unsolvable WP

Novikov [35] and Boone [4] independently proved that there is a finitely presented group having un-
solvable word problem. In 1969, Borisov [6] gave an elegant simplification on Boone’s approach. Then
in 1986, applying to a Céjtin’s [7] semigroup presentation with Borisov’s method, Collins [11] set up a
simple finite group presentation having unsolvable word problem with 10 generators and 27 relations as
the following.

Presentation A
Generators:

c1, c2, c3, c4, c5, c6, c7, c8, c9, c10

Relations:
c−11 c107 c1 = c7, c

−1
2 c107 c2 = c7, c

−1
3 c107 c3 = c7, c

−1
4 c107 c4 = c7, c

−1
5 c107 c5 = c7,

c−11 c8c1 = c108 , c
−1
2 c8c2 = c108 , c

−1
3 c8c3 = c108 , c

−1
4 c8c4 = c108 , c

−1
5 c8c5 = c108 ,

c−19 c1c9 = c1, c
−1
9 c2c9 = c2, c

−1
9 c3c9 = c3, c

−1
9 c4c9 = c4, c

−1
9 c5c9 = c5,

c−110 c7c10 = c7, c
−1
10 c8c10 = c8, c

−1
6 c−31 c10c

3
1c6 = c−31 c10c

3
1

c−19 c7c1c3c8c9 = c7c3c1c8, c
−1
9 c27c1c4c

2
8c9 = c27c4c1c

2
8, c
−1
9 c37c2c3c

3
8c9 = c37c3c2c

3
8,

c−19 c47c2c4c
4
8c9 = c47c4c2c

4
8, c
−1
9 c57c3c5c

5
8c9 = c57c5c3c1c

5
8, c
−1
9 c67c4c5c

6
8c9 = c67c5c4c2c

6
8,

c−19 c77c3c4c3c
7
8c9 = c77c3c4c3c5c

7
8, c
−1
9 c87c3c

3
1c

8
8c9 = c87c

3
1c

8
8, c
−1
9 c97c4c

3
1c

9
8c9 = c97c

3
1c

9
8

We denote C the group defined by the above presentation. By a remarkable embedding theorem [20]
of G. Higman, B. H. Neumann and H. Neumann’s, one can embed C in the group defined by the following
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presentation.

Presentation B

〈J, t; v = t−1ut, t−1v−1uvt = c1u
−1vu, t−1v−2uv2t = c2u

−2vu2, t−1v−3uv3t = c3u
−3vu3

t−1v−4uv4t = c4u
−4vu4, t−1v−5uv5t = c5u

−5vu5, t−1v−6uv6t = c6u
−6vu6, t−1v−7uv7t = c7u

−7vu7

t−1v−8uv8t = c8u
−8vu8, t−1v−9uv9t = c9u

−9vu9, t−1v−10uv10t = c10u
−10vu10〉

where J = C ∗ 〈u, v〉 is the free product of the group C and the free group generated by letters u and v.
By Lemma 2.1 of [33] we then have the following.

Proposition 2.1 The word problem for the group defined by Presentation B is unsolvable.

Now we apply Tietze transformations [43] as pointed in [20] to replace all the occurrences of v by
t−1ut and replace all occurrences of ci by

ci = t−1t−1u−itut−1uittu−it−1u−1tui, i = 1, 2, · · · , 10

in the relations in Presentation B, and then eliminate all generators (by using Tieze transformations
agian) ci, i = 1, 2, · · · , 10 and v to get a finite presentation with only two generators as follows.

