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Abstract

Kumar et al.(1985) have extended the notion of classical bent Boolean functions in the general-
ized setup on Zj. They have provided an analogue of classical Maiorana-McFarland type bent
functions. In this paper, we study the crosscorrelation of a subclass of such generalized Maiorana-
McFarland (GMMF) type bent functions. We provide a construction of quaternary (¢ = 4) bent
functions on n 4 1 variables in terms of their subfunctions on n-variables. Analogues of sum-of-
squares indicator and absolute indicator of crosscorrelation of Boolean functions are defined in
the generalized setup. Further, ¢g-ary functions are studied in terms of these indictors and some
upper bounds of these indicators are obtained. Finally, we provide some constructions of balanced
quaternary functions with high nonlinearity under Lee metric.

Key words: g-ary bent functions; Walsh-Hadamard transform; Parseval’s identity; GMMF type
bent functions; Crosscorrelation

1 Introduction

Let Z, R and C denote the set of integers, real numbers and complex numbers, respectively, and let
Z4 denote ring of integers modulo ¢. The additive group Z, is isomorphic to U, = {1,¢,...,£771},
the multiplicative group of complex ¢! roots of unity. A function from F} to Fy is called a
Boolean function. Recently, several generalizations of Boolean functions have been proposed by
several authors and effect of Walsh-Hadamard transform on them has been studied. The classical
bent functions were introduced by Rothaus [8]. For an excellent survey on existing generalizations
of bent functions we refer to [13]. Kumar et al. [6] have generalized the notion of classical bent
functions by considering functions from Zy to Z,, where ¢ > 2 is any positive integer. Let B, 4
denote the set of such generalized g-ary functions.

The Walsh-Hadamard transform of f € B,, 4 is a complex-valued function from Zg to C defined

as follows
1

Wi(u) = — Y gl
q: er;
where < x, u > denotes the usual inner product in Z.

A function f € B, 4 is generalized bent (or g-ary bent) if [Wy(u)| = 1 for every u € Zj. It
has been proved in [6] that generalized bent functions exist for every value of ¢ and n, except
when n is odd and ¢ = 2 mod 4, whereas Boolean bent functions exist only for even n. Kumar
et al. [6] have provided an analogue of classical Maiorana-McFarland class of bent functions
in the generalized setup and discussed several properties of these functions. For more results
on g-ary bent functions we refer to [1-4]. Generalized bent functions are widely applicable in
Code-Division Multiple-Access (CDMA) communications systems [10]. Solé and Tokareva have
investigated systematically the links between Boolean bent functions [8], generalized bent Boolean
functions [12], and quaternary bent functions [6]. Recently, Zadda and Parraud [5] have introduced
the notion of balancedness and nonlinearity for quaternary functions.

Let f,g € By, 4. The sum
Crq(u) = Z gf(x)—g(x+u)7
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is called the cross-correlation between the function f and g at u € Zj. Moreover, for f = g, the
sum Cy r(u) = Cs(u) is called the autocorrelation of f at u.

It follows from Shannon’s basic design principles confusion and diffusion [11] of secret key
cryptosystems, that the constituent Boolean functions of secret key system should have low
crosscorrelation and certain uniformity properties. Recently, Sarkar and Maitra [9], and Zhou
et al. [14] have reported some interesting results in this direction. Zhou et al. [14] have introduced
two new indicators: sum-of-squares indicator and the absolute indicator. These two indicators
of crosscorrelation between two Boolean functions are called the global avalanche characteristics
(GAC) between them. Analogous to these two indicators, we define two similar indicators: sum-
of-squares-of-modulus indicator (SSMI) and modulus indicator (MI) of crosscorrelation between
two functions in the generalized setup.

The sum-of-squares-of-modulus indicator (SSMI) of f,g € B, 4 is defined as

059 =D [Cra(),

uezr
and the modulus indicator (MI) of f,g € B,, 4 is defined as
C.g(u)]-

B = max

The (periodic) crosscorrelation of sequences is relevant to CDMA applications. Kumar et al. [7]
have introduced a large family of quaternary sequences with low correlation.

1.1 Preliminaries on quaternary functions

In this section, we discuss some basic results on quaternary functions.

