Perfect Keyword Privacy in PEKS Systems

Mototsugu Nishioka

HITACHI, Ltd., Yokohama Research Laboratory, Japan

mototsugu.nishioka.rc@hitachi.com

Abstract. This paper presents a new security notion, called perfect
keyword privacy (PKP), for non-interactive public-key encryption with
keyword search (PEKS) [5]. Although the conventional security notion
for PEKS guarantees that a searchable ciphertext leaks no information
about keywords, it gives no guarantee concerning leakage of a keyword
from the trapdoor. PKP is a notion for overcoming this fatal deficiency.
Since the trapdoor has verification functionality, the popular concept of
“indistinguishability” is inadequate for capturing the notion of keyword
privacy from the trapdoor. Hence, our formalization of PKP depends
on the idea of formalizing a perfectly one-way hash function [10,11].
We also present IND-PKP security as a useful notion for showing that a
given PEKS scheme has PKP. Furthermore, we present PKP+ and IND-
PKP+ as enhanced notions of PKP and IND-PKP, respectively. Finally,
we present several instances of an IND-PKP or IND-PKP+ secure PEKS
scheme, in either the random oracle model or the standard model.

1 Introduction

Much attention has been paid to encryption systems that go beyond traditional
public-key encryption (PKE) systems, such as identity-based encryption (IBE)
[6,13,17], public-key searchable encryption [5,19], attribute-based encryption
(ABE) [16], and functional encryption (FE) [7]. This paper deals with non-
interactive public-key encryption with keyword search (PEKS), which is first
presented in [5]. The PEKS provides a simple but useful mechanism to cryp-
tographically protect data while keeping it available for search. For example,
Alice can generate a searchable ciphertext corresponding to her selected key-
word using Bob’s public key. She then stores the ciphertext to a server. Bob can
generate another key, called a trapdoor, corresponding to his selected keyword
by using own secret key. Bob then sends the trapdoor to the server. The server
can test whether or not the keywords corresponding to the ciphertext and the
trapdoor are identical, and Bob can receive the ciphertext from the server only
when the test is passed. In an email system, the server could be a gateway that
forwards emails from Alice to Bob’s portable terminal, depending on his selected
keywords, such as “urgent” or “the next business meeting”.

The conventional security for PEKS, called IND-PEKS-CKA security (cf.
Definition 2), requires that the searchable ciphertext does not leak any informa-
tion about the keyword. This security, however, gives no guarantee about leak-
age of the keyword from the trapdoor. Indeed, there exist PEKS schemes, such

as the statistical consistent scheme presented in [1], that are IND-PEKS-CKA
secure but the trapdoor includes the keyword itself. This could bring serious
problems in many systems. For instance, in the above example, the malicious
server (or gateway) could collect the keywords selected by Bob from the given
trapdoors and use them to analyze his activities. The privacy of keywords from
the trapdoor has been discussed in the symmetric-key setting [14] and the in-
teractive public-key setting [9]. On the other hand, to solve a similar problem
in symmetric-key predicate encryption, Shen, Shi, and Waters [18] presented a
security notion, predicate privacy, to ensure that tokens reveal no information
about the encoded query predicate. Subsequently, Blundo, Iovino, and Persiano
[4] presented a predicate encryption scheme with partial public key, and defined a
token security to ensure the privacy of a pattern vector from a token. To the best
of our knowledge, however, there has been no discussion of the leakage of key-
words from trapdoors within the framework of PEKS, which is a non-interactive
and “total” public key setting.

1.1 Contributions

This paper presents a new security notion for PEKS, called perfect keyword
privacy (PKP), to protect the privacy of a keyword from an adversary having
both the trapdoor and the ciphertext of the underlying keyword. For formalizing
PKP, the well-known concept of “indistinguishability” is inadequate. This is
because a trapdoor has verification functionality; that is, when a keyword and
trapdoor are given, one can easily verify whether the trapdoor corresponds to
the keyword (see Section 3.1 for details). Therefore, we have applied the idea of
formalizing a perfectly one-way hash function (POWHF) [10, 11].

Next, we present IND-PKP security as a useful notion for showing that
a given PEKS scheme has PKP. The IND-PKP security can be defined in a
game-based manner, whereas PKP is defined in a simulation-based manner. As
compared with IND-PEKS-CKA security, IND-PKP security is a more extensive
notion in the sense that it can ensure the privacy of a keyword from not only
the ciphertext but also the trapdoor. Concerning the privacy of the keyword
from only the ciphertext, however, IND-PKP security is a strictly weaker notion
than IND-PEKS-CKA security. We demonstrate this by giving an instance of
a PEKS scheme that is IND-PKP secure but not IND-PEKS-CKA secure (cf.
Remark 7). Thus, PKP and IND-PKP security are independent notions from
IND-PEKS-CKA security. Therefore, for higher security in PEKS, both IND-
PEKS-CKA and IND-PKP securities are required. We also present PKP+ and
IND-PKP+ security notions to enhance the PKP and IND-PKP security notions,
respectively, from the viewpoint of search pattern privacy; that is, when two
trapdoors are given, it is hard to guess whether they correspond to the same
keyword.

Lastly, we give several instances of PEKS schemes that are IND-PKP secure
or IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. In Sec-
tion 4.1, we describe the general methodology for constructing IND-PKP secure
PEKS schemes. By using this methodology, in Section 4.2 we present a PEKS

scheme that is IND-PEKS-CKA and IND-PKP secure in the standard model. In
Section 4.3, we present a PEKS scheme that is IND-PEKS-CKA and IND-PKP
secure in the random oracle (RO) model, by direct construction. This scheme is
based on the PEKS scheme in [5] and requires no computational assumptions
for achieving IND-PKP security. In Section 4.4, we present a PEKS scheme that
is IND-PEKS-CKA and IND-PKP+ secure in the RO model.

1.2 Related works

Numerous works on searchable encryption have been presented so far. In this
section, we briefly describe only prior works that are specifically related to this
paper. In particular, we concentrate on the public-key setting.

Boneh, Di Crescenzo, Ostrovsky, and Persiano [5] first presented the frame-
work of PEKS. They formally defined its security and presented concrete schemes
with this security. They also showed a general transformation from anonymous
IBE to PEKS. Abdalla et al. [1] defined consistency in PEKS and gave an im-
proved transformation from anonymous IBE to PEKS that guarantees consis-
tency. They also introduced three extensions of the established notions: anony-
mous HIBE, PKE with temporary keyword search, and IBE with keyword search.
Bellare, Boldyreva, and O’Neill [3] presented an efficiently searchable encryption
(ESE) system to enable fast data search (i.e., logarithmic time in the database
size) in outsourced databases. The ESE system utilizes a “tag”, which can be
generated in a deterministic manner both from the plaintext and from the cor-
responding ciphertext, as an index for search. Specifically, the server computes
the tag of a ciphertext to be stored in the database and uses the tag to store
the ciphertext appropriately in a data structure. The client computes and sends
its tag to the server and receives any matches and associated data. They also
presented an ESE scheme, called “Hash-and-Encrypt” encryption scheme, and
showed that it is PRIV secure in the RO model when the underlying encryption
scheme is IND-CPA secure. Unlike the trapdoor in the PEKS system, an ESE
tag can be computed without a secret key. Therefore, ESE always allows data
searches by anyone who can access the server. Moreover, its security depends on
only the ciphertext, because the tag can be computed from it. Thus, the ESE
system essentially has a different structure from that of PEKS, and it is outside
the scope of this paper. Camenisch, Kohlweiss, Rial, and Sheedy [9] presented an
extended notion of PEKS, called public-key encryption with oblivious keyword
search (PEOKS), in which a user can obtain the trapdoor from the secret key
holder without revealing the keyword. They constructed a PEOKS scheme by
using a committed blind anonymous IBE scheme based on the anonymous IBE
scheme in [8]. In PEOKS, however, the trapdoor is generated in an interactive
manner. In contrast, our goal in this paper is to define and achieve security for
guaranteeing the privacy of the keyword from the trapdoor, within the frame-
work of PEKS (i.e., trapdoors are generated in a non-interactive manner). Boneh,
Sahai, and Waters [7] presented a general framework for FE, and showed that
existing encryption concepts, such as ABE and PE, can be expressed as partic-
ular functionalities of FE. They also discussed the formal security definition for

FE. They showed that the natural indistinguishability game-based definition is
inadequate for certain functionalities since trivially insecure constructions may
satisfy it. They hence presented a simulation-based security in which one getting
the secret key reveals no information other than the result of decryption when the
ciphertext is given. However, although simulation-based security can be achieved
in the random oracle model, for a quite simple functionality (the functionality
corresponding to IBE), it cannot be achieved even in the non-programmable
random oracle model. Since PEKS can also be considered as a special case of
FE, the security in [7] is applicable to PEKS. Both game-based security and
simulation-based security, however, have the goal of achieving privacy of a key-
word from a ciphertext, and they give no guarantee concerning keyword leakage
from a trapdoor.