Presentation C

Two generators: u, t

27 relations:

R1: (t−2u−7tut−1u7t2u−7t−1u−1tu7)10t−2u−1tut−1ut2u−1t−1u−1tu
= t−2u−1tut−1ut2u−1t−1u−1tut−2u−7tut−1u7t2u−7t−1u−1tu7

R2: (t−2u−7tut−1u7t2u−7t−1u−1tu7)10t−2u−2tut−1u2t2u−2t−1u−1tu2

= t−2u−2tut−1u2t2u−2t−1u−1tu2t−2u−7tut−1u7t2u−7t−1u−1tu7

R3: (t−2u−7tut−1u7t2u−7t−1u−1tu7)10t−2u−3tut−1u3t2u−3t−1u−1tu3

= t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−7tut−1u7t2u−7t−1u−1tu7

R4: (t−2u−7tut−1u7t2u−7t−1u−1tu7)10t−2u−4tut−1u4t2u−4t−1u−1tu4

= t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−7tut−1u7t2u−7t−1u−1tu7

R5: (t−2u−7tut−1u7t2u−7t−1u−1tu7)10t−2u−5tut−1u5t2u−5t−1u−1tu5

= t−2u−5tut−1u5t2u−5t−1u−1tu5t−2u−7tut−1u7t2u−7t−1u−1tu7

R6: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−1tut−1ut2u−1t−1u−1tu
= t−2u−1tut−1ut2u−1t−1u−1tu(t−2u−8tut−1u8t2u−8t−1u−1tu8)10

R7: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−2tut−1u2t2u−2t−1u−1tu2

= t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)10

R8: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−3tut−1u3t2u−3t−1u−1tu3

= t−2u−3tut−1u3t2u−3t−1u−1tu3(t−2u−8tut−1u8t2u−8t−1u−1tu8)10

R9: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−4tut−1u4t2u−4t−1u−1tu4

= t−2u−4tut−1u4t2u−4t−1u−1tu4(t−2u−8tut−1u8t2u−8t−1u−1tu8)10

R10: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−5tut−1u5t2u−5t−1u−1tu5

= t−2u−5tut−1u5t2u−5t−1u−1tu5(t−2u−8tut−1u8t2u−8t−1u−1tu8)10

R11: t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−1tut−1ut2u−1t−1u−1tu
= t−2u−1tut−1ut2u−1t−1u−1tut−2u−9tut−1u9t2u−9t−1u−1tu9

R12: t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−2tut−1u2t2u−2t−1u−1tu2

= t−2u−2tut−1u2t2u−2t−1u−1tu2t−2u−9tut−1u9t2u−9t−1u−1tu9

R13: t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−3tut−1u3t2u−3t−1u−1tu3

= t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−9tut−1u9t2u−9t−1u−1tu9
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R14: t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−4tut−1u4t2u−4t−1u−1tu4

= t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−9tut−1u9t2u−9t−1u−1tu9

R15: t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−5tut−1u5t2u−5t−1u−1tu5

= t−2u−5tut−1u5t2u−5t−1u−1tu5t−2u−9tut−1u9t2u−9t−1u−1tu9

R16: t−2u−7tut−1u7t2u−7t−1u−1tu7t−2u−10tut−1u10t2u−10t−1u−1tu10

= t−2u−10tut−1u10t2u−10t−1u−1tu10t−2u−7tut−1u7t2u−7t−1u−1tu7

R17: t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−10tut−1u10t2u−10t−1u−1tu10

= t−2u−10tut−1u10t2u−10t−1u−1tu10t−2u−8tut−1u8t2u−8t−1u−1tu8

R18: (t−2u−1tut−1ut2u−1t−1u−1tu)−3t−2u−10tut−1u10t2u−10t−1u−1tu10(t−2u−1tut−1ut2u−1t−1u−1tu)3

t−2u−6tut−1u6t2u−6t−1u−1tu6

= t−2u−6tut−1u6t2u−6t−1u−1tu6(t−2u−1tut−1ut2u−1t−1u−1tu)−3t−2u−10tut−1u10t2u−10t−1u−1tu10

(t−2u−1tut−1ut2u−1t−1u−1tu)3

R19: t−2u−7tut−1u7t2u−7t−1u−1tu7t−2u−1tut−1ut2u−1t−1u−1tut−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9t−2u−7tut−1u7t2u−7t−1u−1tu7t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−1tut−1ut2u−1t−1u−1tut−2u−8tut−1u8t2u−8t−1u−1tu8

