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Abstract

Let M be a square-free odd integer and Z=(M) the integer residue ring modulo

M . This paper studies the distinctness of primitive sequences over Z=(M) modulo 2.

Recently, for the case of M = pq, a product of two distinct prime numbers p and q,

the problem has been almost completely solved. As for the case that M is a product

of more prime numbers, the problem has been quite resistant to proof. In this paper,

a partial proof is given by showing that a class of primitive sequences of order 2k+1

over Z=(M) is distinct modulo 2. Besides as an independent interest, the paper also

involves two distribution properties of primitive sequences over Z=(M), which related

closely to our main results.
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1 Introduction

Let Z=(M) denote the integer residue ring moduloM for any integerM � 2. If a sequence

a = (a(t))t�0 over Z=(M) satis�es

a(i+ n) � � (cn�1a(i+ n� 1) + � � �+ c1a(i+ 1) + c0a(i))modM; i � 0 (1)

with constant coe¢ cients c0; c1; : : : ; cn�1 2 Z=(M), then a is called a linear recurring se-

quence of order n over Z=(M) generated by f(x) = xn + cn�1x
n�1 + � � � + c0 (or a is a

sequence of order n over Z=(M) in short) and f (x) is called a characteristic polynomial of

a. For convenience, the set of sequences generated by f(x) over Z=(M) is generally denoted

by G (f (x) ;M).

Let p be a prime number and e a positive integer. A monic polynomial f(x) of degree n

over Z=(pe) is called a primitive polynomial of degree n if the period of f(x) over Z=(pe),

denoted by per(f(x); pe), is equal to pe�1(pn�1), that is pe�1(pn�1) is the minimal positive

integer P such that xP � 1 is divisible by f(x) in Z=(pe)[x]. A sequence a = (a(t))t�0

over Z=(pe) is called a primitive sequence of order n if a is generated by a primitive

polynomial of degree n over Z=(pe) and amod p = (a(t)mod p)t�0 is not an all 0 sequence.

The period of a primitive sequence a of order n over Z=(pe), denoted as per (a; pe), is equal

to pe�1(pn � 1), see [1].

Every element u 2 Z=(pe) has a unique p-adic expansion as u = u0+u1�p+� � �+ue�1�pe�1,

where ui 2 f0; 1; : : : ; p� 1g and can be naturally seen as an element in Z=(p). Similarly, a

sequence a over Z=(pe) has a unique p-adic expansion as a = a0 + a1 � p+ � � �+ ae�1 � pe�1,

where ai is a sequence over f0; 1; : : : ; p� 1g and can be naturally seen as a sequence over

Z=(p). The sequence ai is called the ith-level sequence of a for 0 � i � e � 1 and ae�1
is also called the highest level sequence of a.

Let a be a sequence over Z=(pe) with the p-adic expansion as a = a0+a1�p+� � �+ae�1�pe�1

and '(x0; : : : ; xe�1) an e-variable function over Z=(p). Then

'(a0; : : : ; ae�1) = ('(a0 (t) ; : : : ; ae�1 (t)))t�0
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is a sequence over Z=(p) and is called a compressing sequence derived from a. When a

is a primitive sequence over Z=(pe), many cryptographical properties of such compressing

sequence have been studied during the last 20 years [2]-[17], in particular the distinctness of

compressing sequences, that is, a = b if and only if '(a0; : : : ; ae�1) = '(b0; : : : ; be�1), where

a and b are two primitive sequences generated by a primitive polynomial over Z=(pe). Ob-

viously, for a given primitive polynomial f(x) over Z=(pe), if the compressing sequences of

all primitive sequences generated by f(x) are pairwise distinct, then there is a one-to-one

correspondence between primitive sequences and their compressing sequences, which im-

plies that every compressing sequence preserves all the information of its original primitive

sequence. Thus such compressing sequences are thought to be a good type of nonlinear

sequences available for the design of stream cipher.

Recently, modular reduction, another compressing method of primitive sequences over

Z=(pe), was proposed and has attracted much attention. For example, the well known l-

sequences, i.e., maximal length FCSR sequences, introduced by A. Klapper and M. Goresky

in [20], are in fact modulo 2 reductions of primitive sequences of order 1 over Z=(pe). In

[19], the distinctness of modular reductions of primitive sequences over Z=(pe) has been

completely solved. It was shown that if a and b are two primitive sequences generated by

a primitive polynomial of degree n � 1 over Z=(pe), then a = b if and only if a � bmodm,

where m is a positive integer with a prime factor other than p. It can be seen that

the operation of modm destroys the inherent structure of sequences over Z=(pe), and in

particular for m = 2, the compression ratio is very large and easy to implement.