2 Preliminaries

We say that a function f : N — [0,1] is negligible if, for every constant ¢ > 0,
there exists an integer k. such that f(k) < k=¢ for all £ > k.. For a group G,
G* denotes a set G\{lg}, where 1¢ is an identity element of G. For a finite set
S, x < S denotes the operation of picking an element uniformly from S. We use
x,x’ < S as shorthand for z < S ; 2’ + S. If A is a probabilistic algorithm,

then y + A(zy1,za,...;7) is the result of running A on inputs z1,xs,... and
coins r. We let y < A(z1,x2,...) denote the experiment of picking r at random
and letting y to be A(x1,xa,...;r). The notation Pr[zy < Si; xo < So; ... :

p(x1,x2,...)] denotes the probability that the predicate p(x1,xa,...) is true
after the ordered execution of xy <+ Sy, o < S5, and so on. If « is neither an
algorithm nor a set then = < « is a simple assignment statement. For a random
variable X, [X] denotes a set {z | Pr[X = z] > 0}, and ||X]| denotes a value
max,ex]{Pr[X = z]}. E(X) denotes the expectation of X, and x < X denotes
selection of a random sample from X; thus, Pr[z + X] = Pr[X = z]. We use
z,x' + X as shorthand for z < X ; 2’/ + X. The random variables X and Y are
independent if Pr[X = aAY =b] = Pr[X = a] - Pr[Y =] for any a,b € {0,1}*.
A probability ensemble is a sequence X = {Xj}reny of random variables Xj.
We say that X' is well-spread if || Xy|| is negligible in k. The d-composite bilinear
group generator G is a PPT algorithm that takes a security parameter k as input
and outputs (pi,...,ps, G,Gr,e), where p; are prime numbers with p; > 2%, G
and Gp are multiplicative cyclic groups with order N = H?:l p;, and e is a map
from G x G to Gp, called a bilinear map, with the following properties:

1. Computable: There is an efficient algorithm to compute e(g, h) for any g, h €
G.

2. Bilinear: e(g*, g¥) = e(g,9)*¥ for any g € G and any z,y € Zy.

3. Non-degenerate: If g is a generator of G then e(g, g) is a generator of Gr.

In particular, the 1-composite bilinear group generator is simply called a bilinear
group generator. For an integer m dividing N, G,, denotes the subgroup of G
with order m. Then, e(x,y) = 1g for any =z € G,, and any y € G,, when m and
n are coprime. This is called the “orthogonality property”.

Definition 1. A non-interactive public-key encryption with keyword search
(PEKS) scheme consists of the following polynomial-time randomized algorithms:

— KG(1*%): Takes a security parameter k, and generates a public/secret key pair
(PK,SK). Here, the keys include the information about the keyword space
KSPy.

— Td(SK,w): For SK and a keyword w € KSPy, produces a trapdoor T,,.

— PEKS(PK,w): For PK and w € KSPy, produces a searchable ciphertext C,,
of w.

— Test(PK,Cy, Ty): For PK, C,, = PEKS(PK,w), and T,y = Td(SK,w'),
where w,w’ € KSPy, outputs 1 if w = w'. Otherwise, outputs 0 with an
overwhelming probability*.

The security of PEKS is defined against an active attacker who is able to
obtain a trapdoor T, for any keyword w of his choice, to ensure that a PEKS(PK,
w) does not reveal any information about w unless T, is available [5].

IND-PEKS-CKA security. Let IT = (KG, Td, PEKS, Test) be a PEKS scheme,
and let A = (Ay,.As) be a probabilistic polynomial-time (PPT) adversary. We
then consider the following experiment.

Experiment Exp’3 P (k)

(PK, SK) < KG(1¥) ; (wp, wy,0) + A *K) (1% PK)
b+ {0,1} ; Cu, +PEKS(PK, wy) ; b+ A5 (18 PK 0, wo, wr, Cu,)
If b = b’ then return 1 else return 0.

Here, wg,w; € KSPy and wg # w1, o is a string representing the configuration
of A; at its quitting point, and A is prohibited from asking for the trapdoors
wg or wi. The advantage of A in the above experiment is defined as

— el 1
AVEGP (k) = [Pr [ExpR 5P (k) = 1] - 2’.

Definition 2. We say that a PEKS scheme II is indistinguishable against a
chosen-keyword attack (CKA), briefly, IND-PEKS-CKA secure, if Advjfll}peks(k)

is negligible for any A.

3 Perfect keyword privacy

3.1 Definition

The IND-PEKS-CKA security (in Definition 2) guarantees the privacy of the
keyword from a searchable ciphertext. It does not, however, guarantee any se-
curity concerning leakage of the keyword from the trapdoor. For example, in
[1], a PEKS scheme with statistical consistency is presented and shown to be

! This property is called computational consistency in [1]. In this paper, we call it
“consistency” for brevity.

IND-PEKS-CKA secure under the BDH assumption. That scheme is designed,
however, so that the trapdoor includes the keyword itself. To overcome this
deficiency, we present a new security notion, perfect keyword privacy (briefly,
PKP), for a PEKS to ensure the privacy of the keyword from both the trapdoor
and the searchable ciphertext. In this section, we present a formal definition of
PKP. In formulating security against information leakage, the natural, popular
concept that comes to mind is “indistinguishability”. We first explain why in-
distinguishability is inadequate for defining PKP. We now consider the following
game based on indistinguishability.

1. For (PK,SK) + KG(1*), the adversary receives the public key PK and is
allowed to access to the trapdoor oracle Td(SK,-).

2. In the challenge phase, the adversary submits two keywords, wq,w;, and
receives a target trapdoor T, = Td(SK,w;) for a randomly chosen b €
{0,1}. The adversary can continuously make queries to the trapdoor oracle
Td(SK,), except for querying wp or wy.

3. In the guess phase, the adversary finally outputs & € {0, 1} as its guess for b.

It is then required that no PPT adversary can guess the challenge bit b with a
non-negligible advantage. There exists an adversary, however, that can guess b
with an overwhelming probability in the above game. After receiving the trap-
door T, in Step 2, the adversary computes C,, = PEKS(PK,w;) for each
i = 0,1 and outputs b’ € {0,1} such that Test(T,,Cy,) = 1. Then, from the
consistency of PEKS, the probability Pr[b = b'] is overwhelming.

Our formalization of PKP depends on an idea of formalizing a POWHF [10,
11]. Informally, we say that a PEKS scheme has PKP if there is no efficient way
to guess the keyword w from the given trapdoor T, and ciphertext C, other than
the “select and test” method; in other words, the adversary selects a keyword w’
in an arbitrary manner and tests whether Test(T,,, PEKS(PK,w’)) = 1 holds.
If the test is passed, the adversary decides that w = w’. In our definition, the
“select and test” method is formalized by an oracle O,,, called a test oracle,
in the ideal system: for a query (keyword) w’, O, responds with 1 if w = w';
otherwise, it responds with 0. Note that one may think that the oracle O,, should
be defined so that it outputs 0 with an overwhelming probability when w # w’
because Definition 1 adopts computational consistency. It can easily be shown,
however, that this difference does not affect Definition 3.

Perfect keyword privacy. Let II = (KG, Td, PEKS, Test) be a PEKS scheme.
Let X = {X}}ren be a probability ensemble such that [Xj] = KSPy. From now
on, unless otherwise indicated, we assume that X is well-spread and independent
from key generation (cf. Remarks 1 and 2). X determines the distribution of
keywords; that is, when the security parameter k is given, the keyword w is
given as a random sample from Xj. Let P = {Px}ren be a predicate family,
where Py, is an efficiently computable predicate over [Xy]. Let A and B be PPT
algorithms. We then define the following experiments. See Section 2 for other
notations and conventions.