R20: (t−2u−7tut−1u7t2u−7t−1u−1tu7)2t−2u−1tut−1ut2u−1t−1u−1tut−2u−4tut−1u4t2u−4t−1u−1tu4

(t−2u−8tut−1u8t2u−8t−1u−1tu8)2t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)2t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−1tut−1ut2u−1t−1u−1tu(t−2u−8tut−1u8t2u−8t−1u−1tu8)2

R21: (t−2u−7tut−1u7t2u−7t−1u−1tu7)3t−2u−2tut−1u2t2u−2t−1u−1tu2t−2u−3tut−1u3t2u−3t−1u−1tu3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)3t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)3t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)3

R22: (t−2u−7tut−1u7t2u−7t−1u−1tu7)4t−2u−2tut−1u2t2u−2t−1u−1tu2t−2u−4tut−1u4t2u−4t−1u−1tu4

(t−2u−8tut−1u8t2u−8t−1u−1tu8)4t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)4t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)4

R23: (t−2u−7tut−1u7t2u−7t−1u−1tu7)5t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−5tut−1u5t2u−5t−1u−1tu5

(t−2u−8tut−1u8t2u−8t−1u−1tu8)5t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)5t−2u−5tut−1u5t2u−5t−1u−1tu5

t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−1tut−1ut2u−1t−1u−1tu(t−2u−8tut−1u8t2u−8t−1u−1tu8)5

R24: (t−2u−7tut−1u7t2u−7t−1u−1tu7)6t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−5tut−1u5t2u−5t−1u−1tu5

(t−2u−8tut−1u8t2u−8t−1u−1tu8)6t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)6t−2u−5tut−1u5t2u−5t−1u−1tu5

t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)6

R25: (t−2u−7tut−1u7t2u−7t−1u−1tu7)7t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−3tut−1u3t2u−3t−1u−1tu3(t−2u−8tut−1u8t2u−8t−1u−1tu8)7t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)7t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−5tut−1u5t2u−5t−1u−1tu5

(t−2u−8tut−1u8t2u−8t−1u−1tu8)7

R26: (t−2u−7tut−1u7t2u−7t−1u−1tu7)8t−2u−3tut−1u3t2u−3t−1u−1tu3(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)8t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)8(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)8

R27: (t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−4tut−1u4t2u−4t−1u−1tu4(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−9tut−1u9t2u−9t−1u−1tu9

= t−2u−9tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)9(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)9
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By removing a number of inverse pairs on the relations in the above presentation we then have the
following presentation.

Presentation C′

Two generators: u, t

27 relations:

R′1: u−6tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−1tut−1ut2u−1t−1u−1t
= tut−1ut2u−1t−1u−1tut−2u−7tut−1u7t2u−7t−1u−1tu6

R′2: u−5tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−2tut−1u2t2u−2t−1u−1t
= tut−1u2t2u−2t−1u−1tu2t−2u−7tut−1u7t2u−7t−1u−1tu5

R′3: u−4tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−3tut−1u3t2u−3t−1u−1t
= tut−1u3t2u−3t−1u−1tu3t−2u−7tut−1u7t2u−7t−1u−1tu4

R′4: u−3tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−4tut−1u4t2u−4t−1u−1t
= tut−1u4t2u−4t−1u−1tu4t−2u−7tut−1u7t2u−7t−1u−1tu3

R′5: u−2tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)9t−2u−5tut−1u5t2u−5t−1u−1t
= tut−1u5t2u−5t−1u−1tu5t−2u−7tut−1u7t2u−7t−1u−1tu2

R′6: u−7tut−1u8t2u−8t−1u−1tu8t−2u−1tut−1ut2u−1t−1u−1t
= tut−1ut2u−1t−1u−1tu(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−8tut−1u8t2u−8t−1u−1tu7

