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Abstract

We investigate a method for finding small integer solutions of a univariate modular equation,
that was introduced by Coppersmith [9] and extended by May [26]. We will refer this method
as the Coppersmith technique.

This paper provides a way to analyze a general limitations of the lattice construction for the
Coppersmith technique. Our analysis upper bounds the possible range of U that is asymptoti-
cally equal to the bound given by the original result of Coppersmith and May. This means that
they have already given the best lattice construction. In addition, we investigate the optimality
for the bivariate equation to solve the small inverse problem, which was inspired by Kunihiro’s
[22] argument. In particular, we show the optimality for the Boneh-Durfee’s equation [4] used
for RSA cryptoanalysis,

To show our results, we establish framework for the technique by following the relation of
Howgrave-Graham [18], and then concretely define the conditions in which the technique succeed
and fails. We then provide a way to analyze the range of U that satisfies these conditions.
Technically, we show that the original result of Coppersmith achieves the optimal bound for U
when constructing a lattice in the standard way. We then provide evidence which indicates that
constructing a non-standard lattice is generally difficult.

Coppersmith technique, Lattice construction, Impossibility result, RSA cryptanal-
yses

1 Introduction

Let N and F(z) be an integer whose factoring is not known, and a univariate polynomial of degree
D. Consider the problem to find solutions to the modular equation

F(z) =2 +ap_12P 1 + .- 4 a9 = 0 (mod N) (1)

within a range of |x| < U. Based on preliminary work [37, 17], Coppersmith [9] introduced a general
polynomial-time algorithm, which we refer to as the Coppersmith technique, to solve this problem
with the range parameter U = N'/P~¢_ (Here, for any A, 0 < A < N, the notation |z| < A under
modulo N means that x is an integer satisfying 0 <z < Aor N — A < x < N.) Following his work
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and the reformulation by Howgrave-Graham [18], this technique has gained attention in relation to
the analysis of several cryptographies; (e.g., [4, 5, 7, 34]). The technique has also been generalized
for multivariate cases in a natural way.

One natural extension of the technique is given by May [26] within the context of RSA crypt-
analyses. With a large composite number N for which we only know the magnitude of a prime
factor defined by P ~ NP?, he introduced the generalized problem to find a small solution to the
following equation:

F(z) =2 +ap_12P 14+ 4 agp =0 (mod P). (2)

May also propose a polynomial-time algorithm for the range parameter U = N B?/D=¢_ For the rest
of this paper, we will use the words “Coppersmith technique” to refer the the general algorithm
used to solve both problems.

The outline of the Coppersmith technique is (i) converting a given modular equation to a certain
algebraic equation keeping the same small solutions by using a lattice reduction algorithm and (ii)
finding an integer solutions of the algebraic equation by a numerical method. Because the latter
problem is solved in polynomial time in n and the bit-size of coefficients !, we consider the former
problem.

One key point of this technique is to choose a good lattice for the lattice reduction algorithm,
in other words, construct a lattice having short vectors. For this purpose, a lattice basis with
small determinant is usually used. For instance, considering a bivariate modular equation for RSA
cryptanalysis the original result of [5] has essentially been improved by defining better lattices
[14, 1]. There should clearly be some limit to these improvements. Here, we mainly focus on
the univariate case and investigate the optimality of the lattice construction for the Coppersmith
technique.

Remarks on the problem setting:

We consider the problem for finding all the solutions for (1) within the range of |x| < U for a given
parameter U. We call (1) the target equation and the range |z| < U the target range. Throughout
this paper, the usage of symbols F, D, N, and U is fixed. We use the standard unit cost time
complexity, and we evaluate complexity measures in terms of log IV, because we can assume that
D < poly(log N) and U < N. Thus, by “polynomial-time” we mean a time polynomial in log N
unless otherwise stated.

We assume that N is a large composite number whose non-trivial factor cannot be found during
the computation that we investigate. This is because the factor of N would provide the complete
solution to the original problem in almost all applications of the Coppersmith technique. Thus, we
can assume that all numbers that appear during the computation are coprime to N. This is used
in the argument of Section 5. Because of this, we can assume that the coefficient ap of 2 of F(x)
is one as stated in (1) since otherwise we can “divide” it by multiplying a ;' modulo N because ap
must be coprime to N.

!The real root isolation can be performed in polynomial time [11]. Then, rounding the approximate solutions
found by using Newton’s method can recover the integer solutions.



1.1 Owur Results

Defining the framework and conditions for success and failure:

We investigate the conditions in which the Coppersmith technique works and fails. Roughly speak-
ing, the conditions are defined as the input parameters D and IV, the determinant of the constructed
lattice basis, and the univariate polynomial converted from the output of an algorithm to find a
short vector.

The former condition says that if the range parameter U is small enough, the determinant is
small, and it derives that a “norm” of polynomial is also small. Then we can solve the problem by
using numerical methods. This argument has been used within the context to show the possibility
of the technique.

On the other hand, to discuss the impossibility of technique, we give the formal definition of
the conditions in which it fails. In this situation, for a large U, any polynomials generated by
“standard” integer lattices must have large norms, and it fails to solve the problem. An overview
of these conditions is shown in Figure 2 in Section 3.2.

Defining the notion of (non-)standard polynomials:
Fixing the input parameters (F(x), N, U), the univariate polynomials for constructing lattice bases
share the same roots under certain moduli. Some of these polynomials are easily generated from
the inputs, while others are not easy to find. To explicitly separate these polynomials, this paper
establishes the notion of (non-)standard polynomials. The standard polynomials are a natural
generalization of the way for selecting polynomials that are normally called “shift polynomials”
[20].
Limitation of the technique in univariate cases:
We showed that Coppersmith’s bound U = NYP~¢ for equation (1), and May’s bound U =
NB*/D=< for equation (2) are optimal (except for the choice of ¢) if we use only standard polynomials.
We also show that a non-standard construction does indeed lead to either (i) a reduction of the
original equation (1) to a strictly simpler one, or (ii) derives a non-trivial factor of the modulus N,
that are assumed to be difficult to compute. Moreover, neither reduction requires the Coppersmith
technique. That is, we show that such this type of non-standard construction provides for a better
way to solve the original problem than the Coppersmith technique.
Thus, from these results, we can claim that the standard Coppersmith technique cannot extend
the bounds by changing a lattice construction.
Limitations of the technique in solving the small inverse problem:
Based on the previous argument, we provide the limitations on the technique in solve the small
inverse problem. In particular, the famous Boneh-Durfee bound [4], which claims that we can
easily solve the RSA cryptosystem when the private exponent is smaller than N 1-1/V2 & N 0.292.
is optimal.
Improvements to the conference version:
This paper has been modified from the ACISP conference version [3], as follows:

e Changed the formulation of the Coppersmith technique from lattices over integers [18] to
lattices over polynomials [2, 12] to enhance readability.

e Organized relationships between the conditions for when the technique succeeds and fails,
and the norm of polynomials and vectors.



e Added a new technical section (Section 6) to discuss the small inverse problems.

e Omitted the part of the extended framework which uses the integer-valued polynomials be-
cause it is not essential, makes argument complicated, and affects only in a constant factors.