Let M be an integer greater than 1 and M = pe11 p
e2
2 � � � perr the canonical factorization

of M . As a natural generalization of the de�nitions of primitive polynomials and primitive

sequences over Z=(pe), a monic polynomial f (x) of degree n over Z=(M) is called a primi-

tive polynomial and a sequence a = (a(t))t�0 of order n over Z=(M) is called a primitive

sequence, if for every i 2 f1; 2; : : : ; rg, f (x)mod peii is a primitive polynomial of degree n

over Z=(peii ) and amod p
ei
i is a primitive sequence of order n over Z=(p

ei
i ), respectively. It

is easy to see that the period of a primitive polynomial of degree n over Z=(M) and that
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of a primitive sequence of order n over Z=(M) are both equal to

lcm
�
pe1�11 (pn1 � 1) ; pe2�12 (pn2 � 1) ; : : : ; per�1r (pnr � 1)

�
:

For convenience, the set of primitive sequences generated by a primitive polynomial f(x)

over Z=(M) is generally denoted by G0(f(x);M).

IfM has at least two di¤erent prime factors, there indeed exist many primitive sequences

of order 1 over Z=(M) such that their modular reductions are the same [21]. It is long not

clear, however, whether the modular reductions of primitive sequences of order n � 2 over

Z=(M) are distinct. Let p and q be two distinct prime numbers. In [21], the authors

�rst studied the distinctness of primitive sequences over Z=(pq) modulo 2, and a su¢ cient

condition was given for (n; p; q) such that primitive sequences of order n over Z=(pq) are

distinct modulo 2. Then in [18] based on a new result on the element distribution property

of primitive sequences over Z=(pq), the set of primitive sequences that can be proved to be

distinct modulo 2 is greatly enlarged and almost includes all primitive sequences.

Inspired by the methods of [18], this paper studies a much more general modulus M

which is a product of three or more distinct prime numbers. A class of primitive sequences

of order n = 2k+1 over Z=(M) is shown to be distinct modulo 2, where k � 1 is an integer.

The number of primitive sequences proved to be distinct modulo 2 has close relations with

two distribution properties of primitive sequences over Z=(M). One is given s 2 Z=(M)

and a primitive sequence a of order n � 2 over Z=(M) whether there is an integer t � 0

such that a(t) = s. The other is given a primitive sequence a of order 1 over Z=(M)

whether there is an integer t � 0 such that a(t) is an even number. Based on the estimates

of exponential sums over integer residue rings and number theoretical functions, su¢ cient

conditions of primitive sequences over Z=(M) satisfying the two properties are obtained,

respectively, and corresponding experimental data are provided to show the validity of the

su¢ cient conditions.

The paper is organized as follows. Section 2 presents some necessary preliminaries.

Section 3 discusses distribution properties of primitive sequences over integer residue rings.
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Section 4 is largely devoted to the proof of our main result. Finally, conclusions are drawn

in Section 5.

Throughout the paper, we assume that M is a square-free odd integer and M =

p1p2 � � � pr is the canonical factorization of M , where r � 2 and pi is an odd prime number

for 1 � i � r. We choose f0; 1; : : : ;M � 1g as the complete set of representatives for the

elements of the ring Z=(M). Thus a sequence a over Z=(M) is usually seen as an integer se-

quence over f0; 1; : : : ;M�1g. Moreover, for an integer x and a positive integerm, we denote

the nonnegative minimal residue of x modulo m as [x]modm and [a]modm = ([a(t)]modm)t�0

for a sequence a = (a(t))t�0 over Z=(M).

2 Preliminaries

An element � 2 Z=(M) is called a primitive element of Z=(M) if [�]mod pi is a primitive

element of Z=(pi) for every i 2 f1; 2; : : : ; rg, i.e., the multiplicative order of [�]mod pi in

Z=(pi) is equal to pi � 1. It can be seen that the multiplicative order of any primitive

element in Z=(M) is equal to lcm (p1 � 1; p2 � 1; : : : ; pr � 1).

Typical primitive polynomials over integer residue rings were �rst proposed and studied

in [22]. The authors of [22] gave the following equivalent conditions, each of which de�nes

a typical primitive polynomial.

Lemma 1 ([22]) Let f(x) be a primitive polynomial of degree n over Z=(M). Then the

following are equivalent:

(1) f(x) divides xS � � for some positive integer S and some primitive element � of

Z=(M);

(2) there exists a primitive element � of Z=(M) such that x�M � �mod f (x) holds over

Z=(M), where �M = lcm
�
pn1�1
p1�1 ;

pn2�1
p2�1 ; : : : ;

pnr�1
pr�1

�
;



6

(3) gcd
�
�pipj ; p

n
i � 1

�
=

pni �1
pi�1 for any pair of distinct prime divisors pi and pj of M ,

where �pipj = lcm
�
pni �1
pi�1 ;

pnj �1
pj�1

�
:

Remark 2 The conditions (1), (2) and (3) correspond to De�nition 4 , Lemma 5 and

formula (9) of [22], respectively.

