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Abstract—Embedded computing devices (such as actuators,
controllers and sensors of various sizes) increasingly permeate
many aspects of modern life: from medical to automotive, from
building and factory automation to weapons, from critical in-
frastructures to home entertainment. Despite their specialized
nature as well as limited resources and connectivity, these
devices are now becoming increasingly popular and attrac-
tive targets for various attacks, especially, remote malware
infestations. There has been a number of research proposals
to detect and/or mitigate such attacks. They vary greatly in
terms of application generality and underlying assumptions.
However, one common theme is the need for Remote Attestation,
a distinct security service that allows a trusted party (verifier)
to check the internal state of a remote untrusted embedded
device (prover).

This paper provides a systematic treatment of Remote
Attestation, starting with a precise definition of the desired
service and proceeding to its systematic deconstruction into
necessary and sufficient properties. These properties are, in
turn, mapped into a minimal collection of hardware and
software components that results in secure Remote Attestation.
One distinguishing feature of this line of research is the need to
prove (or, at least argue) architectural minimality; this is rarely
encountered in security research. This work also offers some
insights into vulnerabilities of certain prior techniques and
provides a promising platform for attaining more advanced
security services and guarantees.

Keywords-Remote Attestation, Embedded Device, Architec-
tural Minimality.

I. INTRODUCTION

“Embedded system” is a broad notion that encompasses
many kinds of specialized computing devices, such as
controllers, actuators, sensors, RFID tags, peripherals and all
possible hybrids thereof. Embedded systems vary greatly in
terms of resources and intended purposes. Unlike general-
purpose computers that, for decades, have been the primary
attack victims, embedded systems have been targeted only
relatively recently. The Stuxnet [10] incident pointedly
demonstrated the impressive scope and impact of malware
on embedded devices. Stuxnet specifically targeted Pro-
grammable Logic Controllers (PLC) in industrial control
systems and by modifying PLC control parameters, ostensibly
caused some serious physical damage.

Stuxnet should be viewed as both an example and a
warning of things to come. It epitomizes the power and the
amplification factor of remote attacks, i.e., those not requiring

direct access to victim devices. With the growing presence
and proliferation of embedded devices into many spheres of
life (e.g., automation of homes, factories, office buildings as
well as automotive, aerospace and public utilities sectors),
remote attacks have become a clear and present danger. This
motivates the necessity for countermeasures, a number of
which have been proposed by the research community and
some have been implemented by manufacturers. One common
theme among them is the need for Remote Attestation – a
security service that involves verification of internal state
of a remote embedded device. Remote Attestation is not a
panacea; however, it should ideally allow for efficient and
accurate detection of remote malware attacks.

Prior research results have underscored the difficulty of
the problem. We believe that, although ad hoc or specialized
solutions might work in the near term or for a narrow range
of devices, only systematic approaches to Remote Attestation
that offer concrete security guarantees are likely to prove
effective in the long run. This assertion forms the starting
point for the work described in this paper.

Throughout this paper, the term Remote Attestation denotes
attestation performed across a network. In this scenario,
software attestation [15], [18], [19], [30]–[34] is not appli-
cable. Indeed, software attestation only works if the verifier
communicates directly to the prover, with no intermediate
hops. We outline a number of issues with software attestation
in Appendix A. While software attestation cannot be applied,
the use of secure hardware components, such as TPMs [38] or
secure co-processors [36], represent a significant cost barrier
for low-end embedded devices. Instead, we believe that the
promise lies in a careful analysis of Remote Attestation,
including a systematic identification of its necessary and
sufficient components. This should, in turn, ultimately result
in the design of a generic and practical embedded system
architecture for Remote Attestation.

In this paper, we follow the above path: starting with the
definition of Remote Attestation, we derive the properties
needed to attain it. These properties are then translated into
architectural components. Next, we map those into a small
set of hardware features that collectively achieve the required
properties. We argue that the set of identified features form
the minimal generic architecture for Remote Attestation. In
the process, we remain agnostic with respect to the underlying
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hardware by making as few as possible assumptions about
specific devices. We believe that the outcome of this effort
is valuable as it represents the first attempt to systematically
explore the notion of Remote Attestation and to produce a
light-weight blueprint that can be realized on wide range of
devices, with minimal modifications.

The rest of this paper is organized as follows: Section II
overviews related work. Section III defines a security notion
for Remote Attestation and presents our system and adversary
models. Section IV presents the properties required for
our notion of security, and Section V shows how these
properties can be realized with concrete hardware features.
Next, Section VI illustrates a remote attestation protocol and
Section VII discusses some attacks on one recent (ostensibly
minimal) remote attestation proposal. Section VIII contains
a brief discussion and the paper concludes with a summary
in Section IX.

II. RELATED WORK

Software-Based Attestation. There have been several
proposals for software-based attestation. One early example is
Pioneer [33] that provides device attestation without relying
on a secure co-processor or any specialized hardware. It
computes a checksum of device memory using a function that
includes side-effects (e.g., status registers) in its computation,
such that any emulation of this function incurs a timing
overhead that is sufficient to detect cheating. Attestation
that relies on time-based checksums has also been adapted
to embedded devices in [15], [18], [19], [30]–[32], [34].
However, some assumptions that form the basis for these
solutions have been challenged [35] and several attacks
on these (and similar) schemes have been proposed [6].
Moreover, Kovah et al. [16] showed that some time-based
attestation schemes may be vulnerable to Time Of Check,
Time Of Use(TOCTOU) attack.

Alternative (non-time-based) approaches (e.g., [26]) rely
on filling the entire memory of the prover with random data
to ensure absence of malicious code. Although timing is
not essential here, this approach is still limited to one-hop
attestation since it lacks the means to authenticate a remote
prover.

In general, all current software-only solutions rely on
strong assumptions on the capabilities of the adversary,
and only work if the verifier communicates directly to
the prover, with no intermediate hops. While applicable to
specific settings, (e.g., attestation of computer peripherals),
this approach is not viable for attestation performed over a
network.