1.2 Related Work and Discussion

A short overview of the univariate Coppersmith technique:

We first briefly survey applications of the univariate case of the Coppersmith technique in cryptog-
raphy. Before Coppersmith’s work, there were similar ideas for attacking cryptographic schemes.
Vallée-Girault-Toffin [37] proposed a lattice based attack for the Okamoto-Shiraishi signature
scheme [29] that uses a quadratic inequality. Hastad [17] also proposed a procedure for solving
simultaneous modular equations by converting them to a single modular equation. Unfortunately,
its solvable range is slightly weaker because lattice construction is extremely simple.

Building on this previous work, Coppersmith [9] proposed his method for solving general uni-
variate equations and its application for recovering an RSA message with the (1 — 1/e)-fraction of
MSBs. After his work, Howgrave-Graham [18] reformulated the technique, and many applications
have been proposed in the field of cryptography. Shoup [34], for instance, presented interesting
application for proving the security of the RSA-OAEP encryption scheme with e = 3. Another
application is discovered by Boneh [7], which proposes a modification of the Coppersmith technique
to find small integers = such that ged(x, N) is large, where N is a given integer. He also provide
an application of his technique to CRT list decoding.

Our results show the limitations of these approaches. For example, the RSA message cannot
be recovered from MSBs that have a length of less than (1 — 1/e)logy N by a single usage of the
Coppersmith technique.

Previous results to show the limitations of the Coppersmith technique:
Some investigations have shown the limit of polynomial-time algorithms. Konyagin and Steger [23]
present an upper bound of the number of roots of (1) within the range of |x| < U, which becomes
exponential in log N when U = NP+ Tt is also shown [28] that the bound can be attained
by an equation of the form 2" = 0 (mod p") for a prime number p and integer r. This clearly
provides the limit of an algorithm that runs in polynomial-time in log N. In short, there are some
equations for which there are no polynomial-time algorithm can be used to find all solutions within
the range of |z| < N 1/D+e However, their example is somewhat extreme and the modulus is easily
factored unlike our problem setting. Hence, it is insufficient to show the hardness of solving the
particular equations defined for attacking cryptographies. In fact, for most of these equations, the
number of solutions can be easily shown to be quite small. Our objective is to provide a technique
for analyzing the limitations of the Coppersmith technique that is applicable for equations for
attacking cryptographies.

In addition to univariate cases, a few papers [19, 22| discuss multivariate cases. They have tried
to prove the optimality of the technique for small inverse problem. However, the drawback of these
arguments is that they do not define the framework concretely.

Our framework comared to previous work for selecting polynomials:

Polynomial selection is essential for constructing the lattices used in the Coppersmith technique.
The family of polynomials employed in our framework explicitly larger than that used in previous
work.



Here we provide a rough sketch of this family. Our polynomials, which we named “canonical

m

polynomials,” have the form Zqi(x)N M= f(x))" in which ¢;(x) is an integer coefficient polyno-
i=0

mial. In contrast, the polynomials used in certain instances of previous work, which are normally

referred to as “shift polynomials,” have the form 2/ - N™~%(f(z))*. Thus, our polynomial selection
allows for combinations of shift-polynomials. Note that the notion of the canonical polynomial can
be used for multivariate cases, and to generalize our impossibility results is an interesting future
work.

Non-single usage of Coppersmith technique:

While we investigate the limit of the direct usage of the Coppersmith technique, it should be
noted here that several extensions of the technique have been proposed for extending the range
|z| < N1/4=¢. Examples of this can be seen in the survey papers by Coppersmith [10] and by May
[28, Chapter 10]. Unfortunately, though, the improvements to these extensions are relatively mild.

One natural way is to solve multiple equations, which means solving the equations f(z +
i|N'/4=¢|) = 0 (mod N) for i = 0, %1,. .., by applying the Coppersmith technique to each equation.
This provides an algorithm that achieves the range z < N1/d+0(oglogN) jn polynomial-time in
log N. Unfortunately, this method is not very efficient in practice, but it may be still useful in
a parallel computing environment. Another example is to use small solutions obtained by the
Coppersmith technique to create a more powerful equation. Coppersmith [10] showed that by
using two small solutions within the range of |z| < N'¢ one can construct new simultaneous
modular equations whose solution derives new solutions within |z| < N'/(@=1) if these solutions
exist.

1.3 Structure of this Paper

The rest of this paper is as follows. Section 2 provides some necessary technical background. Section
3 precisely defines the Coppersmith technique, our framework, and the conditions for the success
and failure of the technique. Section 4 defines the standard polynomials and derives the condition
for the solution range that satisfies the failure condition under standard lattice construction. Section
5 discusses what we are able to compute from a non-standard construction. Section 6 proves the
optimality of previous results for the small inverse problem and RSA cryptanalysis in a short secret
exponent.

2 Preliminaries

Here we introduce the definitions and technical lemmas. For any positive integer n, we let [n] denote
the set {1,...,n}. A vector consisting of s > 2 coordinates ay,...,as is denoted as [ay, ..., as]. On
the other hand, for polynomials fi(x),..., fs(x), we use (fi,..., fs) to denote their sequence.

Let Z[x] denote the ring of integer coefficient univariate polynomials. The ring Z/NZ is denoted
by Zn, and Zy[z] denotes the ring of polynomials whose coefficients are in Zy. Use Zy to denote
the set of units; i.e., elements that have inverses, in Zy. Based on this, we denote the set of units
in Zy[z] by Zy[x]*. We also use My[x] to denote the set of monic polynomials in Zy[z]; that is,
the polynomials whose leading coefficient is one.



By =n we denote the equivalence between two polynomials under modulo V; that is, for two
polynomials f(x) = Z?ZO aiz’ and g(z) = Y7 bix', we write f(z) =y g(z) if a; = b; (mod N) for
any 7, 0 < ¢ < max(d, e). Here we understand that a; = 0 (resp. b; = 0) for ¢ > d (resp. i > e.)

For any polynomial f(z), we use deg(f) and lc(f) to denote the degree and the leading coeffi-
cient, respectively. For any positive integer ¢ and any polynomial f(x), we define ord.(f) by the
largest integer r such that f(z) =, 0 holds.

2.1 Lattices over Euclidean Spaces and Polynomials

For a vector space V' and its elements z1,. ...z, define the lattice spanned by them be
L(zl,...,,zk) = {a121 + -t agzk i a,...,a € Z}
We call k the dimension and {z1,...,, z;} the basis. We sometimes omit the basis if it is clear from

the context. This paper considers lattices over polynomials and Euclidean lattices. The former
is used to analyse lattice construction, and the latter is used to analyse Euclidean length of short
vectors.

Euclidean lattices. Fix any w > k. Consider the situation where V' = R". The basis consists of

k

Euclidean vectors (by, ..., bg). The determinant, or the lattice volume, defined by det(L) = H b,
i=1

where {b7,...,b}} is the Gram-Schmidt basis. Here, the notation | - | denotes the standard Eu-

clidean norm.