De�nition 3 ([22]) A monic polynomial f(x) of degree n over Z=(M) is called a typical

primitive polynomial of degree n over Z=(M) if f(x) is primitive and satis�es the equivalent

conditions of Lemma 1.

It can be seen from the condition (3) of Lemma 1 that the existence of typical primitive

polynomials of degree n over Z=(M) only depends on the arithmetic properties of M and

n. Thus, for convenience we call (M;n) a typical primitive pair if M and n satisfy the

condition (3) of Lemma 1.

To prove the distinctness of primitive sequences over Z=(M) modulo 2 in Section 4, we

need another concept named �a distinguishable pair�, and we make its de�nition explicit

in the following statement.

De�nition 4 Let n be a positive integer. Then (M;n) is called a distinguishable pair if

gcd

�
pni � 1
pi � 1

; pnj � 1
�
= 1 (2)

for any pair of distinct prime divisors pi and pj of M .

Remark 5 (1) If (M;n) is a distinguishable pair, then it is necessary that n is an odd

number. This is because if n is an even number, then both pni �1
pi�1 =

Pn�1
k=0 p

k
i and p

n
j � 1 are

even numbers, and so gcd
�
pni �1
pi�1 ; p

n
j � 1

�
� 2 6= 1.

(2) If (M;n) is a distinguishable pair, then (M;n) is a typical primitive pair, but the

reverse is not true. For example, it can be veri�ed that (77; 3) is a typical primitive pair,

but not a distinguishable pair.
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(3) Experimental data show that the proportion of distinguishable pairs (M;n) is about

61:148% when M runs through all possible values between 1 and 10; 000; 000 and n runs

through all odd integers between 3 and 19.

Finally we recall the estimates of some classical exponential sums over integer residue

rings. Let m be a positive integer greater than 1, and let em (�) be the canonical additive

character over Z=(m) given by em(a) = e2�ia=m, where a is an integer. First it is well-known

that the complete sum
m�1X
a=0

em (ca) =

8<: m; if m j c;

0; otherwise,

for any integer c. Second the following estimates are proved in [23].

Lemma 6 [23, Lemma 8.80] For any positive integer H we have

m�1X
a=0

�����
H�1X
x=0

em (ax)

����� < 2m
�
lnm

�
+
1

5

�
+H,

where ln (�) is the natural logarithm. In particular, we have

m�1X
a=1

�����
H�1X
x=0

em (ax)

����� < 2m
�
lnm

�
+
1

5

�
.

3 Distribution Properties of Primitive Sequences over

Z=(M)

Let a be a periodic sequence over Z=(M) with period T . For any given element s 2

Z=(M), we say that the element s occurs in the sequence a if there exists an integer

t 2 f0; 1; : : : ; T � 1g such that a (t) = s. Let N
�
aT ; s

�
denote the number of element s

occurring in a complete period of the sequence a, that is,

N
�
aT ; s

�
= # ft j a (t) = s; 0 � t � T � 1g .
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In this section, we discuss two distribution problems of primitive sequences over Z=(M),

which will be shown to be useful in Section 4. The �rst problem is whether every element

of Z=(M) occurs in a complete period of a primitive sequence of order n over Z=(M). In

Subsection 3.1, we shall show that the answer is positive for su¢ ciently large n. It is clear

that the answer is negative for n = 1. The second problem is whether there exists an

even number of Z=(M) occurs in a complete period of a primitive sequence of order 1 over

Z=(M). In Subsection 3.2, we shall show that the answer to this problem is positive for

almost all M�s. The main results of this section are based on the estimates of exponential

sums over integer residue rings.

3.1 Estimates for the number of a given element occurring in a

primitive sequence over Z=(M)

Lemma 7 Let f(x) = xn�(cn�1xn�1+� � �+c1x+c0) be a primitive polynomial over Z=(M)

with period T and d = (1; 0; : : : ; 0) 2 (Z=(M))n. Then d � Ah 6= d � Ak for 0 � h < k < T ,

where

A =

26666666666664

0 1 0 0 � � � 0

0 0 1 0 � � � 0

0 0 0 1 � � � 0
...

...
...

...
. . .

...

0 0 0 0 � � � 1

c0 c1 c2 c3 � � � cn�1

37777777777775
. (3)

(Here we mean that A = [c0] if n = 1.)

Proof. Suppose there exist two integers h and k, 0 � h < k < T , such that d �Ah = d �Ak.

Then we have �
d � Aj

�
� Ah =

�
d � Aj

�
� Ak for 0 � j � n� 1. (4)
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Note that

d � Aj = (0; : : : ; 0| {z }
j

; 1; 0; : : : ; 0); 0 � j � n� 1;

and so (4) implies that

Ah = Ak. (5)

Let d = (d (t))t�0 be a primitive sequence generated by f(x) over Z=(M), and let

dt = (d (t) ; d (t+ 1) ; : : : ; d (t+ n� 1))

be the t-th state of the sequence d for any integer t � 0. It follows from (1) that

d�t = A
t � d�0,

where d�t is the transpose of dt. Then by (5) we have

d�h = A
h � d�0 = Ak � d�0 = d�k,

and so the period of d is not greater than k � h < T , a contradiction to the fact that the

period of d is equal to T . Therefore we get that d � Ah 6= d � Ak for 0 � h < k < T .