Experiment Expi%%f?lp(k) Experiment Exp%{‘%jﬁ%(/@)
w4 Xy ; (PK, SK) « KG(1*) w Xy ; (PK,SK) « KG(1¥)
Ty < Td(SK,w) ; Cy, + PEKS(PK,w)| z ¢ BOwTdSK)(1k PK)
2+ ATGSE) (1R PK T, Cy) If 2 = Py(w) then return 1
If z = Py(w) then return 1 else return 0. else return 0.

Definition 3. We say that a PEKS scheme II has perfect keyword privacy
(PKP) with respect to X if for any P and A, there exists a negligible function
negl and B such that

Pr [Expiinrel (k) = 1} < Pr [Expglj;;jii‘;i(k) = 1| + negl(k) (1)
for all k € N. We also say that II has PKP if it has PKP with respect to any X .

Remark 1. In Definition 3, the probability ensemble & is given independently
from the key generation of the PEKS scheme. This setting is very significant for
obtaining a useful notion, IND-PKP security, to achieve PKP (see the proof of
Theorem 1). From a practical viewpoint, we think that this is a natural setting
in the real world. Generally, public keys are not used as keywords because they
are large, meaningless phrases, whereas other identifiers, such as a user’s name
and email address, are usually used to designate a person.

Remark 2. Definition 3 is meaningful even if X is not well-spread. However,
without loss of generality, we can assume that the probability ensemble X is
well-spread when defining the privacy of the keyword from the trapdoor. As
described at the beginning of this section, if the trapdoor is given, the adversary
can always verify whether it corresponds to his own chosen keyword. From this
fact, in (1) we can exclude the case of choosing w € [Xj] such that Pr[X; = w]
is non-negligible. Notice that the number of keywords appearing with a non-
negligible probability is polynomially bounded in k.

Remark 3. In Definition 3, only a single tuple of the trapdoor and ciphertext is
given to the adversary A. In Section 3.2, we present a notion, IND-PKP security,
and use it to show that a given PEKS scheme has PKP. From a hybrid argument
[2], we can show that (single-target) IND-PKP security implies multi-target IND-
PKP security. Thus, IND-PKP security implies multi-target PKP.

Remark 4. Concerning the privacy of a keyword from only the searchable ci-
phertext, IND-PEKS-CKA security gives strictly stronger security than that of
PKP. In Remark 7, we demonstrate this by presenting a PEKS scheme that is
IND-PKP secure (cf. Section 3.2) but not IND-PEKS-CKA secure. On the other
hand, there exist PEKS schemes, such as the scheme in [1] described above, that
are IND-PEKS-CKA secure but do not have PKP. Thus, PKP is a separate secu-
rity notion from IND-PEKS-CKA security; that is, PKP and IND-PEKS-CKA
security are independent of each other. Hence, for higher security in a PEKS sys-
tem, both IND-PEKS-CKA security and PKP are required. Note that strictly
speaking, the above results on separation and comparison are true under some
computational complexity assumptions because they are required for achieving
the securities of the instances.

We expect that the idea of PKP will be applied in FE systems to ensure
the privacy of a key from a secret key (see [7] for the detail of FE); since FE
is a generalized concept of many other primitives, such as IBE, PE, and ABE,
this idea is also applicable to those primitives. Informally, we say that an FE
scheme for a functionality F' over (K, X) has perfect key privacy if a secret key
sky, corresponding to the key k£ € K leaks no information about k, beyond the
information obtained from the oracle Op(,.), where for the query x, Opx,.,)
returns F'(k,z). If Op(y,.) gives only trivial information?, like O, in PEKS, then
this notion will give meaningful security in an FE system. We leave a detailed,
formal discussion to subsequent works.

3.2 How to achieve PKP

In this section, we present a useful notion, called IND-PKP security, to show
that a given PEKS scheme has PKP. The IND-PKP security can be defined
in a game-based manner, whereas we defined PKP above in a simulation-based
manner. The IND-PKP security can be regarded as a strictly stronger notion
than PKP from the viewpoint of the strength relation between the cryptographic
assumptions for achieving these securities (cf. Remark 6).

IND-PKP security. Let X = {Xj}ren be a probability ensemble, and let
IT = (KG, Td, PEKS, Test) be a PEKS scheme. Let A be a PPT algorithm, called
IND-PKP adversary. We then define the following experiment (cf. Remark 3).

Experiment ExpiAnfiI}I??(p(k)

wo, wy < Xy ; b {0,1}; (PK,SK),(PK',SK') < KG(1%)
Twe — Td(SK,wp) ; Cyy, + PEKS(PK,wy)

T, < Td(SK',wy) ; C, < PEKS(PK', wy)

b ATISKDTASK) (1F PR Ty, Coy, PK', T, C)

If b = V' then return 1 else return 0.

The advantage of A in the above experiment is defined as

; 1
Pr {Explj?ﬁ?g{p(k) = 1] — =

ind-
AP () = !

)

and b € {0,1} is called a challenge bit.

Definition 4. We say that a PEKS scheme II is IND-PKP secure with respect
to X if Advj’dl}l?l;{p(k) is negligible for any A. We also say that IT is IND-PKP
secure if it is IND-PKP secure with respect to any X.

Theorem 1. If the PEKS scheme II = (KG, Td, PEKS, Test) is IND-PKP se-
cure, then it has PKP.

The proof of Theoreml is given in Appendix A.

2 For example, F(k,) represents a result of execution of certain program Py for input
x. P, outputs a meaningful string only for particular x, whereas it outputs L for
other input. It is easy to find such particular x from k but difficult to find it from
Skk.

3.3 Additional notions

In Section 4.3, we present an IND-PKP secure PEKS system in which the trap-
door is generated in a deterministic manner. In this system, when two trapdoors
are given under the same secret key, one can easily guess whether they cor-
respond to the same keyword. Thus, IND-PKP security cannot assure “search
pattern privacy”, in general. In this section, we address this issue.

Search pattern privacy. Let X = {X} }xen be a probability ensemble, and let
IT = (KG, Td, PEKS, Test) be a PEKS scheme. Let A be a PPT algorithm, called
a SPP adversary. We then define the following experiment.

Experiment Exp"; (k)
wo, wy + X3 b« {0,1}; (PK,SK) «+ KG(1%)
T, ¢+ Td(SK,wp) ; Top, < Td(SK,wy) ; b < ATISED) (18 PK. T, Tw,)
If b = b’ then return 1 else return 0.

The advantage of A in the above experiment is defined as

Pr {Expffglx(k) = 1] — %

9

Advff,%,x(k) =

and b € {0,1} is called a challenge bit.

Definition 5. We say that a PEKS scheme II has search pattern privacy
(briefly, SPP) if Adv}; y (k) is negligible for any A and X.

Definition 6 (PKP+ and IND-PKP+). We say that a PEKS scheme has
PKP+ if it has both PKP and SPP. We also say that a PEKS scheme is IND-
PKP+ secure if it is IND-PKP secure and has SPP.

Remark 5. In Definition 5, it is essential that the adversary cannot see the ci-
phertexts Cy,, and C,,, . If either of these is given, the adversary can easily guess
b by running the test algorithm. Thus, in a real system, SPP is meaningful in
a situation in which there is no ciphertext corresponding to the search keyword
(although the searcher has multiple trapdoors corresponding to the underlying
keyword). In our definition of SPP, the adversary is not allowed to choose the
keywords wg, w1. This is because we regard SPP as an additional notion for PKP
to strengthen the privacy of keywords.

4 PEKS schemes with perfect keyword privacy

As described in Remark 4, concerning the privacy of a keyword from only a
searchable ciphertext, IND-PKP security ensures strictly weaker security than
that of IND-PEKS-CKA security. Therefore, for higher security in PEKS, we
present several instances of a PEKS scheme that is IND-PKP secure or IND-
PKP+ secure, in addition to being IND-PEKS-CKA secure. As much as we
possible, we looked for appropriate instances in existing schemes and modified
them if necessary.

4.1 General methodology

Before giving concrete instances, we describe a general methodology for achieving
IND-PKP security in PEKS schemes. We first introduce the notion of a secure
injective-function generator.