We need to compute a non-zero short vector in a lattice in a reasonable time which can be done
by an approximate shortest vector algorithm. For details, see [28]. For a given lattice L, a lattice
reduction algorithm [24, 35] can find a vector v; such that

|vi| < A(k) det(L)Y*, (3)

where A(k) < 2(-~D/4 On the other hand, it has been observed [15] that for many polynomial-
time lattice reduction algorithm with fixed parameters, we have § > 1 such that |v;| ~ 6* det(L)'/*

holds. (Here “polynomial-time” means polynomial-time w.r.t. k and log B dof log max; |b;|.)

If we use a stronger algorithm, which requires an over-polynomial time, the bound A(k) grows
smaller. Here, we remark that even if we use the shortest vector oracle, there perhaps exists a lower
bound of A(k). For the k-dimensional random lattices of volume Vi (1), Rogers [30] proved that the
distribution of A;(L)* goes to the exponential distribution of average 2 when n is sufficiently large,
where \j(L) is the shortest vector length of L. Thus, there exists a constant ¢ < 1, the shortest
vector of L is longer than c - Vi,(1)~1/* det(L)'/* for most of instances. In the rest of this paper,
we assume that the univariate Coppersmith type lattices, which we will define in Section 4.2, can
be regarded as the set of random lattices. A detailed explanation of this assumption is given in
Assumption 1.

Polynomial lattice: For the Euclidean lattice, we use the polynomial lattice L(gi,...,gx) for
gi € Z[z]. We sometimes use L(G) to denote the polynomial lattice by denoting G = (g1, ..., 9n)
the basis. Let w be the maximum degree of the polynomials. Then, the mapping V parametrized
by the constant U is defined by

V: Zz] — R (f = Zaiazi = V(f,U) := (ap,a1U,...,a,U?)),
=0

6



which we refer to as the vectorization. With this, we define the parametrized norm by ||f||v =
[V(f,U)|. The parametrized determinant det L(G) of the basis G = (g1, ..., gx) is also defined by
the determinant of the Euclidean lattice spanned by V(g;, U) for i € [k].

On the other hand, as its inverse transformation, we define the functionalization of v for a given
vector v, as a unique polynomial f(z) such that v = V(f,U) holds, and denote it by F(v,U). Note
that this is undefined if f(z) does not exist. V(f,U) and F(v,U) are clearly linear mapping w.r.t.
polynomials and vectors, respectively.

2.2 Properties of Polynomial Norm

The following lemma is used to connect the output of the lattice reduction algorithm to the solvable
range of the target equation.

Lemma 1. (Howgrave-Graham [18/)  Consider a polynomial f(x) € Z[z] consisting of w
monomials. Let W be a non-negative integer satisfying

Ifllu < W/Vw. (4)

Then we have

Yo, [v] <U [ f(v) =0 (mod W) < f(v)=0]. (5)

Note that (4) implies |f(z)| < W for € [-U, U] in the proof. We state the contrapositive to
argue the condition of the failure for the Coppersmith technique.

Corollary 1. The notations are the same as Lemma 1. Suppose there exists a real number x €
[—U,U] so that |f(x)| > W. Then it must be ||f||lv > W/ w.

We also show the converse type claim of Lemma 1 to discuss a condition which implies that
the Coppersmith technique fails to work. We start at the standard consequence of Chevychev’s
theorem.

Lemma 2. For any polynomial h(z) having leading coefficient | and degree d,

1 <291 max |h(z)|.
z€[—1,1]

Let T,,(z) := cos(ncos™! x) be the Chebyshev polynomial of degree n. It holds that lc(7},) =
2"~ and
T, =1.
e T ()]

Lemma 3. For any polynomial h(x) = hgx® + --- 4 hg of degree d, an integer W and a range
parameter U, suppose that max,e(_y ) |h(x)| < 1 holds. Then, we have ||h||y < dv/d+1- 391,

Proof. We first consider the simple case U = 1. By Lemma 2, max,c_y 1) |h(7)| < 1 implies
|hg| < 2971, Let us fix this polynomial as Hy(x) := h(x) and define Hy_(z) := Hg(z)—hg2' ~9Ty(x)
whose degree is d — 1. Now we have

max [Hg-1(z)] < max [Hy(z)| + max [hg2'Ty(z)| <1+ |ha2'7 <2
z€[—1,1] z€[—1,1] z€[—1,1]



and |lc(Hg_1)| <2972 max,e(—1,1] [Ha—1(z)] < 2d-1,
Define Hy_;(x) := Hy(z) — Z?Zd%ﬂ le(H;)2' 77 Tj(z) recursively. We show by induction that
max,e(_1,1) [Ha—i(x)| < 2" and |lc(Hg—;)| < 29=1 for i = 1,...,d, starting from the base case i = 1.
Suppose the claim holds for ¢ < k. Then, we have for i = k,

d

Hy < H, 1 21Ty
 max [Hoi(@)] < max | d(ﬂc‘)lﬂLjZde+1 max [lc(H;) ()]

<14+ Y0, 207 =2k
Since deg(Hy_1,) = d — k, we have |lc(Hy_,)| < 24-F-1 maxxe[ 1,1] \Hd ()] < 2471,

Next we bound |h;| by using the relation h(z) = Z] olc(H;)2Tj(x). By the standard
formula for Chebychev polynomials,

nfn/ﬂ 1k n—
L S

k=0

holds. Thus, the absolute value of each coefficient in T, (x) above is bounded by

[n/2] k
n n—k n—2k n—1 n—k 1
2<n—k>< K )2 < Z( K )(4)

k=0
_ n2—5/2 [(1 + \/§)n+1 _ (1 _ \/i)n—&-l} <mn-3"
Here, the equation is from [31, Formula 4.2.3-6] with = 1/4. Hence we have the following;:

d d
|h|<2|lc Hy)2' )53 <) 207l jgi =27 " (3/2)0 < d- 3%,

Jj=t Jj=t
Therefore, for any polynomial h(z) = hgz? + - - - + hg, we have |h;| < d - 3¢+1 max,e(_1,1) |h(7)].
Considering a scaled polynomial h(Uz) = hqU%® + - - - hg, we have

|Uhi| < d -3¢ max |h(Uz)| =d-3"" max |h(z)| < d- 3%
z€[—1,1] ze[-U,U]

Finally, we obtain the upper bound of polynomial norm as
d
g =Y hU% < d(d+ 1) - 32+ h(@),
[|Rl1E ZZ_; i (d+1) xer[ll%},(UH ()|

which derives the claim. [

The contrapositive of this lemma will play a key role in showing the impossibility of the Cop-
persmith technique.

Claim 1.
||h||y > dvd+1-3¢TIN™ (6)

implies max,e(_y,p) |h(7)| > N™ where d = dim(h). Thus, there exists a case in which a solution
of h(x) =0 (mod N™) is not the root over integer.

We will define the “success” and “failure” of the Coppersmith technique in the next section.



3 Framework for the Coppersmith Technique

This section introduces our framework for discussing the Coppersmith technique for a univariate
equation. We also precisely define the conditions for success and failure.

As mentioned in the previous section, for a given target equation (1) and a target range specified
by U, our task is to find all the solutions within the target range. For this task, we formulate
the Coppersmith technique as an algorithm stated as Figure 1. Our formulation is mainly from
Howgrave-Graham [18] and its algebraic extension by Heninger and Cohn [12].