The support of function f € B, 4 is defined as Supp(f) = {u € Z} : f(u) # 0}. Further, the
relative support of f is defined as Supp;(f) = {u € Z} : f(u) = j} for all j € Z4 and n;(f) denotes
the size of Supp;(f). A function f € B, 4 is balanced if and only if for all j € Zy, n; = 4"~*. The
Hamming weight wg (f) of f is the size of its support i.e., 91 (f) +n2(f) +n3(f) and the Hamming
distance between two functions f,g € By, 4 is defined by di(f,9) = wu(f — g). The Lee weights
wy, of 0,1,2,3 in Z4 are 0,1,2,1 respectively and the Lee weight wy (u) of an element u € Z}
is the rational sum of the Lee weight of its components. The Lee distance dp,(u,v) between two
elements u,v € Z} is wr(u+v). The Lee weight wr(f) of f € By 4 is m(f) + 2n2(f) +n3(f) and
the Lee distance between two functions f,g € By, 4 is defined by dr(f,g) = wr(f — g). Define
W]%(u) _ 2% erZj(_l)f(x)+<X7u>‘

Definition 1. Let A, 4 be set of all affine functions in By 4. The nonlinearity of f € Bpa is
defined as nlf (f) = mingea, , du(f, g) under Hamming metric and nl%(f) = minge 4, , dr.(f,9)
under Lee metric.

A function f € B, 4 is quaternary bent if and only if [Wy(u)| = 1, i.e., Wy(u) € {£1, £2} for all
u e Zy.

The following proposition is [5, Proposition 3] in terms of normalized Wlash-Hadamard
transform.

Proposition 1. The nonlinearity of f € By, 4 under Lee metric is given by

nE(f) = 4" 2" max  {Rel"Wr(u)])

—4gn _ 9" LIFe%?{'Re[WF(u)H’ ‘Im[WF(u)H}v

where Re[z] and Im|z] respectively denote the real and imaginary part of the complex number z.
Proposition 2. [5, Theorem 2] Let f € B, 4 be quaternary bent. Then
nlk(f) = 4" — 2.

Proposition 3. [5, Proposition 1] A function f € B, is balanced if and only if W;(0) =
W2(0) = 0.
f
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2 Properties of Walsh-Hadamard transform in the generalized setup

Lemma 1. Let n be a positive integer and u € Zy, then

S g<un> L0 i u=0, &
- 0, otherwise .
xXE g
Proof. Let u = (uy,us,...,u,) and x = (21, %2,...,7,) be in Zy. Then
n
Z é—<u7 x> _ Z £u1w1+u2m2+...+unacn _ H Z fubzb
erg er" i:la@eZq

H 1—(")7\ _ [q", fu;=0,Vi=1,...,n
N 1—¢uw ) |0, otherwise.

Theorem 1. If f,g € B, 4 and u,y € Zy, then

D Crglu) £ Y7 = " Wi(y)W,y(y), and

uezy

Cro(u) = Y Wy)W,(y) £~

YEZY

Proof. The cross-correlation between f and g is

Crolu) = 3 &/G=gberm

XELY

Therefore, using Lemma 1, we have

Z Crgu)es™ y= = Z Z ¢/ 0—glxtw)+<u, y>

uezn ueLy x€LT

_ Z gf(X) Z 5—9(X+u)+<u7 y>
xELD uezy

— Z gf(X) Z f*g(u)+<xfu, y>
x€ELD uezn

_ Z 5f(x)+<x7 y> Z 5—(g(u)+<u, y>)
XEZQ ueZ;

=" Wr(y)Wy(y).

Therefore,

Z Wf )£< u, y> _ Z Z Cfg £<v7 y>+<-u, y>

yEZy YELD vELD
1 _
T ) S
q vezn yezr
=Cfg(u)

In particular, if f = g, then we have the following corollary
Corollary 1. Let f be a g-ary function on Zy then the autocorrelation of f is given as

Z |Wf g <X, y>

YEZY
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By putting x = 0 in Corollary 1 we obtain

Y Wiy =q",

YELY

which is known as Parseval’s identity in the generalized setup.
The following corollary is due to Kumar et al. [6, Property 4]. An alternative proof of this
result follows from Lemma 1 and Corollary 1.

Corollary 2. A function f € B, 4 is g-ary bent if and only if Cy(u) = 0 for all u € Zj \ {0}.

