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Abstract. Subset sum or Knapsack problems of dimension n are known to be hardest for knapsacks
of density close to 1. These problems are NP-hard for arbitrary n. One can solve such problems either
by lattice basis reduction or by optimized birthday algorithms. Recently BECKER, CORON, JOUX
[BCJ10] present a birthday algorithm that follows SCHROEPPEL, SHAMIR [SS81], and HOWGRAVE-
GRrAHAM, Joux [HJ10]. This algorithm solves 50 random knapsacks of dimension 80 and density
close to 1 in roughly 15 hours on a 2.67 GHz PC. We present an optimized lattice basis reduction
algorithm that follows SCHNORR, EUCHNER [SE03] using pruning of SCHNORR, HORNER [SH95]
that solves such random knapsacks of dimension 80 on average in less than a minute, and 50 such
problems all together about 9.4 times faster with less space than [BCJ10] on another 2.67 GHz PC.
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Preliminaries on lattices. A basis matrix B = [bq,...,b,] € R™*™ of n linear independent
vectors by, ...,b, € R™ generates the lattice £L(B) = {Bx|x € Z"} € R™ of dimension n. Lattice
reduction algorithms transform a given basis B into a basis of £(B) consisting of short vectors.
The length of b € R™ is ||b|| = (b'b)'/2. A\1(£) = minper\o ||b|| is the minimal length of nonzero
b € L. The determinant of £ is det £ = (det B'B)'/2. The Hermite bound A (£)? < v, (det £)?/™
holds for all lattices £ of dimension n and the Hermite constant -y, is minimal for this property.
The LLL-algorithm of H.W. LENSTRA JR., A.K. LENSTRA AND L. LovAsz [LLL82] transforms a
given basis B in polynomial time into a basis B’ of the same lattice such that ||b}| < T A1,
where o > 4/3. It is important to minimize the proven bound on ||bi||/A; for polynomial time
reduction algorithms and to optimize the polynomial time.

The best known algorithms perform blockwise basis reduction for blocksize £ > 2 generalizing the
blocksize 2 of LLL-reduction. SCHNORR [S87] introduced blockwise HKZ-reduction. [SE94] reports
on solving subset sum problems by BKZ-reduction with block size k£ < 50 and a particular pruning
method that has recently be analyzed by N. GAMA, P.Q. NGUYEN AND O. REGEV [GNR10]. We
will use BKZ with the pruning of [SH95] and the algorithms of NTL [Sh].

Notation. Let B = [by,...,b,] € R™*" be a basis matrix of rank n = hk and B = QR be its
QR-~decomposition, where R = [r; j]1<i,j<n € R"™™ is upper triangular with positive diagonal en-
tries r;,; > 0 and Q € R™*" is isometric with pairwise orthogonal column vectors of length 1. We
denote GNF(B) = R. Let Ry = [ri j]ke—k+1<i,j<ke € R¥** be the submatrix of R = [ri,;] € R™*"
for the ¢-th block of blocksize k > 2, let Dy = (det Ry¢)?.

LLL-bases. [LLL82] A basis B = QR € R™*" is LLL-basis for §, § <40 <1, a = 1/(6 — 1/4) if

o |r; ;| < %m, holds for all j > 1, . 67“,-2’1- < 7"1'2,1'+1 + 7“1-2_‘_1,1-_*_1 holds for i =1,...,n — 1.
An LLL-basis B for ¢ satisfies ||b}||*/||bj;1]|* < a for all =1,..,n — 1 and
Iba]| < ™5 (det £)!/7, Iba]| < ™2 A,

The subset sum or knapsack problem.
GIVEN positive integers a1, ...,an > 0 and s such that maxa; < s < Z?:l a;

FIND 21,...,@zn € {£1} such that )", a;z; =s if such z1,..., z, exist.



In the inverse problem s is replaced by >.7_, a; — s. The inverse problem is solved by negating any
solution 1, ...,z of the original problem into 1 — z1,....,1 — z,. Obviously it is sufficient to solve
either the original or the inverse problem.

For simplicity we only search for knapsack solutions where n is even and y ., z; = n/2.