Definition 7. The injective-function generator is a pair of PPT algorithms T
and & such that (1) T takes a security parameter k as input and outputs A, €
{0,1}*, and (2) & takes A\ as input and outputs an injective function w: Yy, —
Zy,, where Yy, and Z, are sets uniquely determined from \. We say that
the injective-function generator (Z,®) is secure if for any well-spread probability
ensemble X = {X}ren with [Xi] C Ya,, and any PPT algorithm B,

Adv%ifl,eﬁ,){(k) =

Pr [Ak IR mr e B 3 20,1 & X ;

b {0’1}) b/ A B(1k77r,ﬂ'/771'(x0)771'/(gjb)) t b= b/:| B ;‘

s negligible.

An example of a secure injective-function generator is given in Section 4.2.
Next, we describe how to convert a PEKS scheme into an IND-PKP secure
PEKS scheme by using a secure injective-function generator. The essential point
of the conversion is that the secure function generator yields a fresh injective
function for each user, and the trapdoor and ciphertext are created from the
keyword’s function value. Let IT = (KG, Td, PEKS, Test) be a PEKS scheme, and
let (Z,®) be an injective-function generator such that for A\ + Z(1¥), &(\x)
outputs an injective function from KSPy to KSP,. We then define a PEKS scheme
IT* = (KG*, Td*, PEKS™, Test™) as follows.

— KG*(1%) outputs (PK*, SK*) = ((PK, ¢,), (SK, A\, 7)) for (PK,SK) «
KG(1%), A\, <= Z(1%), and 7 < &(\x), where), is a common parameter for
all users in this system.

— Td"(SK*,w) outputs T () + Td(SK,m(w)).

PEKS*(PK*,w) outputs Cy () < PEKS(PK, 7 (w)).

— Test™ is identical with Test.

Theorem 2. In the PEKS scheme IT*, we have the following results.

(a) If (Z,®) is secure, then IT* is IND-PKP secure.
(b) If IT is IND-PEKS-CKA secure, then IT* is IND-PEKS-CKA secure.

The proof of Theorem 2 is given in Appendix B. The above methodology is
simple and useful although some additional assumption may be required for se-
cure function generator. This methodology however cannot guarantee SPP in IT*.
The brute force approach (under a constraint) for obtaining an IND-PKP+ se-
cure PEKS scheme IT* by using a secure injective-function generator (Z, ®) is as
follows. KG* creates (PK*,SK*) = ((PK, \g, T1,--,7n), (SK, Ak, M1, -+,)

for (PK,SK) « KG(1¥), A\, + Z(1¥), and 71,...,m, « &(\). Td*(SK,w)
has a counter, and it outputs Ty, = T, (,) if this is the i-th execution for the
same keyword w. PEKS*(PK,w) outputs C}, = (Cr, (w))1<i<n- It can readily be
shown that if (Z, ®) is a secure injective-function generator and the adversary is
restricted to making at most n trapdoor queries to the same keyword, then IT*
is IND-PKP+ secure. We do not know of a general methodology for obtaining
an IND-PKP+ secure PEKS scheme without restriction. This problem remains
open. Note that obviously, we can obtain a similar result to Theorem 2 when
applying an RO generator (i.e., 7 is an RO in the above IT*) instead of a secure
injective-function generator (cf. Proposition 5).

4.2 Instance 1

In this section, we present a concrete instance of a PEKS scheme that can be
obtained by the methodology described in Section 4.1. This instance is based on
the Gentry IBE scheme [15] and the conversion [1] from the IBE scheme to the
PEKS scheme. The resulting scheme is both IND-PKP and IND-PEKS-CKA
secure in the standard model. Let G be a bilinear group generator. We define
an injective function generator (G, ®) as follows: For I = (p,G, G, e) <+ G(1%),
&(I) picks a primitive element € Z; at random and outputs a function 7 such
that 7(z) = £ for © € Z,. Since ¢ is a primitive element, 7 is injective. The
following assumption can be seen as a variant of the Decisional Diffie-Hellman
(DDH) assumption.

Assumption I We say that G satisfies Assumption I if for any well-spread prob-
ability ensemble X = {X}, }ren with [X] C Z,, and any PPT algorithm 5,

Pr[I = (p,G,Gr,e) + G(1*) ; mo, 21 + Xy, ; &1,& < PRIM(p) ;

1
b {0,1}; 0« B(1*, I,&, &, &5, €50) b:b’}—5

is negligible, where PRIM(p) is a set of all primitive elements in Z,,.

From the definitions, the following proposition is clear.
Proposition 1. If G satisfies Assumption I, then (G, ®) is secure.

Let (G,®) be the injective-function generator mentioned above. We then
define the PEKS scheme IT; = (KG, Td, PEKS, Test) as follows.

— KG(1%): For a security parameter k, run G and & to obtain I = (p, G, Gr, e)
+ G(1%) and 7(x) = £ « &(I). Pick g,h € G* and « € Z, at random, set
PK =(I,7,9,91 = g% h) and SK = «, and output (PK, SK), where (I, g)
are common parameters for all users in this system.

— Td(SK,w): To generate a trapdoor for a keyword w € Z, under the secret
key SK, pick a random r,, € Z,, and output Ty, = (T4, ey = (hg_W)#(w)).
Note that the same 7, is used for the same keyword w.

— PEKS(PK,w): To encrypt a keyword w under the public key PK, pick ran-
dom s € Z, and R € Gr, and output C,, = (R, C; = gjg~>"™), Cy =
6(979)57 CS =R- E(Q, h)is)'

— Test(PK, Ty, Cy): Using the notation in the description of Td and PEKS, if
R =C5-e(Ch, hy)C5™ then output 1; otherwise, output 0.

The Gentry IBE scheme is shown to be anonymous and IND-ID-CPA secure
under the truncated decision ABDHE assumption (see [15] for details). There-
fore, from Theorem 4.2 in [1] and Theorem 2. (b), IT; is IND-PEKS-CKA secure
under the same assumption, and it is computationally consistent. In addition,
from Proposition 1 and Theorem 2. (a), IT; is IND-PKP secure under Assump-
tion I. However, II; is not IND-PKP+ secure because the trapdoor in I is
uniquely determined per the keyword. An instance of a PEKS scheme that is
both IND-PEKS-CKA and IND-PKP+ secure is given in Section 4.4.

4.3 Instance 2

In this section, we present an efficient PEKS scheme that is IND-PKP and IND-
PEKS-CKA secure in the RO model, without depending on a secure injective-
function generator in its construction. To achieve IND-PKP security, this in-
stance requires no cryptographic assumption beyond those for achieving IND-
PEKS-CKA security. This scheme is based on the PEKS scheme proposed in
[5], with slight modification. Let G be a bilinear group generator. We begin by
describing the PEKS scheme IT; = (KG, Td, PEKS, Test) associated with G.

— KG(1%): For a security parameter k, run G to obtain (p, G, Gy, e) < G(1¥),
and select a € Z, and g € G* (i.e., g is a generator of G) at random. Set
PK = (p,9,G,Gq,e,9,h = g% Hy,Hs) and SK = (PK,a), where H; and
Hj, are hash functions, and (p, G, Gq,e, g, H1, H2) are common parameters
for all users in this system, and output (PK, SK).

— Td(SK,w): As a trapdoor for a keyword w € {0,1}* under the secret key
SK = (PK,a), output T, = H,(PK]||w)* € G.

— PEKS(PK,w): To encrypt a keyword w under the public key PK, pick a
random r € Z, and output Cy, = (Cy = ¢, C2 = Hay(e(H1(PK]||w),h"))).

— Test(PK,Cy,Ty): Using the notation in the description of Td and PEKS, if
Hy(e(T,,C1)) = Cs, then output 1; otherwise, output 0.

The consistency of the above PEKS scheme is shown in [1]. As compared to
the original scheme, the input to H; includes a public key in I15. This modifica-
tion does not collapse the IND-PEKS-CKA security of the scheme because it can
be seen as the original PEKS scheme with a special keyword form. Therefore, like
the original scheme, this scheme can be shown IND-PEKS-CKA secure in the
RO model under the BDH assumption [5]. Interestingly, IND-PKP security of
I can be shown only under the RO assumption (i.e., without a computational
assumption).