The following lemma is an analogy of Theorem 8.78 of [23].

Lemma 8 Let a be a primitive sequence of order n over Z=(M) with period

T = lcm (pn1 � 1; pn2 � 1; : : : ; pnr � 1) .

Then �����
T�1X
t=0

eM (a (t))

����� �M n
2 .

Proof. For any vector b = (b0; b1; : : : ; bn�1) 2 (Z=(M))n, let

� (b) =

T�1X
t=0

eM (b0a (t) + b1a (t+ 1) + � � �+ bn�1a (t+ n� 1)) . (6)
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Note that

eM (b0a (0) + b1a (1) + � � �+ bn�1a (n� 1))

= eM (b0a (T ) + b1a (T + 1) + � � �+ bn�1a (T + n� 1)) ,

and so we obtain

� (b) =
T�1X
t=0

eM (b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1a (t+ n)) . (7)

Assume f(x) = xn � (cn�1xn�1 + � � � + c1x + c0) is a characteristic polynomial of a. Then

we have

a(t+ n) � c0a(t) + c1a(t+ 1) + � � �+ cn�1a(t+ n� 1)modM; t � 0. (8)

Hence, (7) and (8) yield

j� (b)j =
�����
T�1X
t=0

eM (b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1a (t+ n))
�����

=

�����
T�1X
t=0

eM

 
b0a (t+ 1) + b1a (t+ 2) + � � �+ bn�1

 
n�1X
k=0

cka(t+ k)

!!�����
= j� ((bn�1c0; b0 + bn�1c1; : : : ; bn�2 + bn�1cn�1))j

= j� (b � A)j ,

where A is an n�n matrix over Z=(M) of the form described in (3). Recursively, we have

j� (b)j = j� (b � A)j =
��� �b � A2��� = � � � = ��� �b � AT�1��� . (9)

Let d = (1; 0; : : : ; 0) 2 (Z=(M))n and 
 = fd � At j 0 � t � T � 1g. On one hand, it

can be seen from (6) that

T �
�����
T�1X
t=0

eM (a (t))

�����
2

= T � j� (d)j2 : (10)

On the other hand, since Lemma 7 implies that the number of elements in 
 equals T , it

follows from (9) that

T � j� (d)j2 =
T�1X
t=0

��� �dAt���2 =X
b2


j� (b)j2 �
X

b2(Z=(M))n

j� (b)j2 . (11)
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Thus, (10) and (11) yield

T �
�����
T�1X
t=0

eM (a (t))

�����
2

�
X

b2(Z=(M))n

j� (b)j2 . (12)

Note thatX
b2(Z=(M))n

j� (b)j2 =
X

b2(Z=(M))n

� (b) � � (b)

=
X

0�s;t�T�1

0@ X
b02Z=(M)

eM (b0 (a (s)� a (t)))

1A � � � �
�

0@ X
bn�12Z=(M)

eM (bn�1 (a (s+ n� 1)� a (t+ n� 1)))

1A : (13)
Since

(a (s) ; : : : ; a (s+ n� 1)) = (a (t) ; : : : ; a (t+ n� 1)) if and only if s � tmodT;

it follows from (13) that X
b2(Z=(M))n

j� (b)j2 = T �Mn. (14)

Finally combining (12) and (14), we get�����
T�1X
t=0

eM (a (t))

����� �M n
2 .

Remark 9 Note that r is assumed to be greater than 1. But Theorem 8.78 of [23] implies

that Lemma 8 is also true if r = 1.

Lemma 10 Let p be a prime number and a a primitive sequence of order n over Z=(p).

Then for any integer s we have

Ep(s) =

pn�2X
t=0

p�1X
h=0

ep (h � (a (t)� s)) =

8<: pn � p; if s � 0mod p;

pn; if gcd(s; p) = 1.
(15)
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Proof. Since the exponential sum

1

p
�
pn�2X
t=0

p�1X
h=0

ep (h � (a (t)� s))

counts the number of the element smod p occurring in a complete period of a, (15) imme-

diately follows from the element distribution properties of m-sequences over �nite �elds.

Let a be a primitive sequence of order n over Z=(M), and let

T = per(a;M) = lcm(pn1 � 1; pn2 � 1; : : : ; pnr � 1):

Given an element s 2 Z=(M), it can be seen that

N
�
aT ; s

�
=
1

M

T�1X
t=0

 
p1�1X
h1=0

ep1 (h1 � (a (t)� s)) � � �
pr�1X
hr=0

epr (hr � (a (t)� s))
!
.