The density d of the problem is d:= L

logy maxa; *

We solve knapsack problems by BKZ- reduction of the lattice basis B introduced in [SE91].
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The last row of B helps in finding solutions satisfying > " | x; = n/2.
We report on experiments for n = 80 and random az, ..., an €g [1,2"]. These subset sum problems
have density close to 1. In particular we choose an integer N > y/n and N = 16 for n = 80.

Fact. Let B be a basis (1). Then every lattice vector b = (b1, ..., bn+3)" € L£(B) that satisfies
b1] = bo| =---=[bn| =1, [|bnt2|=1, bpt1=bniz=0 (2)

yields a knapsack solution x1, ..., Zn, @i := |bi — bpy2|/2, that satisfies > ., ©; = n/2. Conversely
every knapsack solution satisfying >_7" | #; = n/2 corresponds to some b € £(B) that satisfies (2).

It has been shown in [CJLOSS92] that the shortest, nonzero vector of the lattice with asis B of
(1) yields a knapsack solution for almost all knapsacks of density less than 0.9408 and for sufficiently
large n, either for the original or the inverse problem.

Details of the reduction algorithm. (We optimize the approach of [SE94]. Our algorithm per-
forms BKZ reduction for various blocksizes combined with permutations of the basis vectors)

1. Iteratively BKZ-reduce a permutation of the given basis B without pruning with blocksizes
2, 4, 8, 16, 32. In each round we first permute the columns of the basis matrix such that the first
columns have a nonzero entry in row n + 2 (then the subsequent BKZ reduction operates heavily
on the last column by of the input basis B), and thern sort the vectors of the basis according to
their length preserving the particular initial columns. Always terminate as soon as a solution has
been found.

2. BKZ-reduce the input basis with blocksizes 30, 31, 32,..., 61 independently — not iteratively —
with pruning according to [SH95]. Always terminate as soon as a solution has been found. Let the
pruning parameter s iteratively circulate with the blocksize k£ through a couple of nearly optimal
values.. The range 30,..., 61 of blocksizes k£ and the pruning parameters 10, 11, 12 are adapted to
the dimension n = 80.

Comments. Performing BKZ with iteratively doubling the block size k is particularly efficient.
For the primal-dual version of BKZ or slide-reduction it has been proved in [S11] that iterative
reduction with block sizes 2, 4,..., 2° is twice as fast than reduction with block size 2°.

While unpruned BKZ with block size 32 is still pretty fast this is no more true for larger block
sizes. Therefore step 2 prunes BKZ for block sizes k > 30. It turns out that two rounds of step 2
of distinct block sizes and distinct pruning parameters s have success rates that are — roughly —
statistically independent. In this way we randomize BKZ.

Here are the results for 50 random subset sum problems of dimension n = 80:



round

block size k

pruning par. s

# successes

time per suc., mm : ss

1. 2 } no pruning } 0 } 00 : 00 }
2. 4 | no pruning | 0 ‘ 00 : 00 |
3. 8 | no pruning | 0 ‘ 00 : 00 |
4, 16 | no pruning | 0 ‘ 00 : 00 |
5. 32 | no pruning | 8 ‘ 00 : 29 |
6. 30 ‘ 10 ‘ 3 ‘ 01 : 07 |
7. 31 ‘ 11 ‘ 2 ‘ 01 : 09 |
8. 32 ‘ 12 ‘ 4 ‘ 01:15 |
9. 33 ‘ 10 ‘ 2 ‘ 01: 17 |
10. 34 ‘ 11 ‘ 3 ‘ 02 : 01 |
11. 35 ‘ 12 ‘ 4 ‘ 01 : 36 |
12. 36 ‘ 10 ‘ 2 ‘ 01:35 |
13. 37 ‘ 11 ‘ 3 ‘ 01 : 32 |
14. 38 ‘ 12 ‘ 5 ‘ 02 : 08 |
15. 39 ‘ 10 ‘ 1 ‘ 01 :43 |
16. 40 ‘ 11 ‘ 4 ‘ 02 : 21 |
17. 41 ‘ 12 ‘ 1 ‘ 02 : 30 |
18. 42 ‘ 10 ‘ 0 ‘ 00 : 00 |
19. 43 ‘ 11 ‘ 0 ‘ 00 : 00 |
20. 44 ‘ 12 ‘ 3 ‘ 02 :35 |
21. 45 ‘ 10 ‘ 0 ‘ 00 : 00 |
22. 46 ‘ 11 ‘ 2 ‘ 03 : 48 |
23. 47 ‘ 12 ‘ 0 ‘ 00 : 00 |
24. 48 ‘ 10 ‘ 0 ‘ 00 : 00 |
25. 49 ‘ 11 ‘ 0 ‘ 00 : 00 |
26. 50 ‘ 12 ‘ 0 ‘ 00 : 00 |
27. 51 ‘ 10 ‘ 0 ‘ 00 : 00 |
28. 52 ‘ 11 ‘ 0 ‘ 00 : 00 |
29. 53 ‘ 12 ‘ 0 ‘ 00 : 00 |
30. 54 ‘ 10 ‘ 0 ‘ 00 : 00 |
31. 55 ‘ 11 ‘ 1 ‘ 06 : 20 |
32. 56 ‘ 12 ‘ 1 ‘ 05 : 21 |
33. 57 ‘ 10 ‘ 0 ‘ 00 : 00 |
34. 58 ‘ 11 ‘ 0 ‘ 00 : 00 |
35. 59 ‘ 12 ‘ 0 ‘ 00 : 00 |
36. 60 ‘ 10 ‘ 0 ‘ 00 : 00 |
37. 61 ‘ 11 ‘ 1 ‘ 06 : 12 |