R′7: u−6tut−1u8t2u−8t−1u−1tu8t−2u−2tut−1u2t2u−2t−1u−1t
= tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−8tut−1u8t2u−8t−1u−1tu6

R′8: u−5tut−1u8t2u−8t−1u−1tu8t−2u−3tut−1u3t2u−3t−1u−1t
= tut−1u3t2u−3t−1u−1tu3(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−8tut−1u8t2u−8t−1u−1tu5

R′9: u−4tut−1u8t2u−8t−1u−1tu8t−2u−4tut−1u4t2u−4t−1u−1t
= tut−1u4t2u−4t−1u−1tu4(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−8tut−1u8t2u−8t−1u−1tu4

R′10: u−3tut−1u8t2u−8t−1u−1tu8t−2u−5tut−1u5t2u−5t−1u−1t
= tut−1u5t2u−5t−1u−1tu5(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−8tut−1u8t2u−8t−1u−1tu3

R′11: u−8tut−1u9t2u−9t−1u−1tu9t−2u−1tut−1ut2u−1t−1u−1t
= tut−1ut2u−1t−1u−1tut−2u−9tut−1u9t2u−9t−1u−1tu8

R′12: u−7tut−1u9t2u−9t−1u−1tu9t−2u−2tut−1u2t2u−2t−1u−1t
= tut−1u2t2u−2t−1u−1tu2t−2u−9tut−1u9t2u−9t−1u−1tu7

R′13: u−6tut−1u9t2u−9t−1u−1tu9t−2u−3tut−1u3t2u−3t−1u−1t
= tut−1u3t2u−3t−1u−1tu3t−2u−9tut−1u9t2u−9t−1u−1tu6

R′14: u−5tut−1u9t2u−9t−1u−1tu9t−2u−4tut−1u4t2u−4t−1u−1t
= tut−1u4t2u−4t−1u−1tu4t−2u−9tut−1u9t2u−9t−1u−1tu5

R′15: u−4tut−1u9t2u−9t−1u−1tu9t−2u−5tut−1u5t2u−5t−1u−1t
= tut−1u5t2u−5t−1u−1tu5t−2u−9tut−1u9t2u−9t−1u−1tu4

R′16: tut−1u7t2u−7t−1u−1tu7t−2u−10tut−1u10t2u−10t−1u−1tu3

= u−3tut−1u10t2u−10t−1u−1tu10t−2u−7tut−1u7t2u−7t−1u−1t

R′17: tut−1u8t2u−8t−1u−1tu8t−2u−10tut−1u10t2u−10t−1u−1tu2

= u−2tut−1u10t2u−10t−1u−1tu10t−2u−8tut−1u8t2u−8t−1u−1t

R′18: (t−2u−1tut−1ut2u−1t−1u−1tu)−2u−1t−1utut−2u−1tu−1t−1u−9tut−1u10t2u−10t−1u−1tu10

(t−2u−1tut−1ut2u−1t−1u−1tu)3t−2u−6tut−1u6t2u−6t−1u−1tu5

= t−2u−6tut−1u6t2u−6t−1u−1tu5t−1utut−2u−1tu−1t−1ut2u−1t−1utut−2u−1tu−1t−1ut2

u−1t−1utut−2u−1tu−1t−1u−9tut−1u10t2u−10t−1u−1tu10

(t−2u−1tut−1ut2u−1t−1u−1tu)2t−2u−1tut−1ut2u−1t−1u−1t

R′19: tut−1u7t2u−7t−1u−1tu7t−2u−1tut−1ut2u−1t−1u−1tut−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−9tut−1u9t2u−9t−1u−1tu
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= u−2tut−1u9t2u−9t−1u−1tu9t−2u−7tut−1u7t2u−7t−1u−1tu7t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−1tut−1ut2u−1t−1u−1tut−2u−8tut−1u8t2u−8t−1u−1t