3 Characterizations of g-ary bent functions

Let v = (vp,...,v1). We define

fv(xn,—7‘7 ... 7171) = f(.’L'n =VUryeo s Tpn—r41 = V1, Tpn—pr, ... 71’1).
For any u = (ur,...,u1) € Zq and w = (Wh—ppy ... w1) € Zq~", we define the vector concatena-
tion uw as
uw = (0, W) = (Up, ..o, UL, Wyepy oo ., WY).

Lemma 2. Let u € Zg, w € Zy~" and f be an n-variable generalized q-ary function on Zy.
Then autocorrelation of f is given by

Cr(uw) = Z Cto foou (W)

VEZZ

Proof. We compute,

Cf(llW) = Z ff(X)—f(x-‘ruw) _ Z Z é‘f(vz)—f(vz-‘,-uw)

x€Ly veZy 1S/

— fv(z)=fyvtu(z+w) _

=Y ) @bt = Ny (W),
VEZLy z2€Zp " VvEZLy

Any two g-ary functions f and g are said to have complementary autocorrelation if and only
if Cy(u) + Cy(u) = 0 for all u € Zy \ {0}.

Theorem 2. Any two generalized q-ary functions f and g on Zj have complementary autocor-
relation if and only if
IWr()|]? + Wy()|* = g, for all u € Zj.

Proof. Suppose f and g are two generalized g-ary functions on Zj possess complimentary auto-
correlation then

¢ (IWr () + Wy ()*) = Y (Cr(x) +Cy(x))E07 = g™+

XEZ'{;

Which implies, [Wy(u)[? + [Wy(u)|* = ¢, for all u € Z.
Conversely, suppose that [Wy(u)|* + [Wy(u)|* = ¢, for all u € Z?. Then

Cr(x) +Cy(x) = D (IWr(u)]® + Wy (w)?)e=u>>

XELy

92 Z §<u,x> — 2n+160(u)7

XGZ;‘

and therefore, if u # 0, then Cs(x) + C4(x) = 0. Therefore, f and g have complementary auto-
correlation.
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The following theorem is a slightly generalized version of Theorem 3 by Tokareva [13].

Theorem 3. Let fi € By g and fo € By 4. Then a function g € Byys 4 expressed as

g($r+37 ey L1y Ty eeey 171) = fl(‘rTv e 71'1) + fZ(xr+S7 cee ,1‘7«_;,_1),
is q-ary bent if and only if f1 and fo both are q-ary bent functions.

Proof. Let (u,v) € Zy x Zj. We compute,

We(u,v) = E L90aY)F<ux>+<vy>
)

(x,y)€ELY XL

_ Z W10+ <ux> Z W2 H<vy> Wy, (u)Wf2 (v).

x€L} Y€z

(2)

Suppose f1 and f, both are g-ary bent, then Wy, (u)] = 1 and [Wy,(v)| = 1. This implies
that , W, (u,v)| = Wy, (0)[[Wy,(v)| = 1, for all (u,v) € Zy x Z;. Hence g is g-ary bent.

Conversely, we assume ¢ is g-ary bent function, our aim is to show that the functions f; and
2 are g-ary bent functions. Let us suppose that f; is not g-ary bent, then there exists u € Z; such
that [Wy, (u)| > 1. This implies that [Wy,(v)| < 1 for every v € Z 0 as 1= Wy (w)[[Wy,(v)].
This contradicts the fact that Ebezg Wy, (b)]? =

3.1 Construction of quaternary bent functions in B,,11,4 from the functions in B,, 4

Theorem 4. Let n be a positive integer. A function h € By, y1.4 expressed as
hEpi1, oy yx1) = (14 Tpa1) f(@n, -5 21) + Ta19(Xn, - -+, 21),

where f,g € By, 4, 15 quaternary bent if and only if

(i) | 3250 W, (w)| =2, for all u € Z.

(ii) %m = ¢(u) and % = wp(u) where p(u),(u) € R.

(iii) ijo W, (u)|> =4 for all u € Z3 and

Who (W)Wh, () + Wi, (0)Wh, (@) + Wi, (0)Wh, (1) + Wh, (@)W, (1) = 0.