Input F(x), N, U, Parameters k> 1, m > 2;

Output All solutions of F(z) =0 (mod N) satisfying |z| < U,

Step 1: Based on the input, define a sequence of linearly independent polynomials
G = (g1,--.,9r) that satisfy (7);

Step 2:  Find a polynomial h(x) € L(g1, ..., gx) having small ||h||y by using the LLL
algorithm.

Step 3: Solve the equation h(x) = 0 numerically; Output all integer roots within the
target range satisfying (1);

Figure 1: Outline of Coppersmith technique
Remarks may be necessary for some steps of the algorithm. First note that the algorithm

is given two parameters k > 1 and m > 2, which are chosen (often heuristically) for the target
equation. The parameters are usually chosen as small because the time complexity of the original
LLL algorithm [24] is O(k°ulog® B) (e.g., [28, Chapter 5]), where u is the dimension of each vector
and B = log max; ||b;||. We can at least assume that these parameters related to time complexity
are poly(log N), and thus this assumption is sufficient for our analysis. Therefore, throughout the
following discussion, we will consider any k,m, u,log B < (log N)¢ for ¢ > 0 and let them be fixed.

In Step 1, we define linearly independent polynomials gi(x),...,gx(z) € Z[x], which we call
wniatial polynomials, that satisfy

Vo [ F(v) =0 (mod N) = g;(v) =0 (mod N™) ]. (7)

As we will see, the choice of these polynomials determines the lattice used in the algorithm. This
is crucial for the performance of the algorithm. Again, they are defined somewhat heuristically
in each application of the technique. We can at least assume that their degrees are bounded by
poly(log N). From the role of the parameter m in the above, we refer to m as an initial exponent.

In Step 2, define vectors by, ..., by by b; = V(g;,U) for i € [k] to carry out the LLL algorithm.
Let us denote vy,. .., vy as the output of the LLL algorithm on L(by,...,bg). Then we bring the
first vector back to the polynomial by h(z) = F(vy,U).

In Step 3, we enumerate all the roots of h(x). By using a numerical method, this task can be
done in polynomial time in deg(h) and log C, both of which are bound in polynomial in log N, where
C' is the absolute maximum coefficient in h(z). Note also that the number of roots is polynomially
bound. Finally, from among the roots obtained, output integers within the target range which
satisfy (1).

In designing an algorithm based on the outline in Figure 1, the key point is the choice of initial
polynomials that determine the lattice L(G) used to compute a final h(x).



3.1 Sufficient Condition for Success

Clearly, the algorithm works correctly when

Yo, |v| < U [ F(v) =0 (mod N) = h(v) =0].
Since h(z) € L(g1,-..,9x), and the requirement (7) for the initial polynomials, it follows that
Vo [ F(v) =0 (mod N) = h(v) =0 (mod N™) |.
Thus, our above goal is satisfied if we have
Vo, |v] <U [ h(v) =0 (mod N™) < h(v) =0 ]. (8)
By Lemma 1, we see that

W]l < N™/\/dmax + 1 (< N™/+/deg(h) + 1) (9)

is sufficient for (8), where dp,ax is the largest degree of the initial polynomials. Then, the condition
sufficient to show the algorithm works is derived by evaluating ||h||y. First, by definition of h(x)
and F(-,U), and the bound (3), we have ||h|ly = |vi| < A(k)det(L(G))"* Therefore, (8) is

implied by
-1
det(L)/k/N™ < (A(k:)\/dmax n 1) . (10)

Note that this condition is decided by the selection of the initial polynomials and range factor U.
In fact, by using the initial polynomials derived from the original work by Coppersmith [9], we can
show that this condition is satisfied if U < N'/P~¢ (for any ¢ > 0 if N and m are large enough),
thereby confirming in our framework that the original method [9] works for this range of U.

3.2 Conditions for Failure

In contrast to the case of success, which was defined for the bound U and lattice L, the condition
for failure is debatable because how to define the notion that “Coppersmith technique is failure to
work” was unclear in literature. We start by defining it.

For the given problem set (F(z),N,U), we define that the Coppersmith technique fails if for
any exponent m, polynomial lattice L and h(z) € L, there exists a real number v € [-U, U] such
that |h(v)] > N™. By Claim 1, it suffices that ||h||y is large for any h € L. Thus, the problem
is to evaluate the parametrized norm of polynomials in a polynomial lattice spanned by the initial
vectors.

Figure 2 shows the relationship between the conditions for success and failure. We will discuss
when condition (6) holds.

Note that (10) is the inverse of (10). Now, we cannot theoretically guarantee that (10 ')
implies (6). To our best knowledge, evidence to connect the two conditions can be obtained from
the random lattice theory by Rogers [30]. For details, see our discussion in Section 4.2.

4 Analysis of Canonical Initial Polynomials

We consider standard lattice construction and investigate its properties. Based on this investigation,
we derive a lower bound for U such that the condition for failure (6) holds. We may regard this as
the limit of U so that the Coppersmith technique works.

10



(Algorithm works) (Algorithm fails to work)
0 T (def)

max |h(z)| < N™ max |h(z)] > N™

ze[-U,U] ze[-U,U]
1 f} (Claim 1)
Al < N™/v/dmax + 1 1hlly > dmaxy/dmax + 1 - 3Hmax TN (6)
0 1 (?)
(10) det(L)Y*/N™ > (A(k)v/dmax + 1)~1 (10)

Figure 2: Relationship between the conditions for success and failure

4.1 Defining Standard Polynomials and a Simple Bound

Since the initial polynomials need to satisfy the condition (7), one trivial way to define the poly-
nomials g(x) is by

g(z) = Zqi(az)Nm_i(F(x))i, where ¢;(z) € Z[x]. (11)
i=0

This is an integer linear combination of polynomials that were usually referred as “shift polynomi-
als” in previous work. Formally, we introduce the following notion.

Definition 1. Consider the ideal a = (F(z), N)z(y) in the polynomial ring Z[z]. For any non-zero
polynomial f(x) € Zlz], let v(f) be the a-adic order of f(z), that is, an integer s that satisfies
f(x) € o and f(x) & a*L. For the zero polynomial, define v(0) = oco. We say f(x) is an
s-canonical polynomial if v(f) > s.

We simply say that f(z) is canonical if v(f) > m for the initial exponent m. Initial polynomials
(or similar ones) used in previous work are all canonical and we can consider that using canonical
polynomials to be the standard means for defining initial polynomials. This section discusses the
case in which initial polynomials are all canonical.

Consider a sequence of any linearly independent initial polynomials G = (g1, ..., gx) of initial
exponent m, and the polynomial lattice L(G). Any polynomial h(z) € L(G) is canonical and
v(h) > m again. It is clear that deg(h) > mD by (11). Thus, we have the following theorem.

Theorem 1. Fiz the initial exponent and polynomial lattice spanned by canonical polynomials. If
U > ANP/P | the technique fails. In particular, letting 8 = 1, the original lattice construction of the
Coppersmith technique is optimal up to the constant.