Comments. BKZ with block size 2 in round 1. means LLL-reduction with 6 = 0.99. Here we
perform the slightly stronger reduction of LLL with deep insertion of depth 1 of [SE94]. BKZ is also
used with § = 0.99 so that the initial vector b; of the block by, -- ,bjix—1 is minimized wihin the
block block if this decreases ||b}||* by the factor 0.99.

The run time noted in the last column gives the average total time (over all rounds) for the
problems solved in that round. Note that the problems whose solutions have been found in previous
rounds have already been terminated previously. The total running time is the scalar product of
the last two columns. The total time for all 50 problems is 1 hour 34 minutes and 49 seconds, i.e
less than a minute per problem.

The three problems that have been solved in rounds 31, 32, 37 together took about 17 minutes
and 53 seconds.

Recall that rounds 1 — 5 operate iteratively on the output basis of the previous round while
rounds 6 — 37 operate on the original input basis.

The 25 most difficult of the 50 problems together took 34 minutes and 7 seconds. The 25
most easy problems together took only 10 minutes and 52 seconds.

Possible improvements. The 42 problems that are solved in rounds 6 to 32 distribute to the
pruning parameters 10, 11, 12 as 8, 16, 18. Surprisingly the time per solution does not increase
much within the pruning parameter 10, 11, 12. This indicates that it the pruning parameters 10,
11, 12 might better be replaced by either 11, 12 or 11, 12, 13.

We used an Intel(R) Xeon(R) CPU X5650 @ 2.67 GHz. [BCJ10] solved 50 random knapsack
problems of dimension 80 in 14 hours and 50 minutes and using enormous space on an Intel(R)
Core™ i7 CPU M 620 at 2.67 GHz. This is about 9.5 times our time for 50 random problems.

Independence of the success rates of iteratively composed and non composed rounds.
For 20 random subset sum problems of dimension 80 and density near 1 we present in two cases the
minimal number of rounds of non composed BKZ with block sizes k£ = 30, 31, ..., 62 until a solution
is found. The pruning parameter s circulates through 10, 11, 12 as k increases.

Case 1 For input bases where the iteratively composed BKZ-reduction for block sizes k =
30,31, ...,62 has found a subset sum solution.

Case 2 For input bases where the iteratively composed BKZ-reduction for block sizes k =
30,31, ...,62 has found no subset sum solution.

Case 1 | number of successful k ‘ # of times H Case 2 ‘ number of successful k ‘ # of times ‘
! L | ! 3 ]
2 L ° | | > Lt ]
5 L2 | | 0 3 ]
! L3 | | ! % |
° L | i Lt ]
0 L | i L% |
! L3 | | 10 Lt ]

This example indicates that solvability or unsolvability by iteratively composed BKZ-reduction for
block sizes k = 30,31, ...,82 had no direct influence on the number of block sizes 30, 31,...,62 for
which BKZ-reduction applied to the unchanged input basis finds a subset sum solution.
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