Proof. Let us identify (zn41,%n,...,21) € Z}T with (z,,1,%) € Zy4 x Z}. Suppose that the
function

Mani1,%) = (14 2p41) f(X) + 2ni19(%)
is quaternary bent. The Walsh-Hadamard transform of h at (a,u) € Z4 x Z} is

1
Wh(a,u) — 4n+1 E U@ 1 X)Fazn 1+ <u, x>
2 (In+1,x)€Z4XZZL

3 3
_ QTlJrl Z Z G +aj+<u, x> %Zlajwhj (u) ®)
=0

j=0x€Zy
= %()/Vh0 (u) + "Wy, (0) + (—=1)*Wh, (1) + (—2)“Wh, (0)).
Since h is quaternary bent, |Wy(a,u)| = 1 for all (a,u) € Z4 x Z}. This implies that
[Whe (@) + Wy, (1) + Wi, (1) + Wy, (u)| = 2. (4)

[Wh (@) = Wh, (1) + e(Wh, (1) = Wh, (w))] = 2. ()



6 Singh, Bhaintwal and Singh
W () = Wiy (0) 4+ W () — Wi, ()] = 2. (6)

[Whi (@) = Wh, (0) = 2(Wh, (0) = Wi, ()] = 2. (7)
Combining (4) and (6), we obtain

Who (u) + th
Whl (u) + th

Eu) _ (Who(U) + Wh, (u))provided Wh, (1) + W, (u) # 0,

u) Wh, (@) + Wh, ()

Wh() (u)+Wh2 (u)

Wiy (@) W (@) is purely imaginary, i.e.,

which implies that

Who (ll) + th (u)
Wi, (0) + Wi, (u)

= up(u), where ¥(u) € R. (8)

Similarly on combining (5) and (7), we obtain that

Who (ll) - Wh2 (u)
Whl (u) - Wha (11)

= ¢(u), where ¢(u) € R. (9)

Solving (5) and (9) we have

[Why (@) = Wiy (@) |2 + ¢(u)|* = 4

Wi (w) - wh2<u>|2> )
Wi, () = Wi, (w)

ey (Wi (@) = Why ()] + [Wh, (0) = Wi, (w)]” = 4. (10)

i.e., [Wh, (1) — Wh, (u)\2 <1 +

Similarly, from (6) and (8), we have
[Who (@) = Wy (@) + Wi, () = Wi (w)]” = 4. (11)

On combining (10) and (11), we obtain

Who (W)Wh, (1) + Wi, (0)Wh, (1) + Wi, (0)Wh, (1) + Wh, (@)W, (1) = 0. (12)

Similarly, (11) and (12) provides Z?:o W, (u)|* = 4.
Conversely, suppose that the conditions (i), (#4) and (i#i) are true. Condition (i) implies
that the terms Wy, (u) — Wy, (u) and Wi, (u) — Wh,(u) ( as well as Wy, (u) + W, (u) and
Wi, (W)+Wy,, (u) ) can not be zero simultaneously. Suppose Wi, (u) =Wy, (u) = 0 then [Wp,, (u) —
Wh, (0)| = 2 (as well as, if Wp, (u) +Wh,(u) = 0 then [Wh,, (1) + Wh, (u)| = 2). Now consider the
case when neither [Wh, (1) — Wiy (1) [Wh, () — Wi (w)] 0 501 Wiy () + Wiy ()] [Wh, (1) + W, (w)]
0.
Let (a,u) € Zy x Z} be arbitrary. Condition (¢) implies that |W(0,u)| = 1.
Using condition (4¢) and (¢44) we have

4 Wa(L ) = [Wiag (@) = W, () + o(Wh, (0) = Wi, (w))]?

= Wi, (0) = Why (w)P[6(w) + 22 = [Wh, () = Wi, (w)]* (1 + ¢°(u))
3

= ([Who (@) = Wiy (@)? + W, (0) = Way (@)*) = Y W, (w)]?

Jj=1

- (Who(u)whz () + Wi, (W)Wh, (1) + Wi, (0)Wh (0) + Wi, (1) Wh, (u)> =4,

which implies that [W(1,u)| = 1.
Similarly for @ = 2,3 we have from condition (i7) and (ii%) that |[Wy(a,u)| = 1. Therefore,
[Wh(a,u)| =1 for all (a,u) € Zy x Z}.
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4 Two indicators of cross-correlation for g-ary functions

The following result for the binary case were shown in [14]. One can straightforwardly infer by
modifying those results hold under the current notion, as well.