Hardware-Based Attestation. An early example of this
approach is Secure Boot [4]. In it, system integrity is verified
at boot time: the root of trust is a small bootloader which
computes a hash of the content loaded into memory, and
compares this to a signed hash stored in secure ROM. A

device is only allowed to boot if the two hashes match.
Nowadays, trusted platform modules (TPMs) [38] are present
in many commercial systems, from phones to laptops. A
TPM can compute an integrity checksum over the memory
at boot time and send this checksum to be validated by a
remote verifier. TPMs can also protect a limited amount of
data against a compromised operating system, e.g., hide an
encryption key unless the Platform Configuration Registers
(PCRs) are in a specific state. A TPM can store integrity
measurements in PCRs in protected memory. Overall, security
is based on two properties: (1) PCRs are accessible only via
an API provided by the TPM and (2) measurements in the
PCRs can only be extended, each new extension is computed
using a cryptographic hash of the previous PCR value and
the new measurement. The root of trust is the BIOS that
performs the very first extension upon boot. Several concrete
architectures have been proposed that rely on a TPM as a
foundation [15], [25].

Dynamic Root of Trust. This is a new mechanism
recently added to TPM specifications [38]. It has been
implemented by major vendors, e.g., Intel TXT [12] and
AMD SVM [1]. Dynamic root of trust provides a way
to perform attestation dynamically, i.e., after boot. This is
accomplished by allowing a specific CPU instruction to reset
the state of some PCRs, isolate a memory region, hash and
atomically execute its content. Several hardware protection
mechanisms, e.g., disabling DMA or debugging and resetting
the TPM PCRs, are included to prevent fraudulent attestation.
Flicker [21] is an architecture that establishes dynamic root
of trust on commodity computers. It takes advantage of
recent advances by Intel and AMD by executing a piece
of application logic (PAL) on the prover. Execution of PAL
is guaranteed even if the platform’s BIOS, OS and DMA
are all compromised. This architecture was extended by
TrustVisor [20] that provides a dynamic root of trust for
PALs from a minimal hypervisor. TrustVisor significantly
improves performance of the dynamic root of trust primitive.
There are several other proposals that deal with establishment
of trust on remote systems [14], [22]–[24], [39]. Underlying
platforms range from Web servers to embedded systems.

Other Hardware-Based Techniques. A recent hardware-
based mechanism for process isolation is called SPM [37].
It relies on a special vault module bootstrapped from a
static root of trust. This vault bootstraps the SPM-protected
programs, which gains exclusive control over the protection of
their own memory pages. Another recent result is SMART [9]
– a hardware-based scheme for establishing a dynamic root
of trust in embedded devices. Its focus is on low-end
microcontrollers (MCUs) that lack sophisticated features
such as specialized memory management or protection
features. SMART requires small changes to the MCUs but
no additional hardware. In [8] Datta et al. present a logic for
secure systems, and use it to describe attestation protocols

2



standardized by the TCG, without providing a definition
of attestation. The work in [8] relies on the presence of a
secure TPM device. (In contrast, we want to describe the
requirements at a lower level, without assuming the presence
of such a trusted device.)

III. REMOTE ATTESTATION

We use the term Remote Attestation to denote a protocol
whereby a challenger (Chal) verifies the internal state of a
device called a prover (Prov). This protocol is performed
remotely, i.e., over a network, such as the Internet. The
goal of a Remote Attestation protocol is to allow honest
(not compromised) Prov to create an authentication token,
that convinces Chal that the former is in some well-defined
(expected) state. Whereas, if Prov has been compromised
by the adversary (that has modified the Prov’s state) the
authentication token must reflect this. We will first define an
attestation protocol.

Definition 1 (Attestation Protocol): An attestation proto-
col P is comprised of the following components:
• Setup(·) – a probabilistic algorithm that, given a security

parameter 1κ, outputs a long-term key k;
• Attest(k, ·) – a deterministic algorithm that, given a key
k and device state s, outputs an attestation token α;

• Verify(k, ·, ·) – a deterministic algorithm that, given a
key k, a device state s and an attestation token α, outputs
1 iff α corresponds to s, i.e., iff Attest(k, s) = α, and
outputs 0 otherwise.

At the time of attestation, Prov’s state s = (sChal, sProv)
consists of two parts: (1) sChal provided by Chal, e.g., a
nonce, and (2) sProv that reflects the rest of Prov’s state.

Next we define a game between Chal and Prov that will
lead to the definition of security for attestation protocols.

Game 1 (Att-ForgeryChal,Prov(κ)): Chal running P inter-
acts with Prov as follows:

1) Chal runs k ← Setup(1κ) and outputs sChal to Prov.
2) Prov is given oracle access to Attest. Specifically,

Prov is allowed to adaptively submit q device states
{s1, . . . , sq}. For each si 6= (sChal, sProv), Prov re-
ceives the corresponding token αi.

3) Eventually, Prov outputs α; the game outputs 1 iff
Verify(k, s, α) = 1, i.e., iff α corresponds to s =
(sChal, sProv).

An honest Prov can trivially create α using Attest(k, s).
Whereas, if Prov has been compromised, its sProv has
changed and it must attempt to simulate the operation of
Attest. This security game bears some resemblance to a
MAC-Forge game [5]. In Section VIII-A we discuss the
relationship between remote attestation and MACs.

We now define our security notion, based on Game 1.

Definition 2 (Att-Forgery security): An attestation proto-
col P = (Setup,Attest,Verify) is Att-Forgery-secure if there
exist a negligible function negl, such that, for any proba-
bilistic polynomial time prover Prov and sufficiently large
κ, it holds that: Pr[Att-ForgeryChal,Prov(κ) = 1] ≤ negl(κ)

To simplify our notation we say that P is a secure remote
attestation protocol if P is Att-Forgery-secure. In Section IV,
we identify the properties that Attest must have for remote
attestation to be possible.

A. System Model

The central goal of any attestation protocol is to verify
Prov’s state. Successful execution of the attestation protocol
does not guarantee that Prov’s entire system can be trusted or
that the adversary can not modify Prov’s state after attestation
is completed.

We assume that Prov is a low-end embedded device with
a single thread of execution, limited storage capacity and
general complexity. Although our definition of Att-Forgery-
security is valid for any device, its motivation is strongest
for low-cost platforms where adding secure hardware compo-
nents (e.g, a TPM [38]) would be too costly. In the rest
of this paper, Prov is considered to have the following
characteristics:

1) Single memory space, i.e., no separation between
“kernel” and “user” memory.

2) Single thread of execution, with the exception of
interrupts. Note that this implies lack of Direct Memory
Access (DMA). 1

3) Ability to disable interrupts and force a region of code
to execute atomically.