Proof. We fix a polynomial h(x) in the lattice and let its degree d(> mD). Since h(x) =
hqx® 4 - 4 hg and |hg| > 1, we have ||h||Z = Z?:o h2U?% > U?. By assumption we have

1/4
1Rl > U > 4!NFIP > <

d+1
) L3 NP S gy /d 4+ 1 - 3L NAm,
3 >

The last inequality holds for integers d > 19. Thus, by Claim 1, the technique fails. [

For 8 < 1, there is a gap from May’s bound NP*/P_ This is because our bounding ||g|| > U?
is not sharp enough.
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4.2 A Better Bound using a Heuristic Assumption

We improve the norm bound using the heuristic assumption between the shortest vector lengths
and the determinant of the lattices. By definition, any initial polynomial of degree d is contained
in the polynomial lattice

Ly = {xj/Nm*i/ (F(m))i,}¢:071,...,d where i’ = min(m, |i/D|) and j' =i — D7,

which we call the Coppersmith type lattice. Hence, a polynomial h(z) found by a lattice reduction
algorithm that is also contained in the lattice. To bind the norm of the polynomials, we set the
following assumption.

Assumption 1. For Coppersmith type lattices constructed from univariate polynomials, assume
that A\1(Lg) > %GH(Ld) holds with high probability. The probability is considered over the choice
of (F(x),N,U) and d.

Theorem 2. Fiz the initial exponent and polynomial lattice spanned by canonical polynomials.
Under Assumption 1, if U > 42N52/D, the technique fails in an overwhelming proportion of
(F(x),N,U).

Proof. Fix the problem set (F'(z), N,U) and let h(z) be a polynomial found in Step 2. Denote
d = deg(h). Since h(x) € Ly, its norm is bounded by |||l > A1(Lg). For the range parameter U,
the determinant det(Lgy)) is the product of diagonal elements:

d d
H ' +i'D ym—it H Uinm—i' — ald+1)/2 nm
i=0 i=0 )
D |d D d
where n = (d + 1)m+5 {DJ + <2—d—1> {DJ (d< D(m+1))
D 1
_ m(’;”) (d> D(m+1))
Thus, using Assumption 1, and the inequality
1 1 1
v V= T (n/2+ 1)V s
3 Va() ™= /2 £ )Y >
we have
A (L(G)) > (1/2) - Vy(1)~ Yy d+n/z yn/d » 7=1/27(d+1)/2 ym/d, (12)

We show the last factor is larger than dv/d + 1 - 39t1NP™ when U = 42NP*/D by separating the
situation that d < D(m + 1) and otherwise.
For the former situation, we have

M(L(G))/NP™ > g V244 INE > /g + 1. 33 INE,

Here, 7 1/249+1 > d/d + 1 holds for integers d > 21, and the exponential part is bound as follows
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by using |&| < m:

B2(d+1 d+1 D|d|*> 1/D d
E 2(219)‘/3“”2(1‘7”*2de +2d<2_d_1> {DJ

d+1 Dm Dm? D |d d+1

2D <5_d+1) “ouyytaaln] Ta "

+1<D—d—1>m

d\ 2

d+1 Dm\? Dm? D|d|* Dm

(ﬁ_d+1> 2@y T 24| D] g 7Y

Thus, we get A\ (L(G)) > N°™.
On the other hand, for d > D(m + 1), we have

2
M(L(G)) > 7124441 N5 LIS S T 3t NS

The last exponent of N is larger than gm because

d—l—l Dm \?> Dm m m+ 1
Bm = (B_d+1> + 5 <— + >>O.

d+1 ,6’2

n_
2 d

Therefore, the technique fails in both cases. [

5 Computation from Non-canonical Polynomials

This section considers the possibility of using non-canonical initial polynomials, that is, a given
polynomial F'(x) and an initial exponent m, an initial polynomial g(z) satisfying (7) and v(g) < m.
Hewe we discuss what we are able to compute if we can indeed construct a non-canonical polynomial.
We show technical evidence supporting that there is no polynomial-time algorithm computing such
a non-canonical polynomial for any F'(z), N, and m.

Technically, we show that if F'(x) and its derivative have no common factor (a property we call
“separability” following the polynomial theory over a field; e.g., [16, Def. 2]), then by using such
a non-canonical initial polynomial, it is possible to compute either a non-trivial factor of N or a
polynomial G(z) with deg(G) < deg(F') — 2 that keeps the same set of solutions. This computation
can also be done in polynomial-time. One can also show that a simpler polynomial G(x) (if it
is obtained) also has separability. Thus, if there were a general polynomial-time algorithm for
computing a non-canonical polynomial, we would be able to continue to create simpler polynomials
(unless a factor of N is obtained). We would then eventually create a linear equation, which
derives either a contradiction if F(z) has more than one solution, or a way to compute F(z)’s
unique solution in polynomial-time. Thus, if we had such a general algorithm, we would be able
to use it to compute either the unique solution of F'(x) or a factor of N. Note that this does not
rule out the possibility of having a specific F(x) and m for which non-canonical initial polynomials
are easy to compute. However, we believe that the one-step reduction itself yields some remarkable
consequences for many concrete cases.
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5.1 Algebraic Properties of Polynomials

Our investigation is based on arithmetic computations under modulo N. As explained in the
introduction, we can assume that no factor of N appears during these computations; that is, we
can treat N as a prime number in the following analysis. Below, we clarify the points where careful
arguments are necessary.

We use standard arithmetics in Zy[z]. There is no problem with addition, subtraction, and
multiplication, which can be defined the same as in Z[z]. On the other hand, the division is
defined as follows. For any f(x),g(x) € Zn[z], g(z) Zn 0, consider polynomials ¢(z) € Zy[z] and
r(z) € Zy[z] such that satisfy f(x) =n ¢(z)g(x)+r(x) and deg(r) < deg(g) (recall that =y means
the polynomial equivalence under modulo N). Note that ¢(z) and r(z) are unique when the leading
coefficient of g(x) is coprime to N. Thus, under our assumption, we can consider ¢(z) and r(x) the
quotient and the remainder of f(z) divided by g(z), and denote them by quo(f,g) and rem(f, g),
respectively. We say that g(z) divides f(x) under modulo N or g(x) an N-divisor of f(z) (and
write it as g(z)|n f(x)) if 7(z) =5 0 in the above.

For any two polynomials f(x) and g(x), we say they are N-coprime to each other if h(x)|n f(x)
and h(z)|yg(z) implies that h(z) € Zy[z]*. On the other hand, for a monic polynomial h(zx) €
My [z] satisfying h(z)|nf(z) and h(z)|ng(z), we say it is a greatest monic common N -divisor if
the quotients quo(f, h) and quo(g, h) are N-coprime to each other. We say that f(x) and g(z) are
strictly coprime if f(x) and g(x) generate the unit ideal of Zy[x]. The following example described
in [25, p.32] would illustrate this: f(z) and  — a are N-coprime if and only if f(a) # 0 while
they are strictly coprime if and only if f(a) € Zy. Recall also that a polynomial f(z) is said
to be separable if f(z) and its derivative are N-coprime to each other. We can use the standard
Euclidean algorithm to compute this divisor of given f(x) and g(x). This computation yields the
unique greatest monic common N-divisor unless a non-trivial factor of N is computed during the
computation.