Theorem 5. Let f,g € By, 4 then

(1) Ayg =0 if and only if f(x) — g(x +u) is balanced for any u € Zj.
(2) Aypg=4q" if and only if f(x) = g(x + 1) +a, a € Zy for some u € Zj.
(3) 0< Agy <

Any two g-ary functions f and g are said to be perfectly uncorrelated [9] if Wy(u)Wy(u) = 0 for
allue?z?.
q

Theorem 6. Let f,g € By, 4. Then

(a) [Crg(0)? <opy < g™
(b) 059 =q>" if and only if f and g are affine functions.
(¢) 059 =1Ctq(0) if and only if f and g are either generalized bents or perfectly uncorrelated.

Proof. (a) Using Theorem 1 and Cauchy inequality, (3, a:b;)? < 32, a2 32, b2 for all a;,b; € R,

we have

org= Y Crq(u)Cry(u)

uEZ"

> > Wrx)

5<ux>wa ()§<uy>

ueri <Ly yezn
=T WWEWEW) 3 e
x€ELy yELy aczp

¢ WP P < gt [ Y W)W, (%)

XELY xELY
<q" Y I D W(x
xEZ" xEZ"

(b) From (a), we have oy, = ¢*" if and only if

ST WrPW)? = D IWr)? Y Wy(a))?

uGZ” UGZ" UGZQ

That is, >0, vezn ey W (@)W, (v)[? = 0 if and only if Wy (u)[*[W,(v)[* = 0 for any u # v.

If Wy (u)|? = 0 for all u € Z! then it contradicts the Parseval’s identity. Therefore W (up)|* #
0 for at least one ug € Z;. Consider the following cases:

(1) If there exist only one ug € Z such that [Ws(ug)|* # 0 then [W,(v)[> = 0 for all v € Z}!
except v # ug. By Parseval 1den‘51ty7 we have |Wy(ug)|> = ¢ which implies that f(z) =
a— < ug,x > for some a € Z,. On the other hand, since [W,(v)|? = 0 for any v # ug, implies
W, (ug)|? = ¢". That is g(x) = b— < ug,x > for some b € Z,. Thus f and g are affine.

(2) If there exist only two uy,uy € Z? (u; # uy) such that [We(up)|* # 0 and [Wy(uy)|* # 0,
then [W,(u)|? = 0 for any u # u; and |[W,(u)|* = 0 for any u # uy accordingly. That is,
Wy (u)[* = 0 for all u € Z which contradicts Parseval’s identity. Similarly, there does not
exist only k(3 < k < 2") distinct u; € Z"(1 < i < k) such that [Wy(u;)|* # 0.
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(¢) 07,9 = (A,4(0))% if and only if

ST WP W) Y 12 = [ > WraW,(a) x 1|

uEZ; uEZ;l ueZg

if and only if, by Cauchy-Schwarz’s inequality, for any u € Zg, LZICLZZIC) ¢(u) such that

i
|¢(u)| = k, a positive real number. There are two cases:

(1) If k = 0, then f and g are perfectly uncorrelated.
(2) If k& # 0, then [Wr(w)Wy(u)| = [We(v)[[Wy(v)| for all u,v € Zj. This is equivalent to

IKVV;E:;I = ;KV\,?EBI =t for all u,v € Zj, where t is positive real. That is, Wy (u)| = t|Wy(v)]

and |[W,(v)| = t|W,(u)|. Using Parseval’s identity, we get t> = 1. Therefore, [W;(u)|?| and
[Wy(u)]? are constants for all u € Z}'. Again by using Parseval’s identity, we get [Wy(u)| =
1 = [Wy(u)| for all u € Z7 which proves that f and g both are generalized bent.

4.1 Crosscorrelation of Maiorana-McFarland type g-ary bent functions

In this section we obtain crosscorrelation between two bent functions in a subclass of Maiorana-
McFarland type g-ary bent functions.

Kumar et al. [6, Theorem 1] have given a natural generalization of the classical Maiorana
McFarland construction. We provide here an alternative proof of this result.