4) Availability of read-only memory (ROM).
5) Ability to securely cleanup (erase) memory upon device

reset.
6) A hardware-based control mechanism to prevent unau-

thorized access to certain memory locations. (See
Section V for details.)

We make no assumptions about Chal. Indeed, a malicious
Chal can perform a denial-of-service (DoS) attack by forcing
Prov to take part in the remote attestation protocol at will.
Our security model is focused on a possibly malicious Prov
and protection of Prov against DoS attacks is not a primary
goal. (However, for the sake of completeness, we discuss
Chal authentication, as well as replay and DoS mitigation
in Section VI-A.). Also, malicious Chal does not learn any
new information about an honest Prov by performing remote
attestation, since Chal must already know the desired state
of Prov in order to verify the attestation token. In the rest of
this paper, we assume that Chal is honest. Note that sChal (the
part of Prov’s state sent by Chal) can contain any information

1If the device offers DMA, we assume that it can be securely disabled
during attestation.
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that Chal wants to be included in the computation of α, e.g.,
a nonce, a sequence number or a timestamp.

We assume a reliable communication channel between
Chal and Prov. We make no assumptions about its security,
latency, packet routing or any other properties.

Remark: In the research literature, the term challenger is
often used in more theoretical (e.g., cryptographic) settings,
whereas, verifier is the term typically encountered in attesta-
tion papers. We use them interchangeably and synonymously.

B. Adversary Model

We do not specify how Prov might be compromised; we
assume that the adversary can do so at any time. Once
Prov is compromised, we use the term prover to mean the
device itself and the term adversary to reflect the adversary’s
presence on the prover. The distinction is relevant because,
in order to implement remote attestation securely, there must
exist some secret quantity (i.e., a key) that the adversary
can not access, even though it is in full control of Prov. We
discus the necessary properties for this in Section IV and
practical considerations in Section V.

Once Prov is compromised, the adversary has full control
over the CPU. It can schedule interrupts at will, read all
readable storage (including ROM) and write to all writable
storage. The only behavioral restrictions are those imposed
by the hardware, e.g., the adversary can not write to ROM,
or force an interrupt if interrupts are disabled. We also
assume that the adversary can not perform any hardware
modifications to the prover, e.g., install a different CPU or
more memory. We also assume that no hardware side channels
are available to the adversary, e.g., it can not measure power
consumption and use it to deduce the key. Fault-based attacks
(e.g., glitches on power or lines) that could lead the processor
to execute instructions incorrectly, or skip some instructions,
are also out of the scope of this paper. Finally, we assume
that there is a mechanism to protect Attest from software
side-channel attacks, e.g., a software-only time channel attack.
Since architectures of low-end embedded devices tend to be
simple (e.g., there is no cache), Attest can be made resistant
to such attacks. In any case, this subject is beyond the scope
of this paper.

IV. PROPERTIES REQUIRED FOR REMOTE ATTESTATION

In this section, we describe and justify the necessary
security properties of Attest. We start by assuming the
existence of a secure algorithm to compute α based on
prover’s state s and prover-specific secret key k. Techniques
that could be used for this purpose, e.g., HMAC, has been
extensively studied in cryptographic literature.

According to the definition in Section III, Attest must
satisfy the following security properties: (1) only Attest
(using the correct key) can compute a valid token α, and
(2) α accurately captures s, i.e., for any two states s′ 6= s,

Attest(k, s) = Attest(k, s′) with negligible probability. In
other words, there are two ways to attack remote attestation:
Attack type 1: The adversary simulates Attest and correctly

computes α.
Attack type 2: The returned α does not correctly reflect s,

i.e., the adversary escapes detection.
The latter might seem unlikely. However, we believe that
it can occur if execution of Attest is not atomic, as in our
definition. We now show some attacks (of both types) along
with security properties that prevent them. The end-goal is
a complete set of security properties that conform to our
definition in Section III.

Since k is the only secret held by Prov, access to k
allows the adversary to simulate Attest, i.e., perform a type
1 attack by computing α without invoking the actual Attest.
Therefore, we need the following property:
Exclusive Access: Attest has exclusive access to k.
On the other hand, exclusive access to k does not imply
that the adversary can not learn some intermediate value
that leaks information about k. Suppose that Attest(k, s) =
HMAC(k, s) = H(k ⊕ opad,H(k ⊕ ipad, s)) and k ⊕ ipad
is somehow leaked, e.g., it remains in memory after compu-
tation of α. Then, the adversary can learn k, and use it to
compute α. This prompts the need for the following property:
No Leaks: Attest leaks no function of k other than α.
Another way of stating this property is that, after Attest
completes, the entire state of Prov (except for α and k itself)
is statistically independent from k. Furthermore, if Attest
code is not protected, the adversary can modify it, e.g., by
forcing it to output k to an unprotected memory location
and then use k to compute α. For this reason, an additional
property is required:
Immutability: Attest (i.e., its code) is immutable.
We stress that this security property requires code to be
executed in-place from immutable memory. This is not always
the case, e.g., when code is loaded from low-speed storage
(e.g., FLASH) to high-speed memory, such as RAM or cache
before execution. The adversary could modify Attest after it
is loaded into RAM, but before it is executed [29]. This is
an instance of the well-known time-of-check-to-time-of-use
(TOCTTOU) attack, that can be prevented by a hardware
signature check of the code, as in [1], [12].

The three aforementioned properties together are not
sufficient to protect Attest. Consider a scenario where Attest
sequentially checks a certain memory range [a, a + n).
Suppose the adversary resides in the range [a+ n/2, a+ n),
i.e., the 2nd half of the interval. When Attest completes its
pass over the first half – [a, a+n/2), the malware interrupts
Attest, moves itself from [a + n/2, a + n) to [a, a + n/2)
and restores the contents of [a+ n/2, a+ n) to its expected
state. When Attest resumes, it eventually produces a correct
(valid) α, while the adversary escapes detection. This is an
example of a type 2 attack.
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Note that checking memory in a pseudo-random fashion, as
in [33], [34], does not solve the problem, since the adversary
can schedule an interrupt every time the next address is
computed. Then, if the next address falls into the memory
range occupied by malware, it moves its code fragment
elsewhere and restores memory to its expected state. To
prevent such attacks, another property we need is:
Uninterruptibility: Execution of Attest must be uninter-

ruptible.
There is still a potential attack, despite all security properties
described so far. The adversary can start execution in the
middle of Attest, e.g., via return-oriented programming
(ROP) [7], [17], [28]. Suppose that, in the beginning of Attest,
there is an instruction to enforce uninterruptible execution
environment. Then, if the adversary can start execution of
Attest just after that instruction, the remainder of Attest
would run in an interruptible manner, which leads attacks
of types 1 and 2, as shown earlier.