Proposition 2. Suppose that Hy and Hy are ROs. For any probability ensem-
ble X = {Xi}tren and any IND-PKP adversary A against Il that makes at
most qu, (k) queries to Hy and at most qi(k) trapdoor queries when the security
parameter k is given,

AVETES () < 2(qi (k) + arr, (k) - [IXell +27F - (k € N),
The proof of Proposition 2 is given in Appendix C.

Remark 6. From Definition 3, the original PEKS scheme in [5] is shown directly
to has a PKP under the RO assumption. This is because in the trapdoor, the
keyword is hidden by the RO H;, and the ciphertexts can be created from
the trapdoor. However, it will be impossible to show the IND-PKP security of
this scheme only under the RO assumption. If the DDH assumption (on G) is
added, then the scheme is shown to be IND-PKP secure. In this sense, IND-
PKP security can be regarded as a strictly stronger notion than PKP. On the
other hand, if H; and Hs are freshly chosen in each key generation (not used as
common parameters), then the original scheme is shown to be IND-PKP secure
only under the RO assumption.

4.4 Instance 3

As described in Section 3.1, achievement of both IND-PEKS-CKA and IND-
PKP+ securities can be considered as the highest security in a PEKS system.
Unfortunately, we could not find an appropriate instance within any existing
schemes (even allowing for slight modification). We then present a new PEKS
scheme that is IND-PKP+ and IND-PEKS-CKA secure in the RO model. Let
Gs be a 3-composite bilinear group generator. We begin by describing the PEKS
scheme IT5 = (KG, Td, PEKS, Test) associated with Gs.

— KG(1%): For a security parameter k, run G3 to obtain I = (py, p2, p3, G, Gr, e)
+ G3(1%) and set N = pipops. Pick g; € Gy, (1 <0< 3) and Ry € Gy,
at random. Set PK = (N,G,Gr,e, g2,93,9=¢1 R, H) and SK = (PK, ¢1),
where H is a hash function from {0, 1}* to G,,, and output (PK, SK).

— Td(SK,w): To generate a trapdoor of a keyword w € {0,1}* under the
secret key SK, pick s € Z,, and R3, S3 € G,, at random, and output T, =
(T1 = ngg, T2 = H(w)sS’;),)

— PEKS(PK,w): To encrypt a keyword w under the public key PK, pick r €
Zy and Ys,Zy € G,, at random, and output C,, = (C; = ¢"Ys, Cy =
H(w)"Zs).

— Test(PK,Cy,T,): Using the notation in the description of Td and PEKS, if
e(T1,Cy) = e(T, Cy), then output 1; otherwise, output 0.

From the orthogonality property, the completeness and consistency of I13
can readily be verified. To show the security of I3, we introduce the following
assumptions.

Assumption IT We say that Gz satisfies Assumption II if for any PPT algo-
rithm B,

Advig, (k) = ‘ Pr[I+ G3(1%) s N« pipops; gi < G, (1<i<3);
Xo0,X1 Gy, ; 8,8 < Zn ; Rs3,S3,R5,55 < Gy, ; b+ {0,1};

¥ B (14, N,G. Gr,e.01,02, 95, (63 R, X355), (01 Bl X' 9)) + b=0' | 3 ‘
is negligible.
Assumption III We say that G3 satisfies Assumption III if for any PPT algo-
rithm B,
Advﬁ:ég(k):‘Pr[I<—93(1k) i N=pipaps ; i+ Gy (1<i<3); o, B+ Zy ;

X0, X1 Gp, s r<Zn; R2,Y2,Z5 ¢ Gp, ; g g1R2; b+ {0,1};

a r r 1
b/(_B <1k7NvGaGT,evg%gSag?vgfa91379,X07X17 (g YivaZQ)) tb= b/] _5 ‘

is negligible.

Assumption IV We say that Gs satisfies Assumption IV if for any PPT algo-
rithm B,

Adviig, (k) = ’ PT[I G3(1%) s N < pipaps ; ho,ha < (Gr)p, ; o, B < Ziy ;

) 1
b {0,1} b’eB(1",N,G7GT,e,ho,hl,hl?,h’f7h;“5) : b:b’} —2‘

is negligible.

It can readily be shown that if G5 satisfies Assumption II then it also satisfies
the DDH assumption over (Gr)p, . Thus, Assumption II is a stronger assumption
than the DDH assumption over (Gr),,. Assumption IV is presented to explain
the position of Assumption III but with a simpler representation. Proposition 3
says that Assumption III is a stronger assumption than Assumption IV its proof
is straightforward and left to the reader.

Proposition 3. If G3 satisfies Assumption II1, then it also satisfies Assumption
1V.

Proposition 4. Suppose that H is an RO. For any probability ensemble X =
{Xk}ren and any SPP adversary A that makes at most qu (k) queries to H
and at most q;(k) trapdoor queries when the security parameter k is given, there
exists a PPT algorithm B such that

AdvT, (k) < Advig, (k) + 2 (B) + (k) - [Xkl (k € N).

Proposition 5. Suppose that H is an RO. For any probability ensemble X =
{Xk}ren and any IND-PKP adversary A against IIs that makes at most q (k)
queries® to H and at most q;(k) trapdoor queries when the security parameter k
18 given, _

AdVIEER (k) < 2(gm (k) + qu(k) - [IXil| - (K € N).

Proposition 6. Suppose that H is an RO. For any IND-PEKS-CKA adversary
A against IT3 that makes at most qg (k) queries to H when the security parameter
k is given, there exists a PPT algorithm B such that

AV (1) < (g (k) + 1) (qu (k) +2) - AdvES (k) (k € N).

The proofs of Propositions 4, 5, and 6 are given in Appendixes D, E, and
F respectively. The open problem is to construct a PEKS scheme that is IND-
PKP+ secure and IND-PEKS-CKA secure, either in the standard model or the
RO model, under reasonable assumptions.

Remark 7. We now consider a PEKS scheme that is identical with I3 except
that the searchable ciphertext of w is given by C,, = (C1 =g¢", Ca = H(w)").
From a similar discussion to that for Proposition 5, it can be shown that this
PEKS scheme is IND-PKP secure; however, it is not IND-PEKS-CKA secure.
This is because for a given target ciphertext C,, = (C1,C2), an adversary can
easily guess the challenge bit b by outputting ¥’ € {0,1} such that e(g,Cs) =
e(C1, H(wp)). This instance demonstrates the separation between the IND-PKP
and IND-PEKS-CKA securities.

5 Postscript

We have introduced new security notions for PEKS systems, namely PKP, IND-
PKP, PKP+, and IND-PKP+, which take account of the privacy of a keyword
from a trapdoor. We have also showed that these notions ensure strictly weaker
security with respect to keyword leakage from only the ciphertext, as compared
to IND-PEKS-CKA security. Accordingly, for achieving higher security in PEKS,
we have presented several instances of a PEKS scheme that is IND-PKP or
IND-PKP+ secure, in addition to being IND-PEKS-CKA secure. From a prac-
tical viewpoint, however, we have no corroboration that either IND-PKP or
IND-PKP+ security is insufficient to ensure the privacy of a keyword from a ci-
phertext. We expect that the underlying notion and PRIV security [3] give equal
security levels, because they are defined for the situation in which the target key-
words are chosen from a well-spread distribution, and the (guessing) adversary
cannot see them. We are sure that it is easier to design efficient IND-PKP (or
IND-PKP+) secure PEKS schemes than it is to design efficient IND-PEKS-CKA

3 In the PEKS scheme I3, H cannot be used as a common parameter for all users
because I13 depends on a composite bilinear map. Hence, an IND-PKP adversary
can make queries to both H and H’. For simplicity, we assume that the total numbers
of queries to both H and H' is written by qu (k).

secure PEKS schemes. Indeed, we can use secure injective-function generators to
achieve IND-PKP security, and it is easy to design practical injective-function
generators that are secure under reasonable assumptions.

References

1.

10.

11.

12.

13.

14.

M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J. Malone-Lee,
G. Neven, P. Paillier, and H. Shi. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. Journal of Cryptology,
21(3):350-391, 2008.

M. Bellare, A. Boldyreva, and S. Micali. Public-key encryption in multi-user set-
ting: Security proofs and improvements. In Advances in Cryptology — Eurocrypt
2000, LNCS 1807, pages 259-274. Springer-Verlag, 2000.