Lemma 3. [6, Theorem 1] Let n = 2m, where m is a positive integer. Then a function f :
L' X Ly* — ZLq expressed as

fxy) =<x, n(y) >+ g(y),

where g : Ly — Zq is any q-ary function and w: Zy' — Zg* be any permutation, is bent.

Proof. Let (u,v) € Z;* x Zy*. Using Lemma 1, we compute,

1
We(u,v) = — Z Z £ T)>Hg(y)+<u, x>4<v, y>

m
XELT yEL

1
- g(y)+<v, y> <m(y)+u, x>
= > ¢ > ¢

yeZg“ x EZ;”

_ co(r (mu) <y, 7 (—w)>
3

Thus [Wy(u,v)| =1 for all (u,v) € Z;* x Z;*. This completes the proof.

1

Let P be the set of permutations on ZZ” such that m,my € P = 7] — 7r2_1 epP.

Theorem 7. Let n = 2m, m a positive integer. Let fy, fo be two q-ary Maiorana-McFarland
type generalized bent function on Zy, i.e., fi(x,y) =< x, mi(y) > +g1(y) and fa(x,y) =<
x, ma(y) > +g2(y) for allx,y € Z', where w1, T2 are permutations on Zj* and g1, gs € By, . If

q )
w1, T € P, then

‘Cfl1f2(u7v)| =q", ¥V (u,v) e Z;n X Z;n.
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Proof. By Lemma 1 and Lemma 3, we have

Cfl f2 (ll V Z Wh X y)W€<X u>+<y, v>

yEZm

— Z (é’gl(ﬂfl(*x))+<yy 7f1_1(*x)>)(€gz(ﬂ';1(—x))+<y, Ty (x)>) g <X, u>+<y, v>
x7y€Z;”'

_ Z 591(77171(7x))+<)’1 7 H(=%)>—g2(my H(—%)) =<y, 75 (%) >+<x, u>+<y, v>

x,y€zm
- E 591(Trfl(—X))—gz(WEI(—X))+<X» u> E £y v (=x) =y (=x)>
x€eZm yeLm

— gmeon (i (my =m D) T V) mga(my () T (V) <, x>

This completes the proof.

It is to be noted that smaller values Ay, and oy, correspond to low correlation between f and
g. From Theorem 7 we have Ay, ¢, = ¢*" and o4, 5, = ¢™. These bounds are much better than
the trivial bounds obtained in Theorem 10 and 6.

4.2 Relationship among crosscorrelation of four g-ary functions

Zhuo [15] has established the relationship among crosscorrelation of four arbitrary Boolean func-
tions. In the following results we provide an analogue of these results in the generalized setup.

Theorem 8. Let f,g,h,k € By, 4. Then

ZCfg Chk qu Zth gka+e) VGEZZ. (13)

uEZ” aEZ"

Proof. For any e € Zy, we have

Y Crg)Chip(ute)= Y > OITAN N ch(y)—k(ytute)

uezZy ueZy x€Ly yEZ?
Z ¢f)=n(y) Z ¢-9bctu)thytute) — Z ¢f)=hy) Z g9 Hh(y—xtArte)
X,y €L} uezy X,y €L} ez
Z Z ¢fy=a)=h(y) Zf gN)+k(A+ate) _ Z Z o= h(y+a)c ra+e)
a€Zy yeZy NEZY acZy yeLy
= Z th Cyk (a+e)
acZy

In particular, if we take f = h and g = k, then we have the following result.
Corollary 3. Let f,g € B,, 4, then

> Crg(u)Crg(ute) =Y Cr(a)Cy(ate).

HEZ” aGZ"

In particular, if e = 0, then we have

0r9= Y Cr(a)Cy(a). (14)

an;
Corollary 4. Let f,g € B, 4, then oy, < ¢>".