R′20: tut−1u7t2u−7t−1u−1tu7t−2u−7tut−1u7t2u−7t−1u−1tu7t−2u−1tut−1ut2u−1t−1u−1tu
t−2u−4tut−1u4t2u−4t−1u−1tu4(t−2u−8tut−1u8t2u−8t−1u−1tu8)2t−2u−9tut−1u9t2u−9t−1u−1tu

= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)2t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−1tut−1ut2u−1t−1u−1tut−2u−8tut−1u8t2u−8t−1u−1tu8t−2u−8tut−1u8t2u−8t−1u−1t

R′21: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)2t−2u−2tut−1u2t2u−2t−1u−1tu2

t−2u−3tut−1u3t2u−3t−1u−1tu3(t−2u−8tut−1u8t2u−8t−1u−1tu8)3t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)3t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)2t−2u−8tut−1u8t2u−8t−1u−1t

R′22: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)3t−2u−2tut−1u2t2u−2t−1u−1tu2

t−2u−4tut−1u4t2u−4t−1u−1tu4(t−2u−8tut−1u8t2u−8t−1u−1tu8)4t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)4t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−2tut−1u2t2u−2t−1u−1tu2(t−2u−8tut−1u8t2u−8t−1u−1tu8)3t−2u−8tut−1u8t2u−8t−1u−1t

R′23: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)4t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−5tut−1u5t2u−5t−1u−1tu5(t−2u−8tut−1u8t2u−8t−1u−1tu8)5t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)5t−2u−5tut−1u5t2u−5t−1u−1tu5

t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−1tut−1ut2u−1t−1u−1tu
(t−2u−8tut−1u8t2u−8t−1u−1tu8)4t−2u−8tut−1u8t2u−8t−1u−1t

R′24: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)5t−2u−4tut−1u4t2u−4t−1u−1tu4

t−2u−5tut−1u5t2u−5t−1u−1tu5(t−2u−8tut−1u8t2u−8t−1u−1tu8)6t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)6t−2u−5tut−1u5t2u−5t−1u−1tu5

t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−2tut−1u2t2u−2t−1u−1tu2

(t−2u−8tut−1u8t2u−8t−1u−1tu8)5t−2u−8tut−1u8t2u−8t−1u−1t

R′25: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)6t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−3tut−1u3t2u−3t−1u−1tu3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)7t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)7t−2u−3tut−1u3t2u−3t−1u−1tu3

t−2u−4tut−1u4t2u−4t−1u−1tu4t−2u−3tut−1u3t2u−3t−1u−1tu3t−2u−5tut−1u5t2u−5t−1u−1tu5

(t−2u−8tut−1u8t2u−8t−1u−1tu8)6t−2u−8tut−1u8t2u−8t−1u−1t

R′26: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)7t−2u−3tut−1u3t2u−3t−1u−1tu3

(t−2u−1tut−1ut2u−1t−1u−1tu)3(t−2u−8tut−1u8t2u−8t−1u−1tu8)8t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)8(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)7t−2u−8tut−1u8t2u−8t−1u−1t

R′27: tut−1u7t2u−7t−1u−1tu7(t−2u−7tut−1u7t2u−7t−1u−1tu7)8t−2u−4tut−1u4t2u−4t−1u−1tu4

(t−2u−1tut−1ut2u−1t−1u−1tu)3(t−2u−8tut−1u8t2u−8t−1u−1tu8)9t−2u−9tut−1u9t2u−9t−1u−1tu
= u−2tut−1u9t2u−9t−1u−1tu9(t−2u−7tut−1u7t2u−7t−1u−1tu7)9(t−2u−1tut−1ut2u−1t−1u−1tu)3

(t−2u−8tut−1u8t2u−8t−1u−1tu8)8t−2u−8tut−1u8t2u−8t−1u−1t

We denote by H the group defined by Presentation C′. Since H is isomorphic to the group defined
by Presentation B [43], we have the following theorem.