For i = 1; 2; : : : ; r; let us denote

Di =

pi�1X
hi=1

epi (hi � (a (t)� s)) :

Then

N
�
aT ; s

�
=

1

M

T�1X
t=0

rY
i=1

(Di + 1)

=
1

M

T�1X
t=0

 
1 +

rX
i=1

Di +
rX
k=2

X
1�i1<���<ik�r

Di1Di2 � � �Dik

!

=
T

M
+
1

M

rX
i=1

T�1X
t=0

Di +
1

M

T�1X
t=0

rX
k=2

X
1�i1<���<ik�r

Di1Di2 � � �Dik : (16)

Note that for i = 1; 2; : : : ; r, we have that

T�1X
t=0

Di =

T�1X
t=0

pi�1X
hi=1

epi (hi � (a (t)� s))

=
T�1X
t=0

pi�1X
hi=0

epi (hi � (a (t)� s))� T

=
T

pni � 1

pni �2X
t=0

pi�1X
hi=0

epi (hi � (a (t)� s))� T:
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It follows from Lemma 10 that

T�1X
t=0

Di =
T � Epi(s)
pni � 1

� T; i = 1; 2; : : : ; r: (17)

Taking (17) into (16) yields�����N �aT ; s�� T

M

 
1� r +

rX
i=1

Epi(s)

pni � 1

!�����
=

1

M

�����
rX
k=2

X
1�i1<���<ik�r

T�1X
t=0

Di1Di2 � � �Dik

�����
� 1

M

rX
k=2

X
1�i1<���<ik�r

pi1�1X
hi1=1

� � �
pik�1X
hik=1

�����
T�1X
t=0

epi1 (hi1 (a (t)� s)) � � � epik (hik (a (t)� s))
�����

=
1

M

rX
k=2

X
1�i1<���<ik�r

pi1�1X
hi1=1

� � �
pik�1X
hik=1

�����
T�1X
t=0

epi1 (hi1a (t)) � � � epik (hika (t))
����� . (18)

For given 1 � i1 < i2 < � � � < ik � r, set

gid =

Q
1�j�k pij
pid

; d = 1; 2; : : : ; k.

Then it can be seen that

epi1 (hi1a (t)) epi2 (hi2a (t)) � � � epik (hika (t)) = epi1pi2 ���pik ((
kX
d=1

gidhid) � a (t)).

Since
kX
d=1

gidhid 6� 0mod pij ; 1 � j � k;

the sequence

(

kX
d=1

gidhid) � a = ((
kX
d=1

gidhid) � a (t))t�0

is a primitive sequence over Z=(pi1pi2 � � � pik) with period lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

�
.

Then by Lemma 8 we have�����
T�1X
t=0

epi1 (hi1a (t)) epi2 (hi2a (t)) � � � epik (hika (t))
����� � T � (pi1pi2 � � � pik)

n=2

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� (19)
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for all 1 � hid � pid � 1, 1 � d � k. Combining (18) and (19) yields�����N �aT ; s�� T

M
�
 
1� r +

rX
i=1

Epi(s)

pni � 1

!�����
� T

M
�

rX
k=2

X
1�i1<���<ik�r

Qk
j=1

�
pij � 1

�
p
n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� .
Therefore, it is clear that N

�
aT ; s

�
> 0 if

1� r +
rX
i=1

Epi(s)

pni � 1
>

rX
k=2

X
1�i1<���<ik�r

Qk
j=1

�
pij � 1

�
p
n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� .
This leads to the following theorem.

Theorem 11 Let a be a primitive sequence of order n over Z=(M). For a given element

s 2 Z=(M), the element s occurs in the sequence a if

1� r +
rX
i=1

Epi(s)

pni � 1
>

rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� .
In particular, every invertible element in Z=(M) occurs in the sequence a if

1 +
rX
i=1

1

pni � 1
>

rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� , (20)

and every element in Z=(M) occurs in the sequence a if

1�
rX
i=1

pi � 1
pni � 1

>
rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� . (21)

Remark 12 It is trivial that (21) is not true for n = 1. Next we shall show that (21) is

not true for n = 2 either. Since p2i � 1mod 4 for all 1 � i � r, it can be seen that

lcm
�
p21 � 1; p22 � 1; : : : ; p2r � 1

�
�
Qr
i=1 (p

2
i � 1)

4r�1
�
Qr
i=1 (p

2
i � 1)

2r
.
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Thus we have

rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)pij

lcm
�
p2i1 � 1; p2i2 � 1; : : : ; p2ik � 1

�
�

Qr
i=1 (pi � 1) pi

lcm (p21 � 1; p22 � 1; : : : ; p2r � 1)

� 2r �
rY
i=1

pi
pi + 1

> 1

> 1�
rX
i=1

pi � 1
p2i � 1

.