Proof. The result follows from the fact that oy < ¢3" and the Cauchy inequality in (14).
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If g = kin (13), then we have ) ;.. Cs o(0)Ch g(u+e) = s Crn(a)Cy(a+ e). Moreover,
q q
if g is g-ary bent, then we have the following proposition.
Proposition 4. Let f,g,h € B, 4 and g is q-ary bent, then

— 1, ifu=v,
(1) Sucsy Cra W)yl 0) = 0"Cranl=e)i_ap @), uhere o) = { g7 TR =Y

(2) 059 ="

(3) Ife #0 and f(x) is q-ary bent, then Y ;m Cyq(1)Ch g(u+e) = 0.
q

Theorem 9. Let f,g € By, 4 such that g is g-ary bent, then

Nfg > g2, and
¢*" — |Cr4(0)12
C >
W) ICrg(u)] = pr—
Proof. Wehave oy, = >, cyn [Cr.g(u)[?. Thus, the absolute value of each Cy, 4(u) will be minimum

only when they all possess equal values. Therefore the minimum value of A g is y/of 4/¢". From
property (2) of Proposition 4, we have o5, = > csn C?g(u) = ¢". Since the sum on the left
¢ n b,

side has ¢" non-negative terms, therefore Ay, > /¢?"/q" = g2
Since Y ez 0} C7 (1) = ¢** — |Cf,4(0)|* and the sum on left side has ¢" — 1 non-negative
" :

2"7‘C , (O)|2
terms, therefore maXuezp\ {0} ICrq(0)| > quniii-

Corollary 5. Let f,g € B, , such that g is g-ary bent. If |Cy 4(0)| < g™/2, then maXuezn\ {0} ICsg(u)| >
qn/Q.

5 Secondary constructions on quaternary balanced functions with five
valued Walsh-Hadamard spectra

In this section, we construct some balanced quaternary functions with high nonlinearity under
Lee metric.
Theorem 10. Suppose g € By, 1,4 is expressed as

g(anrlyxn) L 7x1) = (En+1 + f(‘rnv s 71.1)7

where f € By, 4 be a quaternary bent. Then g is balanced and its nonlinearity under Lee metric is
given by
nlk(g) = 4mt1t — on+2,

Proof. Let x = (xy,...,21) € Z} and j € Zy.
Supp;j(g) = {x' = (xn+1,%) € Zs x Z}i]g(x') = j}
={x € Z},xn11 € Za|f(X) + Zn11 = j}
=Ulo{x € Z{|f(x) =1 = (j — xnt1) mod 4} = ULoSuppi(f),

implies that n;(g) = | U_o Supp;(f)| = Z?:o n:(f) = 4™ for all j € Z,. Hence, g is balanced.
The Walsh-Hadamard transform of g at (u,+1,u) € Zy X Z} is

1
E 1, %) <UXS> AUy 1T
Wg(un_‘—l’u) - on+1 29(@nt1,3) H<UX> FUn 41 Tntr
(Tn41,X)ELyXLY
= 1 E WS OOF<u x>+ (un g1+ 1)an 41
2n+1

(Tn41,X)ELy X LY
_ 1 F(x)+<u,x> (unt14+1)Tn1
= 2n+1 (3 (3

x€ELy Tn41€2Za

2 Wy(u), if upyq =3,
0, otherwise .
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Since f is quaternary bent, therefore Wy(u) € {1, 2} for every u € Z}. Using (15), we have

[ +20r 02, if upg =3,
Wy (tnt1,u) = {07 otherwise .

Thus the Walsh-Hadamard spectrum of g contains 5 distinct values from the set {£2, 12,0} for
every (Un41,u) € Zg X Z}. By Proposition 1, we have

nli(g) = 4" =270 max  {|Re[Wy((upyr, w)]l, HmWy((uns1, )]}

(un+1 ,Ll) [SYm XZZ

— 4n+1 _ 2n+2.
Remark 1. A function g € By41,4 expressed as

9($n+1»$na cee 7x1) = Tp+1 + f(xnv e 7x1)7

where f € B,, 4, is balanced and its nonlinearity under Lee metric is

nli(g) = 4 nly(f).
Proof. The proof is a direct consequence of (1) and Proposition 1.

Theorem 11. Let f1 € By 4 and fo € Bsa. A function g € B, 4 expressed as

g(xr-&-s; vy T2, Ty e e e axl) = fl(xrv LR 'Tl) + fQ(xr-&-s; s axr+27xr+1)7
is balanced if either fi or fo is balanced.

Proof. The proof follows from Proposition 3 and the fact that W,(u,v) = Wy, (u)Wy,(v) and

Wi (u,v) = W3 (w)W3,(v) for all (u,v)Zj x Z3.
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