Assuming uninterruptibility of Attest, it might seem that
if the very first instruction of Attest loads the secret key k,
then, even if the adversary invokes Attest in the middle, no
information derived from k can be learned and a valid α can
not be computed. However, this argument is incorrect, for
the following reasons:

First, in some processor instruction sets (e.g, Intel
x86 [13]), the adversary can jump into the middle of
individual instructions, which totally changes the semantics
of Attest in an unintended manner. Naturally, we prefer not to
rely on features of a specific instruction set in stating general
security properties. Second, the stated argument assumes that
invoking Attest in the middle precludes the adversary from
reading k. However, the adversary may be able to mount a
fairly sophisticated variant of the ROP attack, as follows:

Jump into the beginning of some function within
Attest. Since the jump instruction does not push
a return address onto the stack, the stack will
be “de-synchronized”, i.e., the value specified in
the stack by the adversary will become the return
address of the function. When the function returns,
it will jump to the address chosen by the adversary.
This way, the adversary can cause Attest to jump
anywhere within Attest code.

In general, the adversary can influence control flow of Attest
and alter its behavior, e.g., induce Attest to leak k by reading
it from restricted memory and failing to erase it later. We
describe a concrete attack of this type in Section VII. To
prevent all such attacks, we need one final property:
Invocation from Start: Attest must only be invoked at its

very beginning.
In summary, the first three properties: exclusive access,
immutability and no leaks, are necessary (but not sufficient)
to prevent type 1 attacks. Whereas, the other two (uninter-
ruptibility and invocation from start) together enforce atomic

execution of Attest. Although they also prevent some attacks
of type 1, they mainly prevent type 2 attacks.

Under the assumptions made above, we claim that any
correctly implemented attestation protocol, that has all five
properties listed in this section is Att-Forgery-secure.

A. Minimality of Properties

We now argue that removing any of the postulated five
properties, leads to an insecure Attest. Note that each
property is largely independent and eliminating any of them
will make Attest vulnerable to the attack(s) described just
above that property in the previous section. Specifically, if
we were to omit:
• Exclusive Access to k: the adversary would easily

learn k.
• No Leaks: the adversary would learn information about
k that could lead to an advantage in computing a valid α.

• Immutability: the adversary can change the code to move
k to unprotected memory.

• Uninterruptibility: the adversary can move malware
around during attestation, which helps escape detection.

• Invocation from Start: the adversary can invoke Attest
anywhere, which might cause it to be interruptible and/or
skip sanity checks on input parameters.

It thus becomes clear that any proper subset of the five prop-
erties is insufficient for secure remote attestation. However,
we do not claim that this particular set is the smallest possible
set of any possible properties.

V. DERIVING FEATURES FROM PROPERTIES

In this section, we describe a combination of platform
features that achieve the five security properties presented
in the previous section. Our goal is a set of features that
are both necessary and sufficient for remote attestation. We
examine each property and identify features needed to attain
it.

Exclusive Access to k. This is the most difficult property
to impose on a low-end embedded device. There is no way to
achieve it without some hardware support. If the underlying
processor supports multiple privilege modes and a full-blown
separation of memory for each process, we could use a
privileged process to handle all computations that involve
k. However, low-end processors generally do not offer such
features.

Our solution is to add a small hardware-based check that
monitors the address bus and program counter (PC) and
enforces that k is only accessible when PC is within Attest.
We believe that this “custom” hardware check is unavoidable.

No Leaks. To make sure that no information related to
(or derived from) k is accessible when Attest completes we
need a way to erase all intermediate values that depend on
k, except the attestation token α, when they are no longer
needed.
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Immutability. In order to make Attest immutable we
place it in ROM, which is available on most platforms.
We consider ROM to be an inexpensive way to enforce
immutability. Attest needs to execute in-place from ROM.

Uninterruptibility. On a platform with a single thread
of execution, the adversary can still regain control after
invoking Attest by scheduling an interrupt. To enforce
uninterruptibility, we need a way to disable (and enable)
interrupts such that Attest will run from beginning to
end. Moreover, the instruction to disable interrupts must
itself be atomic. Otherwise, the adversary could interrupt
this instruction and violate atomicity of Attest. We show
a concrete attack on non-atomic interrupt deactivation in
Section VII.

Invocation from Start. As discussed earlier, we must
enforce exclusive invocation of Attest from its very first
instruction. Since there is no OS or protected CPU mode
that can enforce this on low-end devices, custom hardware is
needed. As before we use a small piece of custom hardware
that enforces the following logic: If the program counter
(PC) is an address within the Attest code, other than the
first instruction address, then the previous instruction must
also be within Attest.

Although this property precludes the adversary from
jumping to the middle of Attest, in practice, there is no
way to enforce this in an embedded system without OS
support. The only option is to monitor Attest region and
reset the device if illegal behavior is detected. Therefore, the
ability to reset the device (in case of an error) is necessary.
In addition, all sensitive memory regions must be erased
immediately after the device is reset.

Features described in this section form a set that is
necessary and sufficient to support the security properties
described in Section IV. We summarize them as:
• Custom hardware to enforce exclusive access to k.
• Reliable and secure memory erasure.
• Read-only-memory (ROM).
• Enable-interrupts and atomic disable-interrupts instruc-

tions.
• Custom hardware to enforce Attest being invokable

only at the first instruction.
• Secure reset mechanism.

VI. ATTESTATION PROTOCOL

We now describe a generic attestation protocol. We assume
that both the verifier and the prover engage in a Att-Forgery-
secure remote protocol P = (Setup, Attest, Verify), with
all properties described in Section IV. We show that, if the
prover has access to Attest, the resulting protocol can be
very simple.

Figure 1 shows the protocol. It starts with the verifier
challenging the prover with a fresh nonce. The nonce must
be chosen uniformly at random to prevent guessing attacks.