Theorem 2.2 The word problem for the group H defined by Presentation C′ is unsolvable.

3 Presentations of Mihailova subgroups of F2 × F2

Let H be a group defined by a presentation P = 〈x1, x2, · · · , xk|R1, R2, · · · , Rm〉 with integer k ≥ 2,
and let Fk be the free group on {x1, x2, · · · , xk}. Then, in her influent paper [32], Mihailova associated
to H the Mihailova subgroup M(H) of the direct product of Fk × Fk defined by

M(H) = {(w1, w2)|w1 = w2 inH}

Mihailova then proved the following theorem.
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Theorem 3.1 (Mihailova) The membership problem for M(H) in Fk×Fk is solvable if and only if the
word problem for H is solvable.

Thus, taking H the group defined by Presentation C′ generated by two elements, the Mihailova
subgroup M(H) of F2×F2 has a unsolvable membership problem, namely there is no algorithm to decide
if any element x of F2 × F2 written as a word on the generators of F2 × F2 is an element of M(H).

By a result of Grunewald’s [18], if H enjoys a unsolvable word problem then the Mihailova subgroup
M(H) can not be finitely presented. However, Bogopolski and Venturawe [5] have gaven an explicit
countable presentation with finite generators and countably infinite relators for Mihailova subgroup M(H)
of Fk × Fk (k ≥ 2) provided that the group H can be defined by a finite, concise and Peiffer aspherical
presentation as the following theorem.

Theorem 3.2 (Bogopolski and Venturawe) Let Fk be the free group on {x1, · · · , xk}, and let H =
〈x1, · · · , xk|R1, · · · , Rm〉 be a finite, concise and Peiffer aspherical presentation. Then Mihailova’s group
M(H) ≤ Fk × Fk admits the following presentation

〈d1, · · · , dk, t1, · · · , tm| [tj , d−1t−1i rid], [ti, root(ri)], 1 ≤ i, j ≤ m, d ∈ Dk〉

where Dk is the free group with basis {d1, · · · , dk}, ri denotes the word in Dk obtained from Ri by replacing
each xl to dl (1 ≤ l ≤ k), root(ri) denotes the unique element si ∈ Dk such that ri is a positive power of
si but si itself is not a proper power, and the elements di and tj correspond, respectively, to the elements
(xi, xi) and (1, Rj) of M(H) (1 ≤ i ≤ k, 1 ≤ j ≤ m).

To apply the above theorem on Presentation C′ we must show that Presentation C′ is concise and
Peiffer aspherical.

A group presentation P = 〈x1, x2, · · · , xk|R1, R2, · · · , Rm〉 is called concise if every relation Ri is
non-trivial and reduced, and every two relators Ri, Rj , i 6= j, are not conjugate to each other, or to the
inverse of each other. A direct check shows that Presentation C′ is concise.

One can refer [5] for the definition of being Peiffer aspherical. Theorems 3.1 and 4.2, and Lemma
5.1 in [10] imply that respectively, the Peiffer asphericity is preserved under HNN-extensions, under free
products, and under Tietze transformations. Therefore, it is sufficient to show that Presentation C (as
well as Presentation C′) can be obtained from a free group by performing a number of HNN-extensions,
free products, and Tietze transformations.

First, Presentation A can be gained from a free group by three consecutive HNN-extensions as follows.
The first HNN-extension is performed by taking the free group A generated by c7, c8 as the associated

subgroup, and c1, c2, c3, c4, c5, c10 as the stable letters to get an HNN-extension J1 defined by the following
presentation.