M. Bellare, A. Boldyreva, and A. O’Neil. Deterministic and efficiently searchable
encryption. In Advances in Cryptology — Crypto 2007, LNCS 4622, pages 535-552.
Springer-Verlag, 2007.

C. Blundo, V. Iovino, and G. Persiano. Predicate encryption with partial public
keys. In Cryptology And Network Security (CANS 2010), LNCS 6467, pages 298
313. Springer-Verlag, 2010.

D. Boneh, Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology — Eurocrypt 2004, LNCS 3027,
pages 506—522. Springer-Verlag, 2004.

D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In Ad-
vances in Cryptology — Crypto 2001, LNCS 2139, pages 213-229. Springer-Verlag,
2001.

D. Boneh, A. Sahai, and B. Waters. Functional encryption: Definitions and chal-
lenges. In Theory of Cryptography — TCC 2011, LNCS 6597, pages 253-273.
Springer-Verlag, 2011.

X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (with-
out random oracles). In Advances in Cryptology — Crypto 2006, LNCS 4117, pages
290-307. Springer-Verlag, 2006.

J. Camenisch, M. Kohlweiss, A. Rial, and C. Sheedy. Blind and anonymous
identity-based encryption and authorized private searches on public-key encrypted
data. In Public Key Cryptography 2009, LNCS 5443, pages 196-214. Springer-
Verlag, 2009.

R. Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Advances in Cryptology — Crypto ’97, LNCS 1294, pages 455—469.
Springer-Verlag, 1997.

R. Canetti, D. Micciancio, and O. Reingold. Perfectly one-way probabilistic hash
functions. Proceedings of the 30th ACM STOC ’98, pages 131-140, 1998.

A. De Caro, V. Iovino, and G. Persiano. Hidden vector encryption fully secure
against unrestricted queries. IACR Cryptology ePrint Archive, Report 2011/546.
Available from http://eprint.iacr.org/2011/546.

C. Cocks. An identity based encryption scheme based on quadratic residues. In
Proceedings of the 8th IMA International Confeence on Cryptography and Coding,
pages 2628, 2001.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In Proceedings of the
18th ACM Conference on Computer and Communication Security, pages 79—88,
2006.

15. C. Gentry. Practical identity-based encryption without random oracles. In Ad-
vances in Cryptology — Eurocrypt 2006, LNCS 4004, pages 445-464. Springer-
Verlag, 2006.

16. A. Sahai and B. Waters. Fuzzy identity-based encryption. In Advances in Cryp-
tology — Furocrypt 2005, LNCS 3493, pages 457-473. Springer-Verlag, 2005.

17. A. Shamir. Identity-based cryptosystems and signature schemes. In Advances in
Cryptology — Crypto 84, LNCS 196, pages 47-53. Springer-Verlag, 1984.

18. E. Shen, E. Shi, and B. Waters. Predicate privacy in encryption systems. In Theory
of Cryptography — TCC 2009, LNCS 5444, pages 457-473. Springer-Verlag, 2009.

19. B. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an encrypted and
searchable audit log. In NDSS. The Internet Society, 2004.

A Proof of Theorem 1

Let X = {Xj}ren be a well-spread probability ensemble. We show that if the
PEKS scheme IT is IND-PKP secure with respect to X', then it has PKP with
respect to X. For an IND-PKP adversary A, we define

P (k) =Pr [(PK, SK), (PK',SK") < KG(1¥) ; we Xy, ; T+ Td(SK,w) ;
Cy ¢ PEKS(PK,w) ; T, + Td(SK',w) ; C", + PEKS(PK',w) :
ATd(SK,-),Td(SK"A)(lﬂPK7 T,,Cw, PK',T!C") = 1},

Pa,mx

Ty < Td(SK,w) ; Cy, < PEKS(PK,w) ; T, < Td(SK',w') ;
C!, «PEKS(PK' ,w') : ATUSKND).TSK) 1k pK T, C,, PK',T.,, C.,) = 1]

@ (k) =Pr {(PK, SK),(PK',SK") + KG(1¥) ; w,w’ « Xy ;

Then we have
2+ AR (k) = | () = PP (). (2)

We now suppose that IT does not have PKP with respect to X = {Xj }ren-
Then from Definition 3, there exists a predicate family P = { Py }ren and a PPT
algorithm B such that for any PPT algorithm C,

p(k) = Pr [Expps (k) = 1] — Pr [Bxpl e () = 1] (3)

is non-negligible. We now consider a PPT algorithm C (in the ideal system) that
works as follows:

1. Select a random sample w’ < X, and make a trapdoor query w’ to ob-
tain the trapdoor T, . Generate a searchable ciphertext of w’ by Cy <+
PEKS(PK,w").

2. Run B on input (1*, PK, T\, C,), and output the corresponding response
of B. If B makes trapdoor queries then respond to them by using C’s trapdoor
oracle.

This completes the description of C. Moreover, for each w € [Xy], we define
Cws(k) = Pr [(PK, SK) « KG(1¥) ; T, « Td(SK,w) ;
Cy + PEKS(PK,w) : BTSK) (1% PR T, C,) = 1]

Let S}, denote a set {w € [X] | Py(w) =i}, for each 7 € {0,1}. Then, since X,
is independent from the key generation, we have

Pr {EXP%?};?YI,P(]“) = 1} = Z Pr[X; = w] - Cu;s(k)

wES}pk
+ > Pr(Xg = w] - (1 - Cus(k)), (4)
wGS?DIc
Pr {EX B (k) = 1] = Y PrXp=w- Y PrXp=uw]-Cwsk)
WGS}Dk w’ €[X]
+ > PrX=uw]- Y PriXp=w]- (1= Cun(k)).
'wES?Dk w’ €[X]

()

Let Zj be a random variable over [0,1] = {a € R | 0 < a < 1} such that
Pr[Zy, = (u;8(k)] = Pr[X), = w]. Then, from (3), (4), and (5), we have

p(k) = Z Pr[Xy = w] - (Cw;B(k) - Z Pr[X; =w']- Cw';B(k)>

'wES}Dk w’ €[Xy]

-y Pr[ka]~<CwB > Pr[Xy =] G sk))

wesy, w €[Xu]

> PrXp=w]- |Cus(k) = D PrXy = w']- G s(k)

we[Xy] w’ €[Xp]
= B(Zy — E(Zy)|) < \/E(Z}) — E(Zp)2. (6)

Let A* be an IND-PKP adversary such that for a given input (1%, PK,T,,
Cw,PK',T,C), where (T,C) is (T},,C,,) or (T),,C!,), it runs B twice and

w

outputs 1 only when B(1*, PK, Ty, C,,) = B(1*, PK',T,C) = 1. Then we have

B(23) = o na®B) and B(Zi) = pQ) g () (")
From (2), (6), and (7), we finally have

1 ind-
p()? < {5 11 (8) = P 1 2 ()| = SADVEE RS ().

This contradicts the assumption that IT is IND-PKP secure.

B Proof of Theorem 2

We think that this theorem is almost trivial. Therefore, we describe its proof
only briefly. We first show (a). Suppose that there exists an IND-PKP adversary
A. We then construct a PPT algorithm B for breaking the security of (Z, ®).
B takes (Mg, 7,7, A = 7w(xg), B = 7'(xp)) as input, and its goal is to guess
be{0,1}.

1. Run KG to obtain (PK, SK), (PK',SK') + KG(1¥), and set (PK*, SK*) =
((PK, Mg, 7), (SK, Mg, 7)) and (PK"™, SK')=((PK', \p,,), (SK', A\, 7).

2. Set T = Td(SK,A), T" = Td(SK,B), C = PEKS(PK,A), and C' =
PEKS(PK’, B), and run A on input (1*, PK* T, C, PK'*,T",C").

3. If A makes a trapdoor query z to Td*(SAK, -), where SK e {SK*,SK'"},
then return the result of running Td*(SK, z).

4. If A finally outputs b’ € {0,1}, then output it as its guess for b.

This completes the description of B. From the specification of B, it is clear
that B completely simulates the IND-PKP experiment of I7*. Therefore, we have
AdVZi’fI,es,X(k) = Advj,dﬁ%lfgc(k)-

Next, we show (b). Suppose that there exists an IND-PEKS-CKA adversary
A against IT*. We then construct an IND-PEKS-CKA adversary B against II.
B takes (1%, PK) as input, and works as follows.