Verifier

V

Prover

P

Nv ← {0, 1}
κ

V, P,Nv

s = (Nv, s
Prov)

Perform Attestation
α = Attest(k, s)

P, V, α

Verify(k, s, α)

msc Remote Attestation Protocol

Figure 1. Remote attestation protocol. The prover and the verifier are
assumed to share a secret key k beforehand.

Verifier

V

Attacker

A

Prover

P

V,A,Nv V, P,Nv

αvp = Attest(kvp, s)

P, V, αvpA, V, αvp

msc Remote Attestation Protocol, MITM Attack

Figure 2. Failed MITM attack on the remote attestation protocol. Some
details are left out for clarity.

For the same reason, it must also be chosen from a sufficiently
large pool, i.e., κ ≥ 160. Upon receipt of the challenge, the
nonce becomes part of prover’s state. The prover computes
α via Attest and returns it to the verifier. The verifier runs
Verify(k, s, α) and accepts α if verification succeeds.

This protocol’s main goal is to provide security guaranties
to the verifier. To subvert it, the adversary must falsify α.
However, since α is the output of Attest, which is secure
against Att-Forgery (defined in Section III), the adversary can
prevail only with negligible probability. It can not succeed
in a man-in-the-middle attack either, since k used to create
α is a secret shared between the prover and the verifier, as
illustrated in Figure 2.

Replay attacks on the response message from the prover
are prevented since the verifier picks a fresh nonce for each
protocol instance and only accepts responses computed using
the same nonce.
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A. Verifier Authentication: Replay Detection and DoS Miti-
gation

Verifier authentication is needed to prevent unauthorized
invocation of Attest (including replay attacks) on the prover.
However, recall that according to our model in Section III-B,
the adversary is assumed capable of compromising the prover
at will. Thus, verifier authentication is, strictly speaking,
beyond the scope of remote attestation. Nevertheless, we
believe that it is important for overall security since attestation
does not operate in a vacuum. In this section, we sketch out
some means of verifier authentication, starting with verifier
impersonation prevention and moving to replay and DoS
attack mitigation.

Verifier Impersonation. Preventing verifier impersonation
is straightforward. Since the two parties already share k,
the verifier computes and includes a message authentication
code (MAC) as part of the challenge. The prover verifies this
MAC and proceeds to execute Attest only if the challenge
is authentic. However, this does not detect replays of stale
challenges and DoS attack as discussed below. Note that, if
verifier authentication is needed, then the MAC computed by
the verifier must be structurally distinct from that computed
by the prover, in order to prevent certain well-known protocol
attacks, e.g., reflection [3]. This is easily done by using
direction and/or message identifiers in each party’s MAC
computation.

Denial Of Service (DoS). Preventing all DoS attacks on
the prover is impossible. If the verifier’s challenge is not
authenticated, the adversary can impersonate the verifier and
force the prover to run Attest using arbitrary unauthenticated
challenges. Otherwise, if we require verifier’s challenge to
be authenticated, the adversary can force the prover to verify
(re-compute) a MAC for an arbitrary challenge. It might seem
that both choices are bad, since in either case the prover can
be forced to compute a MAC. (Recall that MAC computation
represents the dominant cost of running Attest.) However,
computing a MAC over a short challenge is significantly
faster then doing so over possibly very large amounts of
prover’s state that can include RAM and disk. Therefore,
allowing the adversary to force the prover to verify MACs
on arbitrary challenges is the “lesser of two evils”.

Replay Mitigation. Replay attacks on the prover are ap-
plicable only if our protocol provides verifier authentication,
i.e., the verifier includes MAC with the challenge and the
prover verifies this MAC before executing Attest. As is well-
known, replay attacks can be mitigated only if the victim (the
prover) can establish not only authenticity of the challenge
but also its freshness. This is a non-trivial requirement that
leaves us with several options:
Nonce History: the verifier maintains a history of all chal-

lenge nonces. This is clearly unscalable unless a limited
number of attestation protocol instances are expected.

Counters: a prover’s challenge includes the protocol in-
stance sequence number. The verifier keeps the last valid
(non-wrapping and monotonically increasing) sequence
number it received. This allows the verifier to detect out-
of-sequence (but not necessarily delayed) challenges.
The verifier can also determine whenever (and how
many) challenges might have been lost.

Timestamps: a prover’s challenge includes a timestamp.
The verifier keeps the last valid timestamp it received.
Assuming a sufficiently fine grained verifier clock, no
two challenges carry the same timestamp. This allows
the verifier to detect delayed2 and out-of-sequence
challenges.

The subject of replay detection has been extensively studied
in the security protocols literature. As is well-known, the best
protection can be obtained by the combination of sequence
numbers and timestamps:
• At prover initialization (installation) time, a dummy

initial challenge c0 – that includes a sequence number
s0 and a timestamp t0 – is stored on the prover. The
prover sets cp = c0, sp = s0 and tp = t0.

• At some later time, the prover receives a challenge ci
(i > 0) with si and ti. It checks whether the si > sp and
ti > tp. If not, it aborts execution. Otherwise, provided
that the MAC of ci verifies, the prover sets cp = ci,
sp = si and tp = ti. Then, it proceeds to execute Attest.
Remark: Optionally, as part of the last step, if the prover
has its own clock, it can also check if tp is “recent”,
i.e., within a certain allowable skew from its current
time. This allows it to detect delayed challenges.

Note that the prover does not need a clock for these
countermeasures. The only advantage of having one is the
ability to detect (perhaps maliciously) delayed challenges.

The above measures would suffice only in the presence
of an external adversary, i.e., the kind that never com-
promises the verifier and modifies the stored sequence
number/timestamp values. We now consider a more powerful
“roaming” adversary. This adversary can do everything an
external adversary can, including eavesdropping. It can also
compromise the prover and modify any of its internal state.

It turns out that the above countermeasures still allow
a roaming adversary to mount a limited replay (DoS)
attack on the prover. The attack involves three stages:
(1) eavesdropping, (2) prover compromise, and (3) replay.
Although this kind of adversarial behavior might seem far-
fetched, we believe that it is appropriate for settings where
the adversary can only compromise the prover within certain
limited time interval. In more detail, the attack proceeds as
follows:

(1) The adversary observes and records n authentic
challenges c1, c2, . . . , cn with timestamps t1, t2, . . . , tn re-
spectively.