P1 = 〈A, c1, c2, c3, c4, c5, c10 |

c−11 c107 c1 = c7, c
−1
2 c107 c2 = c7, c

−1
3 c107 c3 = c7, c

−1
4 c107 c4 = c7, c

−1
5 c107 c5 = c7, c

−1
10 c7c10 = c7,

c−11 c8c1 = c108 , c
−1
2 c8c2 = c108 , c

−1
3 c8c3 = c108 , c

−1
4 c8c4 = c108 , c

−1
5 c8c5 = c108 , c

−1
10 c8c10 = c8〉

Then, by taking the subgroup K1 of J1 generated by the the following subset

{c1, c2, c3, c4, c5, c7c1c3c8, c7c3c1c8, c27c1c4c28, c27c4c1c28, c37c2c3c38, c37c3c2c38, c47c2c4c48, c47c4c2c48, c57c3c5c58,

c57c5c3c1c
5
8, c

6
7c4c5c

6
8, c

6
7c5c4c2c

6
8, c

7
7c3c4c3c

7
8, c

7
7c3c4c3c5c

7
8, c

8
7c3c

3
1c

8
8, c

8
7c

3
1c

8
8, c

9
7c4c

3
1c

9
8, c

9
7c

3
1c

9
8}

as the associated subgroup and c9 as the stable letter we have the HNN-extension J2 defined by the
following presentation.

P2 = 〈J1, c9 | c−19 c1c9 = c1, c
−1
9 c2c9 = c2, c

−1
9 c3c9 = c3, c

−1
9 c4c9 = c4, c

−1
9 c5c9 = c5,

c−19 c7c1c3c8c9 = c7c3c1c8, c
−1
9 c27c1c4c

2
8c9 = c27c4c1c

2
8, c
−1
9 c37c2c3c

3
8c9 = c37c3c2c

3
8,

c−19 c47c2c4c
4
8c9 = c47c4c2c

4
8, c
−1
9 c57c3c5c

5
8c9 = c57c5c3c1c

5
8, c
−1
9 c67c4c5c

6
8c9 = c67c5c4c2c

6
8,

c−19 c77c3c4c3c
7
8c9 = c77c3c4c3c5c

7
8, c
−1
9 c87c3c

3
1c

8
8c9 = c87c

3
1c

8
8, c
−1
9 c97c4c

3
1c

9
8c9 = c97c

3
1c

9
8〉
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The third one HNN-extension is then clearly performed by taking the subgroup K2 of J2 generated by
the the element c−31 c10c

3
1 as the associated subgroup and c6 the stable letter to obtain the HNN-extension

C defined by Presentation A.
Now, it is obvious that the group defined by Presentation B is also an HNN-extension by taking the

subgroup J as the associated subgroup and t as the stble letter, where J is the free product of group C
and the free group generated by two letters u and v.

Finally and clearly, we already have known that Presentation C (as well as Presentation C′) is obtained
by performing a number of Tietze transformations from Presentation B. Thus, by the results in [10] we
have the following theorem.

Theorem 3.3 Presentation C and Presentation C′ are Peiffer aspherical, and Presentation C′ is concise.

Since the group H defined by Presentation C′ is generated by two elements u, t, we now can apply
Theorem 3.2 to present an explicit countable presentation for Mihailova subgroup MF2×F2

(H) of F2×F2

with F2 generated by {u, t}. To do so we need some notations as follows.
For each i = 1, 2, · · · , 27, if a relation R′i in Presentation C′ is of the form

R′i : R
(l)
i (u, t) = R

(r)
i (u, t)

with both R
(l)
i (u, t) and R

(r)
i (u, t) being words on {u, t, u−1, t−1} then we denote

Si = (R
(r)
i (u, t))−1R

(l)
i (u, t)

Clearly, one can check that root(Si) = Si, i = 1, 2, · · · , 27. Thus, we then have

ri = (R
(r)
i ((u, u), (t, t)))−1R

(l)
i ((u, u), (t, t)), i = 1, 2, · · · , 27

where ri is as defined as in the the presentation given in Theorem 3.2.
Finally, by Theorem 3.2 we then have an explicit countable presentation with 56 generators for Mi-

hailova subgroup MF2×F2(H) of F2 × F2 as the following.