This shows that (21) is not true for n = 2.

Table 1 The proportions of M�s satisfy (21) of Theorem 11

n 
1000000 
5000000 
10000000 n 
1000000 
5000000 
10000000

3 76:347% 76:669% 76:811% 12 99:999% 99:999% 99:999%

4 67:918% 69:891% 70:482% 13 100% 100% 100%

5 99:998% 99:998% 99:998% 14 100% 100% 100%

6 95:964% 96:164% 96:204% 15 100% 100% 100%

7 100% 100% 100% 16 100% 100% 100%

8 100% 100% 100% 17 100% 100% 100%

9 100% 100% 100% 18 100% 100% 100%

10 100% 100% 100% 19 100% 100% 100%

11 100% 100% 100% 20 100% 100% 100%

To show the validity of Theorem 11, we did some experiments on the proportions of

M�s satisfying (21) of Theorem 11 and we list our results in Table 1 where the notation 
k

denotes the range of M , k 2 f1000000; 5000000; 10000000g. For example, if n = 3, then

the proportion of M�s satisfying (21) of all possible values M between 1 and 1000000 is

76:347%. It can be seen from Table 1 that for n > 6, the proportions ofM�s satisfying (21)

of Theorem 11 are close to 100%. In theory, the best result we can prove is that (21) holds

provided n is su¢ ciently large.
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Theorem 13 For each square-free odd integer M , there exists an integer NM such that

(21) holds if n > NM . Therefore, if a is a primitive sequence of order n > NM over

Z=(M), then every element of Z=(M) occurs in the sequence a.

Proof. See Appendix A.

3.2 Estimates for the number of even numbers occurring in a

primitive sequence of order 1 over Z=(M)

The Carmichael�s �-function (denote as �� (�)�) [25] will be frequently used in this subsec-

tion, and so we �rst make its de�nition explicit here. The Carmichael�s �-function of m is

de�ned as the universal exponent for the group of residues modulo m that are coprime to

m, i.e.,

�(m) = lcm(qe1�11 (q1 � 1); qe2�12 (q2 � 1); : : : ; qev�1v (qv � 1))

if m = qe11 q
e2
2 � � � qevv is the canonical factorization of m. In particular, sinceM = p1p2 � � � pr,

we have � (M) = lcm (p1 � 1; p2 � 1; : : : ; pr � 1), which is equal to the period of primitive

sequence of order 1 over Z=(M).

Lemma 14 Let a be a primitive sequence of order 1 over Z=(M) with period T = � (M).

Set v = [a]mod 2. Then for s 2 f0; 1g we have����N �vT ; s�� T � (Hs + 1)M

���� < 2T

M

X
djM
d>1

d3=2

� (d)
�
�
ln d

�
+
1

5

�
,

where Hs = M�1
2
� s.
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Proof. Since

N
�
vT ; s

�
=

T�1X
t=0

HsX
x=0

 
1

M

M�1X
h=0

eM (h (a (t)� 2x� s))
!

=
1

M

M�1X
h=0

 
eM (�hs) �

T�1X
t=0

eM (ha (t)) �
HsX
x=0

eM (�2hx)
!

=
T � (Hs + 1)

M
+
1

M

M�1X
h=1

 
eM (�hs) �

T�1X
t=0

eM (ha (t)) �
HsX
x=0

eM (�2hx)
!
,

it follows that ����N �vT ; s�� T � (Hs + 1)M

����
� 1

M

M�1X
h=1

�����
T�1X
t=0

eM (ha (t))

����� �
�����
HsX
x=0

eM (�2hx)
�����

=
1

M

X
djM
d>1

X
1�h�M�1

gcd(h;M)=M=d

�����
T�1X
t=0

eM (ha (t))

����� �
�����
HsX
x=0

eM (�2hx)
�����

=
1

M

X
djM
d>1

X
1�h�d�1
gcd(h;d)=1

�����
T�1X
t=0

ed (ha (t))

����� �
�����
HsX
x=0

ed (�2hx)
����� : (22)

Note that given a divisor d > 1 of M , [ha]mod d is a primitive sequence over Z=(d) with

period � (d) for every integer h coprime with d, and so it follows from Lemma 8 and Remark

9 that �����
T�1X
t=0

ed (ha (t))

����� =
������ T� (d) �

�(d)�1X
t=0

ed (ha (t))

������ � T � d1=2
� (d)

. (23)
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Combining (22) and (23) yields����N �vT ; s�� T � (Hs + 1)M

����
� 1

M

X
djM
d>1

X
1�h�d�1
gcd(h;d)=1

T � d1=2
� (d)

�
�����
HsX
x=0

ed (�2hx)
�����

=
T

M

X
djM
d>1

d1=2

� (d)
�
X

1�h�d�1
gcd(h;d)=1

�����
HsX
x=0

ed (�2hx)
�����

� T

M

X
djM
d>1

d1=2

� (d)
�
d�1X
h=1

�����
HsX
x=0

ed (�2hx)
����� . (24)

Since gcd (2; d) = 1, we get

d�1X
h=1

�����
HsX
x=0

ed (�2hx)
����� =

d�1X
h=1

�����
HsX
x=0

ed (hx)

����� . (25)

Applying Lemma 6 to the right-hand side of (25) we obtain

d�1X
h=1

�����
HsX
x=0

ed (�2hx)
����� < 2d �

�
ln d

�
+
1

5

�
, (26)

and so the result follows from (24) and (26).