5.2 Extended Euclidean Algorithm for Polynomials under Modulo N

We first give the algorithm shown in Figure 3, which is a modification of the extended Euclidean
algorithm for polynomials. For given N-coprime polynomials f(x) and g(z) € My|[z], it computes
a pair of polynomials stated in the following lemma if the polynomial division under modulo N
is always defined throughout the execution of the algorithm. If otherwise, i.e., the division is not
defined in iteration, it returns a non-trivial factor of the modulo.

Lemma 4. Let f(z) and g(x) € My|z] be N-coprime. Then, the algorithm in Figure 3 com-
putes either a non-trivial factor of N, or a pair of polynomials (u(x),v(x)) satisfying u(zx)f(z) +
v(z)g(z) =n 1 in polynomial-time w.r.t. deg(f), deg(g), and log N. In particular, in the latter
case, f(x) and g(x) are strictly coprime.

Proof. As in the case of the standard Euclidean algorithm, the ideal

(ro(z),71(7))zy () 18 equal to (f(z),9(z))zy[2 at the beginning of the while loop. Suppose the
algorithm terminated with returning a pair (u1(x), v1(z)) of polynomials. Then, (f(z),g(2))z (2] =
(r1(z))zy[2); hence, both r1(z)|n f(x) and 71(z)|ng(x) hold. Since f(z) and g(z) are N-coprime,
ri(xz) € Zy[x]*. Moreover, it is monic by the construction. Hence r1(z) =y 1 and (u1(x),v1(z))
has the required property. The assertion on time complexity follows from the same argument as
the one for the standard Euclidean algorithm. [
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Input: f(z), g(x) € My[x] which are N-coprime;

Output: Either a non-trivial factor of N or u(z),v(z) € Zy[x] satisfying u(z) f(x) +
v(z)g(x) =n 1;

Step 1: Initialize as ro(z) < f(z); up(x) < 1; vo(z) < 0;
ri(z) < g(x); ui(x) « 0; vi(x) « 1;
while (rem(ro,71) Zn 0) {

Step 2: q(z) < quo(rg,r1);

() = ro(@) — q(z)r1(z); ua(z) < uo(z) — q(z)ur (2);
va () = wo(x) — q(@)v1(2);
Step 3: if (Ic(rp) € Zy then return ged(N,lc(r2)); // a non-trivial factor of N
Step 4: ()<—7“1() 0(x) = u1(x); vo(x) < vi();
c < le(ry)™! (mod N); ri(z) < cra(x); ur(x) < cug(x); vi(x) < cva(x);

}

Step 5: return (u;(z),v1(z));

Figure 3: Extended Euclidean algorithm for two polynomials in My [z]

The following proposition shows that the algorithm in Figure 3 always outputs a non-trivial
factor of N from such a polynomial pair. As we show later, such pair is derived from a non-canonical
polynomials.

Proposition 1. Let f(x) and g(x) € My[x] be N-coprime. Fix an integer s > 1. Then, by the
algorithm in Figure 3, we can obtain either a non-trivial factor of N, or a pair of polynomials

(u(x),v(z)) satisfying u(z)f(x) + v(z)(g(x))® =n 1 in polynomial-time w.r.t. deg(f), deg(g), s
and log N. Particularly, if f(x) and (g(x))® are not N-coprime, a factor of N is always obtained.

Proof. Consider the execution of the algorithm on f(z) and g(z). In the case we obtain a
non-trivial factor of N, we have finished. Otherwise, we obtain u(z),v(z) € Zn|x] satisfying
u(x)f(x) + v(x)g(x) =n 1. Hence, we have

N ( (:1: +u(2)g(x))”

( t(f(ﬂﬂ))t_l(v(ﬂ?)g(ﬂ?))s_t) f(@) + (v(@))*(g(2))®

which implies f(x) and (g(x))°® are strictly coprime. A fortiori, f(z) and (g(x))® are N-coprime.
Thus, if f(z) and (g(a:)) are not N-coprime, it must return a non-trivial factor of N. [

1

e

ll
=

#
||P1<n
I}

5.3 Derivatives of Polynomials

We use the derivative of polynomials that are defined in the standard way in Z[z] (even if they are
sometimes treated as polynomials in Zy/[z]). For s € N, use f(*)(z) to denote the s-th derivative
of a polynomial f(z).

Proposition 2. For f(x),g(x) € Z[x] and s € N satisfying ged(s!, N) = 1, if it holds that

Yo | f(v) =0 (mod N) = g(v) =0 (mod N*™1) }, (13)
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we then have

Yo [f(v) =0 (mod N) = ¢ (v) =0 (mod N) |.

Proof. Considering the Taylor expansion of g(x), we have for each i € [s 4 1],

9o +iN) = g(a) + (N) - g0 x) + (GNP - ;g (a) -

Thus, under modulo N*t1, the following polynomial relation holds.

gz + N) 11 1 .- 1 g(x)

g(z +2N) 1 2 3 - s41 N - g (x)

g(z + 3N) e | 1022037 e (s+1)2 || (N2/2) - gP(a) (14)
| gz + (s + )N | 12 3 e (s ] | (Vs o) |

We can easily see the matrix is invertible under modulo N*t! since it is the transpose of a van der
Monde matrix and ged(s!, N) = 1. Then, for constants ¢; € Z/N*T1Z, we have

s+1
<N5/s!) g () = pen Zcig(:c +iN).
i=1

On the other hand, we have for any integer ¢,
Vo|f(v) =0 (mod N) = f(v+iN) =0 (mod N) = g(v+iN) =0 (mod N*™1)|.
Thus, combining them we have
Vo [ F(v) =0 (mod N) = N*g()(v) = 0 (mod N*+1)],
and the claim holds. [

Consider any s-canonical polynomial g(z) = 35 ¢;(x)N*7'(F(x))" where ¢;(x) € Z[z]. Then,
it is easy to see that ¢(*)(z) =y s!- ¢s(z) - (FW(2))* 4 r(z) - F(z) holds for r(z) € Zy|x]. Thus, by
using the above proposition, if (13) holds for F'(z) and g(z), and we then have

Yo | F(v) =0 (mod N) = ¢s(v)(FM(1))* =0 (mod N) } (15)

5.4 Computing from a Non-Canonical Polynomial

We discuss what we are able to compute from a non-canonical initial polynomial for given F(z), N,
and m. We need to assume that F'(z) is separable, that is, F(x) and its derivative are N-coprime
to each other. Our result is given by the following theorem.

Theorem 3. Assume that our target polynomial F(x) is separable. For F(x), N, and m, suppose
that we have a non-canonical initial polynomial g(x); that is, it satisfies both v(g) < m — 1 and
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the condition (7). Then we can compute in polynomial-time w.r.t. log N and deg(g), either a
non-trivial factor of N or a polynomial G(z) with deg(G) < deg(F') — 2 satisfying

Vo [ F(v) =0 (mod N) = G(v) =0 (mod N) |. (16)

Moreover, G(x) is an N-diwvisor of F(x), and hence, the separability of G(x) is immediate from
that of F(x).