2Only if the prover maintains a reliable clock of its own.
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Figure 3. “Roaming” adversary. The adversary eavesdrops on a number of
challenges sent by the verifier. The adversary compromises the prover and
replaces the stored challenge with a previously captured one, then leaves
the device and mounts a replay attack.

(2) At some time after tn, but before the verifier issues
the next challenge (cn+1), the adversary compromises the
prover. It changes the prover’s stored challenge from cn to
c1 and leaves the device, cleaning up after itself, i.e., the
only remaining trace of adversary’s former presence is c1.

(3) At any time until the verifier issues the next challenge,
the adversary can mount a series of replay attacks by using
the authentic challenges c2, c3, . . . , cn as shown in Figure 3.

This attack is clearly not germane to the attestation protocol
which remains secure. We believe that preventing it requires
additional hardware components, e.g., a secure clock or a
small amount of writable secure memory (accessible only
from ROM) to store the last challenge.

In conclusion, we stress that replay and DoS attacks
discussed here are only relevant in very specialized scenarios
where the “roaming” adversary model is appropriate. We
include it here for completeness. In our main security model
(which is geared purely for remote attestation) the adversary
is allowed to compromise the prover at will. Thus, replay
attacks are not relevant to our definition of security of remote
attestation. For this reason, we omit a full treatment of all
possible DoS attacks. Another reason is that is an interesting
subject in its own right which deserves to be discussed
separately. In fact, other variants of the roaming adversary
attacks are possible and, as it turns out, easily preventable.
We defer further discussion to future work.

B. Asymmetric Cryptography

In terms of cryptographic primitives, our discussion has
been focused on symmetric techniques. One interesting
question is whether there are any benefits in using public
key cryptography, i.e., digital signatures.

At the first glance, digital signatures would significantly
complicate Attest code in terms of both size and execution
speed. (Incidentally, the latter would increase the impact
of DoS attacks.) Also, instead of a shared k, the prover

would need to store its private key sk (in a secure location).
However, none of this prompts the need for additional security
features or components. On the other hand, as far as the
verifier is concerned, α produced using a MAC is no less and
no more secure than a digital signature computed over the
same state. (Recall that our adversary model allows prover’s
compromise but not hardware attacks that could extract k or
sk.) We believe that the only potential advantage of digital
signatures can be obtained if the application requirements of
Remote Attestation include public verifiability of attestation
tokens.

VII. WEAKNESSES IN CURRENT DESIGNS

Among several existing proposals for remote attestation,
SMART [9] is the state-of-the-art design and is the closest
to the work presented in this paper. However, SMART, while
sensible, lacks a systematic analysis of security properties
and security features.

Using the security properties derived from our definition
of secure remote attestation, we manually verified whether
they hold for SMART, as described in [9]. In the process, we
found three possible violations of our security properties. We
believe that, if combined, these violations can lead to actual
attacks on SMART. We stress that our “attacks” on SMART
are on the design of the architecture, not on a particular
implementation. These attacks show that it is possible to
realize SMART in an insecure way, while violating none of
the security assumptions of SMART.

SMART code resides in ROM; it is referred to as ROM
Code (RC). SMART takes as input a memory range [a, b], a
challenge nonce, an output address out, a jump flag xflag,
a jump address x, and an optional input in. SMART then
performs the following steps:

1) Disable interrupts.
2) Check validity of out.
3) Compute HMAC of range [a, b] and write the result to

address out.
4) Clean/erase all working memory.
5) Check whether xflag is set. If so, jump to address x

(with input in). Otherwise, enable interrupts and stop
execution.

SMART includes several security checks, including the
following:
• If the program counter (PC) is in RC but differs from

the start of RC, then the previous instruction must also
be in RC.

• If PC is outside RC, then the previous instruction must
be outside RC, except for the last instruction of RC.

Finally, the result (attestation token) is placed in location
out.

A. Manipulating Input Parameters

All parameters provided to SMART are assumed to
be under adversary’s control. While some of them are
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1 [...]
2 memcopy:
3 pop r0 ; load to ptr
4 pop r1 ; load from ptr
5 pop r2 ; load len
6 loop: load r4, r0++ ; read word at @r1
7 store r4, r1++ ; write word at @r0
8 dec r2 ; decrement len
9 bne loop ; (branch if len > 0)

10 ret
11 [...]
12 pop r0
13 ret
14 [...]
15 jmp r0 ; the last instruction of ROM code
16 ; that will either jump to x or
17 ; return to the calling site of SMART.

Figure 4. Assumed contents of SMART ROM code (pseudo-code).

checked (e.g., out), memory address x is not. The adversary
can therefore freely choose where to execute at SMART
termination point. One way to abuse this feature is to call
SMART by specifying x to be inside SMART code itself.
By doing so, the adversary can control SMART execution.
This will not trigger a fault since execution does not leave
SMART code. Providing x as the last instruction of SMART
itself will cause an infinite loop. Therefore, the adversary
can cause a very effective denial-of-service attack without
actually controlling the device.

By making some simple assumptions about the SMART
implementation we can make the attack even more damaging.
Assume that SMART code contains a memcopy(*to,

*from, len) function. For simplicity, lets assume that
this function takes arguments from the stack. Here is how
the adversary could potentially extract the key:

First, prepare a stack layout to perform a “borrowed
code chunks” attack [17] or an “ROP program-
ming” attack if a Turing-complete gadget set is
available [7], [28]. Next, invoke SMART with x
set to the entry point of the memcopy function.

To better illustrate exposition the attack, we assume that the
RC contains the code chunks shown in Figure 4.

When RC is about to terminate, the jump instruction will
execute code from the memcopy function. Because the jump
is not pushing a return address on the stack, the stack will
be “de-synchronized”. Another possibility would be to find
a sufficiently long sequence of pop instructions followed
by a return instruction. The memcopy function will take its
arguments from the adversary-controlled contents of the stack.
The adversary controls *to,*from and len. It uses this to
copy the key by providing on the stack the address of the key,
the address where to copy the key and the key length. The
destination will be chosen to be some adversary-controlled
memory region, i.e., a region that is not erased after SMART

termination. Finally, the memcopy function returns, fetching
the return address from the adversary’s controlled stack. The
goal of the adversary from now on is to terminate SMART
execution from the last instruction of SMART. Not doing
so would lead to a violation of checks on PC and lead to
a reset and full memory erase. To do so, it needs to find a
chunk of code that allows him to fetch r0 from the stack
(with the pop r0/ret chunk of code). He then returns to
the jump instruction to exit ROM code. At this point, the
key value is available in adversary-controlled memory.