The following Theorem 15 immediately follows from Lemma 14.

Theorem 15 Let a be a primitive sequence of order 1 over Z=(M). Then there exists an

even number occurring in a if

M + 1

4
�
X
djM
d>1

d3=2

� (d)
�
�
ln d

�
+
1

5

�
. (27)

Experiments show that there are about 69:720%, 75:862%, 80:787%, 87:459% and

90:619% of M�s satisfying (27) among all M�s less than 100; 000, 300; 000, 1; 000; 000,

10; 000; 000 and 50; 000; 000, respectively. It can be seen that the percentage increases as

the range of M increases.
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In fact, our experiments even indicate the following conjecture which has been veri�ed

for all M�s less than 300; 000.

Conjecture 16 For every primitive sequence a of order 1 over Z=(M), there exists an

even number occurring in a.

Remark 17 Conjecture 16 implies that for every primitive element � 2 Z=(M), there

exists an integer t � 0 such that
�
�t
�
modM

is a positive even number.

Remark 18 If Conjecture 16 is true, then for every typical primitive polynomial f (x)

over Z=(M), there always exist a positive integer S and a positive even number C < M

such that xS � Cmod f(x) holds over Z=(M). This is because by Lemma 1, if f (x) is

a typical primitive polynomial over Z=(M), then xS0 � �mod f(x) holds over Z=(M) for

some positive integer S0 and some primitive element � in Z=(M), and so it follows from

Remark 17 that there exists an integer t � 0 such that C =
�
�t
�
M
is a positive even number.

Thus we get xS0t � �t � Cmod f(x) holds over Z=(M).

Although we could not completely prove Conjecture 16 by now, we obtain a asymptotic

result as follows.

Let I be a set of positive integers and S a subset of I. For any positive integer n, denote

In = fm 2 I j m � ng and Sn = fm 2 S j m � ng .

The asymptotic density of S is the following limit (if it exists)

� (S) = lim
n!1

#Sn
#In

,

where #Sn and #In are the number of elements in Sn and In, respectively.

Theorem 19 Let I be the set of all square-free odd integers. There is a subset S of I with

asymptotic density 1 such that Conjecture 16 is true for M 2 S.

Proof. See Appendix B.
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4 The distinctness of primitive sequences over Z=(M)

modulo 2

This section is mainly devoted to the proof of Theorem 20.

Theorem 20 Let f(x) be a typical primitive polynomial of degree n = 2k+ 1 over Z=(M)

with k � 1. If

(1) Conjecture 16 is true; and

(2) for any sequence z 2 G0(f(x);M), there exist two nonnegative integers t1 and t2
such that z(t1) = 0 and z(t2) 2 f1;M � 1g; and

(3) (M;n) is a distinguishable pair,

then for a; b 2 G0(f(x);M), a = b if and only if [a]mod 2 = [b]mod 2.

We �rst give some necessary lemmas.

Lemma 21 Let f(x) be a typical primitive polynomial of degree n = 2k + 1 over Z=(M)

with k � 1, and let a; b 2 G0(f(x);M) with [a]mod 2 = [b]mod 2. If

(1) Conjecture 16 is true; and

(2) for any sequence z 2 G0(f(x);M), there exists a nonnegative integer t such that

z (t) 2 f1;M � 1g,

then there is a divisor R > 1 of M such that

[a]modR = [b]modR

but

[a]mod q 6= [b]mod q

for any prime divisor q of M=R.
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Proof. Set c = [a� b]modM . It is clear that c 2 G(f(x);M). We claim that c =2 G0(f(x);M).

Otherwise, by assumption there is an integer t � 0 such that c (t) 2 f1;M � 1g.

If c (t) = 1, i.e., [a(t)� b(t)]modM = 1. Then [a (t)]mod 2 = [b (t)]mod 2 implies that

a (t) = 0 and b (t) =M � 1.

Since f (x) is a typical primitive polynomial over Z=(M), it follows from Remark 18 that

there exist a positive integer S and a positive even number C < M such that xS �

Cmod f(x) holds over Z=(M), and so we get

a (t+ S) = [C � 0]modM = 0 and b (t+ S) = [C � (M � 1)]modM =M � C,

which yield

[a (t+ S)]mod 2 6= [b (t+ S)]mod 2 ,

a contradiction to the assumption that [a]mod 2 = [b]mod 2.