Proof. Put h(z) = N~ "g(z) where r = ordy(g) and s = v(h). (Recall that ordy(g) is the
largest integer r such that g(x) =n- 0, and v(h) is the (F(z), N)z[;)-adic order of h(z).) Then,
s <m—r —1 and it holds that

Vo | P(v) =0 (mod N) = h(v) = 0 (mod N**+1) ] (17)

Express h(x) as h(z) = gs(x)(F(z))® + -+ - + N%qo(x) by using ¢s(x), ..., qo(z) € Zy[z]. It can
be assumed that ¢s(x) #n 0 and each ¢;(x) satisfies deg(g;) < deg(F') without loss of generality.
If the latter case fails, we reconstruct h(x) by replacing current ¢;(z) by rem(q;, F'). Next suppose
the former case fails to hold, i.e., ¢s(z) =n5 0. Removing such zero terms, we would have h(z) =
Neqs_q(z)(F(z))*~* + -+ and gs—q(x) #n 0 for @ > 0. Then, dividing h(z) by N®, we obtain ¢
(= s — a)-canonical polynomial h(z) satisfying

Vo | F(v) =0 (mod N) = hi(v) = 0 (mod N**1) ]

Thus, by renaming h(z) and t to h(z) and s, we again have (17) with gs(z) Zn 0.
Now consider the s-th derivative of h(z). Note that we have (15) for F(x) and this h(z) =
¢s(z)(F(z))® + ---. Define monic polynomials ¢(z) and F(z) from ¢s(z) and F(M)(z) by dividing

their leading coefficients, and define Q(z) = gq(z) - (F'(z))®. It clearly satisfies
Vo | F(v) =0 (mod N) = Q(v) = 0 (mod N) } (18)

Noting that for s = 0, it can directly take Q(z) by ¢(x) (= qo(z)/lc(qo).)

Consider two cases: F(x)[nQ(x) and F(z)|nyQ(z). For these cases, we show our claim.

The case F(z)|nyQ(x): In this case, a non-trivial factor of N is always obtained efficiently from
F(z) and F(x).

Note first, that s > 1. Because otherwise, i.e., s = 0, we have F(x)|nyqo(z) which derives
qo(x) =n 0 by deg(qo) < deg(F), this contradicts the assumption that gs(z) Zn 0.

Then, write Q(z) =n p(x)F(x) by using p(x) € My|z]. Apply the first half of Proposition 1 to
F(z) and F(x); if we obtain the desired factor, we have finished. Hence, suppose that we obtain a
pair of polynomials u(x),v(x) € Zy|x] satisfying 1 =x u(z)F(z) + v(z)(F(z))*. Multiply ¢(z) to
both sides, we have

q(z) =n q(@)u(@)F(z) +v(2)Q(x) =N q(z)u(r)F(z) + v(2)p(z) F(r)
=~ (q(x)u(z) +v(z)p(z)) F (),

which implies that deg(q) > deg(F’) since ¢(z) and F(x) are monic polynomial. This contradicts
the assumption that deg(q) < deg(F).
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The case F(z)/nQ(x): Let G(x) denote the greatest monic common N-divisor of F'(z) and
Q(x). Note that the divisor is computed by the standard Euclidean algorithm for polynomials
under modulo N; from the problem-setting in the preliminary section, the polynomial division
throughout the execution of the algorithm is always defined.

We show that G(x) satisfies the sentence of this theorem. Since it can be written G(z) =n
u(z)F(x) + v(x)Q(z) by u(x),v(x) € Zy]z], (18) implies (16). Hence, it suffices to show that
deg(G) < deg(F') — 2. Tt is clear that G(z)|nF(z) by definition, and write F(x) =n w(z)G(zx) for
w(z) € My[z]. We show that deg(w) > 2. Clearly deg(w) > 1; thus, assume that deg(w) = 1, that
is, w(z) = & — vy for vg € Zy. By (16), F(vg) = G(vg) = 0 (mod N); thus, (x — vg)|nG(x) holds
by the factor theorem. Hence, we have (z — vp)?|nF(x), which implies that (z — vo)|yFW(z).
This contradicts the separability of F(x). Therefore, it needs that deg(w) > 2 and deg(G) =
deg(F') — deg(w) < deg(F)—2. O

Note that this theorem gives a polynomial-time algorithm that reduces a given target equation
to a simpler one based on any non-canonical initial polynomial for the target polynomial. We
expect that this reduction itself is impossible for various cases. Below, we show one example from
the RSA cryptography.

5.5 Application for Coppersmith’s Attack for RSA

We apply the above theorem for a Coppersmith’s attack [9] for RSA. Consider an RSA ciphertext
c that is encrypted from a plaintext p using a public key pair (e, V). Here, we use N for both the
modulo of an RSA instance and that of the target equation. The situation considered in [9] is that
the attacker has a public key pair, valid ciphertext, and a quantity of MSBs of the corresponding
plaintext. Let C' and P’ denote integers respectively corresponding to the ciphertext ¢ and the

revealed part of p, and let k denote the length of the unrevealed part of p. Then the unrevealed

part @ is the unique solution of frga(z) f (x +2FP")¢ — C =0 (mod N), which we call the RSA

equation. The attacker’s task is to compute Q. Clearly, Q satisfies 0 < Q < 2¥, and it can be easily
shown that z is the unique solution of the RSA equation. Coppersmith showed that the equation
is solved in polynomial-time w.r.t. log N when 0 < Q < N'/¢, which corresponds to the situation
in which the bit-length of the unknown part is smaller than 1/e-times that of N.

From our result of Section 4, the length of the revealed part should be longer than (1—1/e) logy N
bits in order to use the Coppersmith technique with the canonical initial polynomials. Now suppose
that we have a non-canonical initial polynomial for the target equation frsa(z) (and an initial
exponent m). From the separability of frga(x) and by Theorem 2, we can compute either (i) a
non-trivial factor of N, or (ii) a polynomial G(z) with deg(G) < e — 2 that has the same solutions
with frsa(z). Clearly the attack succeeds in the former case. Consider the latter case. If e = 3,
noting that G is a linear function, it is easy to see that the plaintext is computable from G(x). In
general, for any e = poly(log N), if we can repeat this argument, (either a non-trivial factor of N
is obtained, or) a trivial linear equation is derived to compute the plaintext. Note also that the
length of the revealed part does not matter in this case. From this example, we can conclude that
there is no general and efficient way to construct non-canonical initial polynomials.
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6 Optimality of Small Inverse Problem Equation
We consider an application of our optimality argument to the simple bivariate equation
F(z,y) :==—1+2(y+ M) =0 (mod N) (19)

of which our target is to find an integer solution (z,y) within the range |z| < X and |y| < Y.
The equation is called the “small inverse problem equation” and has been usually used for RSA
cryptanalysis from Boneh-Durfee [4]. As the settings in the univariate case, suppose we have a
composite integer N, whose factor p is unknown though we know p ~ N?. We assume that the
lattice construction does not use any information on factors of N. If one can use it, the range would
be extended as in [1].

To argue the optimality of this equation under our framework, we follow Kunihiro’s argument
[22] that connects the optimality between the small inverse problem equation and May’s equation.
We introduce an outline of his argument.