While actual implementations of SMART might not
contain the code chunks assumed above, SMART should
be resistant to such an attack. A simple counter-measure is
to check, at the beginning of SMART, that x does not point
to the ROM code itself.

B. Control Flow Hijacking by Manipulating Interrupt Vectors

In the design of SMART [9] it is claimed that, if Attest is
forced to start execution at the first – and to stop execution
at the last — instruction of Attest, then disabling interrupts
is redundant. While not disabling interrupts is stated as a
suggestion in the SMART paper, we examine its possible
consequences.

This assumption relies on the fact that, on many plat-
forms, interrupt vectors are memory locations that contains
instructions to be executed if an interrupt occurs. Those
instructions usually contain a jump to the respective interrupt
service routine. Therefore, to process interrupts, the processor
will first move PC to the interrupt vector to execute the
instruction located there. Because interrupt vectors are not
part of SMART RC, this will violate the control flow checks
that enforce exit from the last instruction of RC.

While this holds for some processors (e.g., AVR and ARM)
it does not hold for others, where interrupt vectors contains
addresses to the interrupt service routines. This is the case
with MSP430 – one of the commodity processors mentioned
in the SMART paper.

The adversary can change the interrupt vectors such that
their entries (i.e., addresses of interrupt service routines)
point to the adversary’s chosen address inside RC. After
that, the adversary schedules an interrupt to occur when
PC is within RC. When the interrupt occurs, the processor
will automatically fetch the address from the corresponding
interrupt vector and jump to adversary’s chosen address inside
RC. This attack does not violate the two security properties
stated above since the previous and next instructions are both
inside RC. Essentially, whenever PC is in RC, the adversary
can execute the next instruction at anywhere inside RC by
carefully manipulating the interrupt vector. For example, it
can schedule an interrupt so that RC skips the code that
erases its working memory. Therefore, if RC does not cleans
up its working memory, the adversary can learn the secret
key, thus violating SMART security.

9



VIII. DISCUSSION

In this section we discuss some issues that were not fully
addressed earlier.

A. Comparison with MAC

Our definition of Remote Attestation functionality shares
some features with the well-known and well-studied Message
Authentication Code (MAC) primitive. Suppose that the
legitimate prover has some secure hardware that can compute
both MACs and attestation tokens. Furthermore, assume
that the adversary can interrupt secure hardware execution.
Whenever the verifier sends the challenge that includes a, n
and nonce, along with expected memory contents in memory
range [a, a+ n), the prover sends back to the verifier: the
challenge, its MAC and α. Suppose that adversarial code
resides in memory region [a+ n/2, a+ n). When MAC (or
Attest) finishes computation for [a, a+ n/2), the adversary
interrupts the secure hardware, moves outside that range and
restores all memory [a+ n/2, a+ n) to original contents. In
this scenario, both MAC and α are computed correctly.
• The verifier believes that MAC is computed by the

genuine prover.
• The verifier can not assert absence of adversarial code

in memory range [a, a+ n) at attestation time.
This situation illustrates that uninterruptibility is not essential
for MAC computation, whereas, it is essential to the security
of remote attestation.

B. Comparison with Secure Hardware

While deconstructing our definition of remote attestation
into properties, and mapping them to features, we described
a mixed hardware-software system. Another option would
be to design a purely hardware component that computes
Attest atomically. Would a design based on a single piece
of secure hardware require fewer security properties?

First, we only claim minimality of security properties that
are quite independent of the specific architecture, rather than
minimality of security features that are architecture-specific.

Second, we need to consider what security properties must
be satisfied by the secure hardware component itself. In
particular, this component would still have to satisfy all five
security properties described earlier.

C. Untampered Execution Environment

Attest does not automatically set up an untampered
execution environment. However, it runs uninterrupted and
authenticity of α guarantees absence of adversarial code in
state s, at attestation time. We can take advantage of these
properties to set up an untampered execution environment
as follows.

Suppose that Attest disables interrupts during execution,
as in Section V. First, the verifier sends the challenge that
includes nonce, the code to be executed, and (optionally)
the expected dynamic environment state, i.e., stack memory

location, global configuration variables, etc. Then, prover
runs Attest uninterrupted: it computes α, returns it to verifier,
checks that the start address of the code is outside Attest
and, if so, Attest immediately hands over control to the
received code. Thus, when verifier receives a valid α, it
learns that the code it sent was executed uninterrupted in an
untampered execution environment. This approach is similar
to SMART [9].

IX. CONCLUSION

This paper provided an in-depth systematic treatment
of Remote Attestation and defined a new security notion
for remote attestation protocols. Using this notion, we
identified the necessary and sufficient properties needed for a
device to support secure remote attestation. We then mapped
these properties into a minimal collection of hardware
and software components that collectively yield a secure
attestation primitive. We also presented a protocol that uses
the this primitive to achieve secure remote attestation, over a
network, such as the Internet. We showed that such protocols
can be made both simple and efficient. Finally, we used the
set of properties derived from our security notion to analyze a
recent remote attestation proposal SMART [9] and identified
some surprising vulnerabilities.

This work represents the first step towards a systematic
study of Remote Attestation. There remain some important
issues and questions for future work. Although we argued
that the identified properties and derived components that
collectively represent a minimal architecture for Remote
Attestation, there could well be other sets of components
that also achieve minimality. We plan to further investigate
this and implement the proposed architecture on several
commodity platforms, possibility using public key digital
signature as an alternative to symmetric MAC constructs.
Finally, our future work will include the development of
methods for automated verification of such properties on
actual implementations.
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APPENDIX A.
ISSUES WITH TIME-BASED ATTESTATION

As shown in Section II, time-based attestation techniques
are not applicable for attestation performed over a network.
Moreover, some assumptions that form the basis for time-
based attestation have been challenged [6], [16], [35]. In this
section, we underscore the difficulty of secure time-based
attestation by discussing some new issues in time-based
attestation.

A. Partial Precomputation in VIPER

The central security assumption in time-based attestation
is:

“The code design of the checksum algorithm must
require precisely the smallest number of cycles to
complete” [19].