1. Run Z and & to obtain Ay < Z(1¥) and © « &()\;), and run A on input
(1*, PK* = (PK, M\,).

2. If A makes a trapdoor query z, then make a query 7w(z) to B’s trapdoor
oracle and respond with the corresponding response to .A.

3. If A makes a challenge query (xo, 1), then make a query (7(zo),m(x1)) to
B’s challenge oracle and respond with the corrsponding response to A. Note
that 7(zg) # m(x1) because xg # x1 and 7 is injective.

4. Tf A finally outputs b € {0, 1}, then output it and halt.

This completes the description of B. From the specification of B, it is clear
that B completely simulates the IND-PEKS-CKA experiment of I7*. Therefore,
we have Advy; P9 (k) = Advi{ P (k).

C Proof of Proposition 2

For a PPT algorithm B, we now consider the following experiment.

Experiment Expg (k)
(p,G,Gr,e) « G(1%); g+ G*; a,d’ < Z, ; vo, v} + G
If @ = o’ then v, = vy else v + G
b+ {07 1} 5 bl — B(lkap7GaGTaeagaga7ga/7Ugavga)
If b = b’ then return 1 else return 0.

Then it is trivial that for any PPT algorithm B,

1

Advs.g (k) = |Pr[Expy (k) = 1] — = L

1
- < . 8
By using this result, we show that IT5 is IND-PKP secure. Let X = {Xj }ren
be a well-spread probability ensemble. We suppose that there exists an IND-PKP
adversary A against ITo with respect to X'. Then we build a PPT algorithm B
in the experiment Expg g(k), which is based on A. B takes (1%, p,G,Gr,e, g, h=

gt W =gvY = vy, Z = vga/) as input, and works as follows. The goal of B is
to guess the challenge bit b.

1. Select random samples xg, x1 < X.

2. Public key simulation. Set PK = (p,G,Gr,e,g,h) and PK' = (p,G, G,
e, g,h’). Note that SK = (PK,a) and SK’ = (PK',a’) in this case.

3. Trapdoor simulation. Set 7, = Y and 7, = Z. Note that here B im-
plicitly sets Hy(PK||xo) = vo and H;(PK'||xp) = v,. See Step 6 concerning
the simulation of Hj.

4. Ciphertext simulation. Pick r,7 € Z, at random, and set C = (g",
Hy(e(Y,g"))) and C" = (¢"', Ha(e(Z,¢"))). See Step 6 for how to compute
Hj(-). Note that since

e(Y,g")=e(vy, g") =e(H1(PK]||zo),h") and
e(Z.g") =e(w}" . g") =e(H\ (PK|[y), "),

C and C’ are valid random ciphertexts of xg and x, under PK and PK’,
respectively.

5. Run A on input (1%, PK,T,,,C, PK',T,,,C").

6. Random oracle queries. To respond to the RO queries from A, B main-
tains lists Ly, and Lp,, which are initially empty. Suppose that A makes
an Hi-query y = PK||z, where PK € {PK, PK'}.

(a) If © € {xp,21}, then output a failure message and halt; otherwise, do
the following.

(b) If (y, 7y, H1(y)) € Lp, for some (r,, H1(y)) € Z, X G, then respond with
H,(y) to A. Otherwise, pick a random r, € Z,, add (y,ry, H1(y) = g™)
to Ly, , and respond with H;(y) to A.

Suppose that A makes an Ho-query z € Gr. If (2, Ha(2)) € Ly, for some

Hj(z), then respond with Hs(z) to A. Otherwise, pick a random Hz(z) from

the range of Hy, add (z, Ha(2)) to Ly,, and respond with Hs(z) to A.

7. Trapdoor queries. Suppose that A makes a query « to Td(S:K, -), where
SKe{SK,SK'}.

(a) If € {xo,z1}, then output a failure message and halt; otherwise, do
the following.

(b) Seck a tuple (y = PK]||x,y, Hi(y)) € Lu,; if no such tuple exists, do the
same procedure as in Step 6(b) to obtain it. Respond to A with T,, = h"v

if SK = SK; otherwise (i.e., if SK = SK'), respond with T/ = h'™ to
A. Note that since

T, = b = g* = H\(PK|la)* and T, = 1" = "™ = H\(PK'|la)"",

T, and T, are valid random trapdoors for the keyword x under SK and
SK', respectively.
8. Guess. If A finally outputs ¥’ € {0, 1}, then output b’ as its guess for b.

This completes the description of B. For the running time of B, we have

Tp(k) = Ta(k) + O(k°) for some constant ¢ > 0. For simplicity, let Exp, =

ExpiAnfiI}TE((k). To analyze the advantage of 15, we define the following events in

Expy.

— Ep, is an event in which A makes an H)-query PK||z such that PK €
{PK,PK'} and = € {zg, 21}

— E; is an event in which A makes a trapdoor query z such that z € {zg,x1}.

— E=Ey, VE.

Let Exp; be an experiment that is identical with Exp, except that if E occurs,
it outputs a failure message. From the specification of B, it completely simulates
Exp,. Hence, we have

Advg g(k) = |Pr[Exp; = 1] — % . 9)

Without loss of generality, we can assume that Pr[Exp, = 1] — % > 0. From
the definition of Expy, Pr[Exp, = 1| =E] = Pr[Exp; = 1 | —E] and Pr[Exp; =1 |
E] = 0. Therefore, we have

1 1
Pr[Exp, = 1] — 3= Pr[Expy =1 | —E] - Pr[=E] 4+ Pr[Expy =1 | E] - Pr[E] — 3

< PrlExp, = 1| —E] - Pr[~E] - % + Pr[E] = Pr[Exp, — 1] — % + Pr[E).
(10)

Next, we examine Pr[E]. Since H; is an RO, there is no efficient way to guess
xg or x1 beyond random sampling from Xj. Hence, we have

Pr(Ep,] < 1— (12| Xxl)% ™ < 25, (k) - [|Xkl] and
Pr(E; | ~Ep,] < 1= (1= 2[|X5|)*™) < 24,(k) - |1 Xal|

It follows that

Pr[E] = Pr[E; | Ex,] - Pr[Ep,] + Pr[E; | “Ep,] - Pr[—-Eq,]
< PrlEn, | + PrE | =Em,] < 2(qm, (F) + ¢:(K)) - [[X]]- (11)

From (8), (9), (10) and (11), we can obtain the claimed result.

D Proof of Proposition 4

For given probability ensemble X = {Xj}ren and SPP adversary A against
I3, we construct an algorithm B that has the underlying feature. B takes
(1*,N,G,Gr, e, 91,92, 93 T = (¢ Rs, X S3), T' = (g RY, X; S4)) as input, and
its goal is to guess b € {0,1}.

1. Pick random samples zg, z; < X}, and a random Ry € G,,, and set PK =
(1*,N,G,Gr,e,92,93,9 = g1 R2).

2. Run A on input (1%, PK, T, T'). Note that here B implicitly set H(x) = Xo
and H(z1) = X (although B cannot know those). Obviously, T' and 7" have
the same distributions as the (valid) trapdoors of xg and x; respectively.

3. RO queries. To respond to A’s queries to H, B maintains a list Ly which
is initially empty. Suppose that A makes an H-query x.

(a) If © € {xp,21}, then output a failure message and halt; otherwise, do
the following steps.

(b) If (z,H(x)) € Ly for some H(zx), then respond with H(x) to A. Oth-
erwise, pick a random r € Z,, add (z, H(z) = ¢7) to Ly, and respond
with H(z) to A.

4. Trapdoor queries. Suppose that A makes a trapdoor query x.

(a) If € {xo,z1}, then output a failure message and halt; otherwise, do
the following steps.

(b) Seek a tuple (z, H(z)) € Ly; if no such tuple exists, do the same pro-
cedure as in Step 3(b) to obtain it. Pick s € Z,, and R3,S3 € Gy, at
random, and return T, = (g5 R3, H1(z)*S3) to A.