Presentation D

29 generators:

(u, u), (t, t), (1, Si), i = 1, 2, · · · , 27

Countable number of relators:

S−1i (δ−1S−1k r−1k δ)−1Si(δ
−1S−1k r−1k δ), S−1i r−1i Siri, i, k = 1, 2, · · · , 27

where δ ∈ F2 × F2.

Now, since the word problem of the group G defined by Presentation C is unsolvable, Mihailova’s
theorem (Theorem 3.1) implies the following conclusion.

Theorem 3.4 The membership problem for Mihailova subgroup MF2×F2
(H) of F2 × F2 is unsolvable.

Finally, for being used with applications, we give the descriptions of each Si’s in the generators (1, Si),
i = 1, 2, · · · , 27 in Presentation D as follows where for the simplicity we replace all occurrences of (u, u)
by δu and all occurrences of (t, t) by δt.

S1: (δtδuδ
−1
t δuδ

2
t δ
−1
u δ−1t δ−1u δtδuδ

−2
t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

6
u)−1

δ−6u δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)9

δ−2t δ−1u δtδuδ
−1
t δuδ

2
t δ
−1
u δ−1t δ−1u δt

S2: (δtδuδ
−1
t δ2uδ

2
t δ
−2
u δ−1t δ−1u δtδ

2
uδ
−2
t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

5
u)−1

δ−5u δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)9

δ−2t δ−2u δtδuδ
−1
t δ2uδ

2
t δ
−2
u δ−1t δ−1u δt
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S3: (δtδuδ
−1
t δ3uδ

2
t δ
−3
u δ−1t δ−1u δtδ

3
uδ
−2
t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

4
u)−1

δ−4u δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)9

δ−2t δ−3u δtδuδ
−1
t δ3uδ

2
t δ
−3
u δ−1t δ−1u δt

S4: (δtδuδ
−1
t δ4uδ

2
t δ
−4
u δ−1t δ−1u δtδ

4
uδ
−2
t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

3
u)−1

δ−3u δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
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u δ−1t δ−1u δtδ

9
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)8

(δ−2t δ−1u δtδuδ
−1
t δ2uδ

2
t δ
−1
u δ−1t δ−1u δtδ

2
u)3(δ−2t δ−8u δtδuδ

−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δtδ

8
u)7

δ−2t δ−8u δtδuδ
−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δt)

−1

δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)7

δ−2t δ−3u δtδuδ
−1
t δ3uδ

2
t δ
−3
u δ−1t δ−1u δtδ

3
u(δ−2t δ−1u δtδuδ

−1
t δuδ

2
t δ
−1
u δ−1t δ−1u δtδu)3

(δ−2t δ−8u δtδuδ
−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δtδ

8
u)8δ−2t δ−9u δtδuδ

−1
t δ9uδ

2
t δ
−9
u δ−1t δ−1u δtδu

S27: (δ−2u δtδuδ
−1
t δ9uδ

2
t δ
−9
u δ−1t δ−1u δtδ

9
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)9
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(δ−2t δ−1u δtδuδ
−1
t δ2uδ

2
t δ
−1
u δ−1t δ−1u δtδ

2
u)3(δ−2t δ−8u δtδuδ

−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δtδ

8
u)8

δ−2t δ−8u δtδuδ
−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δt)

−1

δtδuδ
−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u(δ−2t δ−7u δtδuδ

−1
t δ7uδ

2
t δ
−7
u δ−1t δ−1u δtδ

7
u)8

δ−2t δ−4u δtδuδ
−1
t δ4uδ

2
t δ
−4
u δ−1t δ−1u δtδ

4
u(δ−2t δ−1u δtδuδ

−1
t δuδ

2
t δ
−1
u δ−1t δ−1u δtδu)3

(δ−2t δ−8u δtδuδ
−1
t δ8uδ

2
t δ
−8
u δ−1t δ−1u δtδ

8
u)9δ−2t δ−9u δtδuδ

−1
t δ9uδ

2
t δ
−9
u δ−1t δ−1u δtδu
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