He considered the family of equations F(z,y) := —c+ z(y + M) = 0 (mod N) for integer
constants ¢, and proved the if we have a good lattice construction for ¢ = 0, then we can construct
a lattice for May’s equation £ + A = 0 (mod N) that exceeds the original May’s bound N&.
Thus, by contradiction, assuming that May’s bound is optimal, we can prove the limitation of the
equation for ¢ = 0. On the other hand, what we actually need is the relation between the bivariate
equation with ¢ = 1 and May’s bound. Although this was not theoretically proven, we probably
expect there is a strong connection between the cases of ¢ = 1 and of ¢ = 0. In this section, we
revisit the previous discussion to fit our framework, and give the explicit relationship between the
equation (19) and May’s equation.

We define the basic notions inspired from the univariate case. The standard expression of
bivariate polynomial is h(x,y) = Zl j ai jz'y’. The word zy term means that a monomial a; jz'y’

satisfies i-j > 1. For integers X and Y, define the norm of polynomial ||h(z, y)||%y = doij a%jx%y%

6.1 Canonical Polynomial and its Representation in Bivariate Situation

We start our argument to define the canonical polynomial in bivariate situation. As the univariate
case in Section 4, we say h(z) is a canonical polynomial if it has the form

=Y rile,y) N (F(a,y)) (20)
=0

where r;(z,y) € Zlz, y].
Because we can replace the zy terms in ri(z, y) to F'(z,y) —xM +1, we can assume that r;(z,y)
consist of terms of the form a;x* and bjyj We fix this expression.

Lemma 5. For any h(x,y), the canonical representation (20) with respect to F(x,y) and N is
well-defined.

Proof. Suppose there exists different expressions for the same h(z,y) as

!

D ria y) N (F () =) rila,y) N (F(a,y))’ (21)
=0 i

3
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and both r;(z,y) and 7}(x,y) are not zero polynomials. We will prove if both sides are the same,
ri(xz,y) and r}(z,y) are equivalent for all ¢ by showing its contrapositive.

If m > m/, then both polynomials are different because the left-hand side have the term of
(zy)™ whereas the other polynomial does not have it. For the situation m = m’, we can assume
rm(z,y) # 7). (z,y) without loss of generality because if they are the same polynomial, we subtract
ri(z,y) N™ 4 F(x,y))" from the both side.

For the standard expression of h(z,y), consider the terms divisible by (zy)™ and define the sum

e )lm = Y aiga'y/(ey)™

i>m and j>m

The terms in the right-hand side is from the polynomial 7, (z,y)(xz(y + M))™ because for i < m,
monomials in r;(x,y) N™ ¢(F(z,y))" are not divisible by (xy)™, and for r,,(z,y)(F(x,y))" =
rm(x,y) Z;«nzo(—l)m_j (Zn) (x(y + M))?, the monomials divisible by (xy)™ must be contained in
the term of j = m. The same argument holds for 7/, (z,y). Thus, (21) implies that

(@, )l = [rm (2, y) (2(y + M) = [, (2, ) (@ (y + M) . (22)

By the degree comparison in (22), it must be r,,(x,y) and 7}, (z,y) are univariate polynomials
having the same variable and degree.

Suppose 1, and 7], are the polynomial of x and let d = deg(r;). Then, by comparison of
coefficients ¢ of 2™y™ in (22), the leading coefficients of both polynomials must be the same.
Substituting ca™*9y™ from both polynomial and repeating this argument, it must be r,, = /.
If the polynomials are of y, the same argument holds. Therefore, (22) implies r,,, = /., and the

mo
representation is unique. [

6.2 Proof of the Optimality

Fix integers X = p = N% and Y = N?; since we assumed p is an unknown factor of N = pq, this
X is also unknown. Our main result in this section is the following theorem.

Theorem 4. Suppose we have a canonical polynomial h(z,y) with [|h||xy < N™ for range param-
eter X and Y. Then, we can easily compute a canonical polynomial h(y) for May’s equation

G(y) =y + N =0 (mod g), (23)

satisfying ||h(y)lly < ™.

Applying Theorem 2 to this G(y), using that ¢ = N/p = N'7°, it must be the solvable range
Y satisfies
Y < N® =Y < 16N1-9? = Ny(1-0)%+e

Using Y = N®, we have a < (1 —§)? + € and it is equivalent to
0<1—+Va—c¢, (24)

where ¢ = logy(16), which is negligible for large numbers like an RSA moduli. In particular,
considering o = 0.5 as Boneh-Dufree’s setting for RSA cryptanalysis, it must be § < 1 —1/v/2 ~
0.292.
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Proof of the Theorem. We rewrite the canonical representation h(x,y) by

m 7 ij
ha,y) =3 | Y@ F(@ g N+ 3 gy T (e y) N

and define its rounding by replacing F(z,y) to z(y + M), i.e.,

L

W (,y) =Y (D aiga I (@(y+ M)YNTT + > a7 (x(y + M) N

i=0 \ j=0 j=itl
= (et PN S i+ N o
i=0 \ =0 j=it1

We further denote h(x, y) be the polynomial corresponding to the index . Thus, we have h*(z,y) =
S o hi(x,y) and A} (2, y) = kf(y)z* holds for every i with using some univariate polynomial &} (y).

As the above, define k;(y) be the polynomial such that h(z,y) = Y.I*,ki(y)z’. Then by
construction, we have k7 (y) = k;(y) and

m—1
h(w,y) = ki (m)2™ + Y ki(y)a’
i=0
Hence,
Rl xy > (Al xy (25)
holds.

Next, for this A (x,y), consider the univariate polynomial

hey) = | D ami(y+ MYN™ T+ " ap /"y + M)™ | p™.
=0 j=m—+1

Then, defining h (y) := p~™h’ (p,y) € Z, it is canonical for the equation (23) and the polynomial
norm can be bounded as

h (y) =p " lhm (0, 9)lly < ™" llhin (@, 9)llxy <p™"[[h(2,y)l|xy < ¢"

where the first inequality is from the fact for h*(z,y) = 3_, ; ai jx'y,

1D a1} <D llaigp'y’ Iy =) af 9™ Y¥ = |[0* (@, 9)lIky-

1,3 1, ]
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7 Concluding Remarks

We investigated the optimality of lattice constructions used in the Coppersmith technique for
finding small roots of a univariate modular equation (1) and a small inverse problem equation (19).
For this purpose, we provide a framework of the technique and a sufficient and a failure condi-
tions in which the technique works. Then we find that Coppersmith [9], May [26] and Boneh-Durfee
[4] have given the best lattice construction under our framework and the reasonable assumption.

We also showed that a non-standard lattice construction would lead to quite a strong method
for solving the original problem or factorizing a large number.

Following our results, we introduce two unsolved problem for future works to improve our
mathematical techniques.

(i) Rigid proof of Assumption 1: The Rogers’ theorem says for random lattices its shortest
vector length is larger than ¢- GH(L) for ¢ < 1 with overwhelming probability. In this paper, we
assumed the Coppersmith type lattices, which is a small subset of random lattices, have the same
property. Considering computer experiments in previous, works it is very likely correct, however,
we have never obtain the theoretical proof.

(ii) Find an equation that the possibility result and limitation result are not matching: We think
in such cases, the range of possible result exceeds our limitation because the gap of frameworks,
and the problem of this type will investigate the research activity in this area. For example, using
a factor of modulus can extend the solvable range as [1], which is not in our framework.
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