5. Guess. If A finally outputs b’ € {0, 1}, output it as its guess for b.

This completes the description of B. For the running time of B, we have
Tp(k) = Ta(k) + O(k°) for some constant ¢ > 0. For simplicity, let Exp, =
Expj’%& (k). To analyze the advantage of B, we define the following events in

Expg.

— Ep is an event in which .4 makes an H-query = € {zg,x1}.
— E; is an event in which 4 makes a trapdoor query x € {xo,z1}.
— E=Eyg VE.

Let Exp; be an experiment that is identical with Exp, except that if E occurs,
it outputs a failure message. From the specification of B, it completely simulates
Exp,. Hence, we have

1
Adv s, (k) = [Pr[Exp; = 1] — 3| (12)

Without loss of generality, we can assume Pr[Exp, = 1] — 1/2 > 0. From the

definition of Exp,, Pr[Exp, = 1 | —=E] = Pr[Exp; = 1 | —E] and Pr[Exp; = 1 |
E] = 0. Therefore, we have

1 1
Pr[Exp, = 1] — 3= Pr[Expy, = 1| —E] - Pr[—E] + Pr[Exp, = 1 | E] - Pr[E] — 3

1 1
< Pr[Exp; = 1| —E] - Pr[-E] — B + Pr[E] < Pr[Exp; = 1] — 3 + Pr[E].
(13)

On the other hand, from a discussion similar to that for deriving (11), we

have

E

Pr(E] < 2(qu (k) + a:(k)) - [[Xkl (14)

From (12), (13), and (14), we can obtain the claimed result.

Proof of Proposition 5

For a PPT algorithm B, we now consider the following experiment.

Experiment Expg g (k)
(P1, 0%, P, G, G, @) = G3(1%) 5 Xo, X1 Gy,
b {0,1}; V'« B(1%, py, ph, p5, G, G, €, Xp)
If b =’ then return 1 else return 0.

It is then obvious that Pr[Expg g, (k) = 1] = 1/2 for any B. For given IND-

PKP adversary A against IT3, we construct an algorithm 5 in the above exper-
iment in order to evaluate the advantage of A. B takes (1%, p}, ph, ps, G', G/, €/,
X3) as input, and its goal is to guess b € {0, 1}.

1.
2.

3.

e

Pick random samples (p1, p2, p3, G, Gr,e) < G3(1%) and zg, 21 + X.

Pick a random Ay € G,,, and add (zg, Ag) to the list Ly, which is initially

empty. Thus, we set H(z¢) = Ag in the simulation of H (cf. Step 7).

Pick g; € G}, g; € G’;g (1 <i<3), R2 € Gy,, and Ry € Gy, at

random, and set PK = (N,G,GT,e,gg,gg,g = gle), SK = (PK,gl),

PK' = (N',G',G},€, 45,959 = g1RS), and SK' = (PK',g}), where

N = pipaps and N” = pip5ps.

Pick s € Zy,, s' € Zy,, R3, R3 € Gp,, and R3, S5 € G;){ at random, and set
3

Ty, = (9iR3, A§S3) and T}, = <giS/R§7XIf/Sé>. Note that here B implicitly

set H'(z9) = Xo and H'(x1) = X7 in the simulation of H' (cf. Step 7).

Pick r € Zn, v € Zn1, Y2, Z2 € Gy,, and Y3, Z € G, at random, and set

Cuy = (972, AjZo) and Cf, = (g Y{, X[Z).

Run A on input (1%, PK, PK’, (Ty,,Cy,), (1,,,C))-

RO queries. To respond to A’s RO queries, 5 maintains lists Ly and

Ly, which are initially empty. Suppose that A makes an H-query x. If

(z, H(x)) € Ly for some H(z), return H(z) to A. Otherwise, pick a random

H(z) € Gp,, add (z,H(z)) to Ly, and return H(z) to A. Next, suppose

that A makes an H'-query x.

(a) If € {xo,z1}, then output a failure message and halt; otherwise, do
the following step.

(b) If (z,H'(x)) € Ly for some H'(z), return H'(z) to A. Otherwise, pick
a random H'(z) € (G’p,l, add (x, H'(x)) to Ly, and return H'(z) to A.

8. Trapdoor queries. If A makes a query z to the trapdoor oracle corre-
sponding to SK, return the result of running TdH(SK, x). Here, the queries
to H are responded by the procedure in Step 7. Next, suppose that .4 makes
query x to the trapdoor oracle corresponding to SK’. If = € {zg,x1}, then
output a failure message and halt; otherwise, return the result of running
Td"' (SK', z).

9. Guess. If A finally outputs b’ € {0,1}, then output it as its guess for b.

This completes the description of B. For simplicity, let Exp, = Expijfll}zlfg(k)

To analyze the advantage of B, we define the following events in Exp,.

— Ep is an event in which A makes an H'-query « such that « € {zg, z1}.

— E; is an event in which A makes a query x € {xg,x1} to the trapdoor oracle
Td"' (SK',").

— E=Ey VE;.

Let Exp; be an experiment that is identical with Exp, except that if E occurs,
it outputs a failure message. Then, from a discussion similar to that in the proof
of Proposition 4 (see Appendix D), we can obtain the claimed result.

F Proof of Proposition 6

For given IND-PEKS-CKA adversary A against I3, we construct an algorithm
B that has the underlying feature. B takes (1*, N, G, Gr,e, 92,93, A = g5, B =
g’f,C = g?ﬂ,g = g1Rs, X0, X1,D = (¢"Y2, X[Z5)) as input, and its goal is to
guess a challenge bit b € {0,1}.

1. Select 4,5 € {1,2,...,qm(k)+2} (i # j) randomly and uniformly. Set PK =
(I,92,93,9) and Tun A on input (1%, PK). Note that if {i,j} = {qu (k) +
1,qu (k) 4+ 2} then this implies the case in which A makes neither H-query
xo nor x; for the challenge query (xo,x1,0) (see Step 2).

2. RO queries. Suppose that A makes an H-query x.

(a) If this is the i-th H-query, then set H(z) = Xo, add (z, *, H(x)) to the
list Ly, which is initially empty, and return H(z) to A.

(b) If this is the j-th H-query, then set H(z) = X3, add (x, *, H(z)) to the
list Ly, and return H(x) to A.

(¢) Otherwise, pick a random r € Zy, add (x,r, H(x) = A") to the list Ly,
and return H(z) to A.

3. Trapdoor queries. Suppose that A makes a trapdoor query .

(a) Seek a tuple (x,r, H(x)) € Ly. If there is no such tuple in Ly, then do
the same procedure as in Step 2(c) to obtain it.

(b) Pick s € Zy and R3,S3 € Gp,, and return T, = (B*R3,C"*S3) to A.
Note that since B°Rs = gfﬁRg and C"585 = gISO‘BSg = H(x)%%Ss, T,
has the same distribution as the valid trapdoor of z.

4. Challenge. If A makes a challenge query (g, z1,0), respond with D to A
as an answer to the query.

5. Guess. Suppose that A finally outputs & € {0,1}. If there is no i € {0,1}
such that (z;,r, H(x;)) € Ly for some r # * then output b’ as its guess for
b and halt. Otherwise, output a random & € {0, 1} and halt.

This completes the description of B. For the running time, we have T (k) =
T (k) + O(k°) for some constant ¢ > 0. To analyze the advantage of B, we define
the following events in the above experiment.

— SuccB is an event in which B succeeds in guessing b.
— E is an event in which there is an ¢ € {0, 1} such that (x;,r, H(z;)) € Ly for
some r # * at Guess stage.

For simplicity, let Exp = Expiji}i °k% (k). From the specification of B, it com-

pletely simulates Exp provided that E does not occur. Hence, we have Pr[SucchB |
—E] = Pr[Exp = 1]. On the other hand, Pr[SuccB | E] = 1/2. Therefore, we have

1
Advi g, (k) = |Pr[SuccB] — 2‘
1
= |Pr[SuccB | —E] - Pr[-E] + Pr[SuccB | E] - Pr[E] — 3
1 ind:
= Pr[~E] - |Pr[Exp = 1] — 2‘ = Pr[-E] - Adv{ P (k). (15)
Since i, j are selected from {1,2, ..., gy (k)} randomly and uniformly, we have
1
Pr[-E] = (16)

(qu (k) +1)(qu (k) +2)°

From (15) and (16), we can obtain the claimed result.