We show how this security assumption does not hold in
VIPER [19].

In time-based attestation, a verifier sends a challenge to the
prover, which normally includes a nonce. It is used as part of
input to the checksum function to prevent pre-computation or
replay attacks. However, this does not prevent the adversary
from executing a part of the checksum code in advance. An
adversary could reduce the time for computing a checksum
during the challenge phase. Our attack uses this observation,
which we call partial precomputation. The code in Figure 5
illustrates a fragment of VIPER checksum code, borrowed
from Figure 10 of [19].

We can see that these 9 instructions are independent of
nonce, which allows the adversary to pre-execute them and
reduce the run-time of the checksum function during the
challenge phase. This clearly violates the main security
assumption. On the other hand, the checksum function iterates
300 times. Whereas, pre-computation is only applicable to
the first iteration. In practice, this limited “real estate” is
likely insufficient to execute any effective malware. However,

it shows that a checksum function must ideally not allow
any pre-computation.

Note that the above is different from a parallel computation
attack [39] which works only with multi-core processors. Our
pre-computation works for a single-core system – the target
platform for VIPER.

Defense. To prevent partial precompution, we recommend
the following:
• Careful attention paid to how nonce is used. The above

would not work if every instruction depended on nonce.
• Clear distinction between (and enumeration of) parame-

ters that are in known-good state and parameters that
are randomized.

B. Hardware Assumptions in VIPER

VIPER was implemented for the PCI bus setting, where
devices might collude to cheat on attestation requests.
Therefore, to attest a device, all faster devices on the same
system need to be attested. Quoting from [19]:

“[...] The solution for verifying a device with a
particular level of computational capability is that
all devices with greater capabilities must be verified
first. [...] After the attestation of a faster peripheral,
the verification function on the faster peripheral
continues running until all peripherals have been
verified.”

In other words, because an attested device continues running
until all devices are attested, it is running trusted code.
Therefore, it cannot be used as a proxy to help another
device. This assumption requires that only the CPU can stop
the device once all devices are attested

However, if a slower device can interrupt a faster device
that continues running after attestation, then this would
violate the fundamental security property. The GA620
network card, on which VIPER was developed, is based
on the MIPS-based TIGON 2 chip [2]. This device has two
cores that are attested one after the other. According to its
documentation a CPU State register per core is exported to
the PCI configuration space. The devices can be interrupted
and controlled using those registers:

“Alteon Networks uses these bits a great deal to
implement a firmware debugger. In general, a driver
writer should not need to adjust these bits directly.
On the Tigon 2 ASIC there are two CPUs (CPU
A and CPU B). There is a CPU State Register for
each CPU” [2].

With peer-to-peer DMA, it would therefore be possible for
a slower device to interrupt a faster device and use it as a
proxy, which violates VIPER design assumptions.

Finally, the above demonstrates that, while software-based
attestation is attractive for legacy embedded systems, there are
many abstruse hardware features that needs to be considered.
Only hardware mechanisms designed for attestation can
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1 xor r31,r4,r1 ;addr=memory_baseˆoffset
2 lw r1,0(r31) ;memory read
3 xor r1,r5,r1 ;tmp1=r5ˆmem[addr]
4 add r31,r31,r ;tmp2=addr+tmp1
5 andi r1,r31,0x1ffc ;offset=tmp2&mask
6 xor r1,r3,r1 ;addr=memory_baseˆoffset
7 lw r1,0(r1) ;memory read
8 xor r1,r7,r1 ;tmp3=r7ˆmem[addr]
9 add r1,r3,r1 ;tmp3=PC+tmp3

Figure 5. VIPER code.

guaranty minimal required security properties with a high
level of confidence.

C. Reduced Program Size in Pioneer

Security of Pioneer [33] relies not only on the speed of
the checksum function (assumed to be optimal) but also the
minimal size of the code for that function. If the adversary
can implement the same checksum within smaller binary
code, a memory copy attack might be possible, using x86
CPU segment registers [33].

We now show how to design an equivalent, yet smaller-
sized, checksum. The following code fragment is taken from
the checksum implementation in Figure 11 of [33]:

or 0x5,rax ;binary code 0x4883c805

Note that only the lower 8 bits of register rax are modified.
This can be rewritten as:

or 0x5,al ;binary code 0x0c05

Note that “or 0x5, rax” translates into 4 bytes of binary
code, while “or 0x5, al” – to only 2 bytes. This already
shows a reduction in program size of 2 bytes. Similarly, we
can reduce instruction size for the following code:

and 0x1,rdi
add rdi,rdx
add rdi,rdi ;binary code 0x4801ff

After the first instruction executes, only the least significant
bit (LSB) of rdi is preserved. Therefore , in the third instruc-
tion: “add rdi, rdi”, we can use an equivalent instruction:

“add edi, edi” which is only 2 bytes in binary code “0x01ff”.
These examples illustrate two ways to reduce checksum

code size in Pioneer. Such optimizations could be collectively
used to implement a memory copy attack.

D. Time-Based Attestation in Multicore Systems

Time-based attestation approaches have been primarily
developed for single-core processor systems. More recently,
there has been a proposal for multicore processor sys-
tems [39]. This scheme uses time-based attestation for single-
core processor (e.g. Pioneer) as a building block. The main
argument is the following:

“[...] reduce the time-optimal problem on multicore
platforms to the time-optimal problem on each
computing unit, which is the same as the problem
that has been solved in the time-based schemes for
uniprocessor platforms.”

We consider this argument to be problematic. The reason is
that secure time-based attestation schemes are not available
for all single-core processors. Schemes have been proposed
for specific CPUs, such as Intel Pentium IV Xeon – the
Pioneer’s checksum implementation is designed to be optimal
only for that processor. Pioneer checksum code might not
be optimal when used on other processors. Each single-core
processor model might share its instruction set with other
models, might have different performance characteristics
due to different type of cache, pipelining implementation
and branch prediction algorithms. Therefore, the assumption
that Pioneer code is optimal is not applicable for a single
computing unit in a multi-core processor system.

The fact that time-based attestation is not portable due
to the dependency of security of time-based attestation and
specific processor models has been already observed by
others, including Pioneer [33], SWATT [27], [34], and [11].
However, this issue has not been considered in the proposal
for multicore platforms [39].
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