Similarly, it can be shown that [a]mod 2 6= [b]mod 2 if c (t) =M � 1.

Therefore, we get that c =2 G0(f(x);M). This implies that there at least exists a prime

divisor p of M such that a � bmod p. Let R be the largest divisor of M such that

a = bmodR. Then R is the desired divisor.

Lemma 22 Let f(x) be a typical primitive polynomial of degree n = 2k + 1 over Z=(M)

with k � 1 and a; b 2 G0(f(x);M). Then [a]mod 2 6= [b]mod 2 if

(1) Conjecture 16 is true; and

(2) a (t�) = 0 and b (t�) = M � R for some nonnegative integer t� and some divisor R

of M with 1 < R < M .

Proof. Since f(x) is a typical primitive polynomial over Z=(M), there exist a positive

integer S and a primitive element � of Z=(M) such that xS � �mod f (x) holds over

Z=(M). Applying xS � �mod f (x) to a and b, respectively, we get

a (t� + k � S) =
�
a (t�) � �k

�
modM

= 0
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and

b (t� + k � S) =
�
b (t�) � �k

�
modM

=M �R �
�
�k
�
modM=R

for any integer k � 0. By Remark 17 there is an integer k� � 0 such that
�
�k

��
modM=R

is a

positive even number. Note that
�
�k

��
modM=R

6= 0, and so we get

[a (t� + k� � S)]mod 2 = 0 6= 1 = [b (t� + k� � S)]mod 2 :

This implies that [a]mod 2 6= [b]mod 2.

Lemma 23 Let a and b be two positive integers with gcd (a; b) = 1. Then for any two

nonnegative integers t1 and t2, there exist two integers k1 and k2 such that t1 + k1 � a =

t2 + k2 � b.

Proof. Since gcd (a; b) = 1, by the extended Euclidean algorithm there exist two integers u

and v satisfying u � a+ v � b = 1. Then we get (t2 � t1) � u � a+ (t2 � t1) � v � b = t2 � t1, i.e.,

t1+(t2 � t1) �u �a = t2+(t1 � t2) �v �b, and so the lemma follows by setting k1 = (t2 � t1) �u

and k2 = (t1 � t2) � v.

Lemma 24 Let f(x) be a primitive polynomial over Z=(M), and let d > 1 be a divisor

of M , and let s be a given element in Z= (M). If for any sequence z 2 G0(f(x);M), the

element s occurs in z, then for any sequence m 2 G0(f(x); d), the element [s]mod d occurs

in m.

Proof. Since m can be lifted to be a sequence z in G0(f(x);M) such that m = [z]mod d, it

is easy to see that the lemma holds.

With the above preparations, now we are ready to prove Theorem 20.

Proof of Theorem 20. Since the necessary condition is trivial, in the following, we only

prove the su¢ cient condition.
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If a; b 2 G0(f(x);M) and [a]mod 2 = [b]mod 2, then Lemma 21 (Note that f (x) here is

a typical primitive polynomial over Z= (M) since (M;n) is a distinguishable pair) implies

that there is a divisor R > 1 of M such that

[a]modR = [b]modR

but

[a]mod q 6= [b]mod q

for any prime divisor q of M=R. Hence it su¢ ces to show that R =M .

Suppose R < M . Let us denote Q = M=R. Note that M is a square-free odd integer,

and so R and Q are square-free odd integers and gcd(R;Q) = 1. Since [a]modR = [b]modR,

by the Chinese Remainder Theorem, a and b can be written as

a = [Q �m1 +R �m2]modM and b = [Q �m1 +R �m3]modM , (28)

where

m1 2 G0(f(x); R) and m2;m3 2 G0(f(x); Q):

Since [a]mod q 6= [b]mod q for any prime divisor q of Q and a � b � R � (m2 �m3)modM ,

it follows that [m2]mod q 6= [m3]mod q for any prime divisor q of Q, which implies that

[m2 �m3]modQ 2 G0(f(x); Q).

Firstly, since m1 2 G0(f(x); R) and [m2 �m3]modQ 2 G0(f(x); Q), it follows from the

condition (2) of Theorem 20 and Lemma 24 that there exist two positive integers t1 and t2

such that

m1 (t1) = 0 (29)

and

[m2 (t2)�m3 (t2)]modQ = 1 or Q� 1. (30)

Secondly, suppose R = r1r2 � � � ru and Q = q1q2 � � � qv are the canonical factorizations of

R and Q, respectively. Set

�R = lcm

�
rn1 � 1
r1 � 1

; : : : ;
rnu � 1
ru � 1

�
and TQ = lcm (qn1 � 1; : : : ; qnv � 1) .
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Since (M;n) is a distinguishable pair, it follows that

gcd

�
pni � 1
pi � 1

; pnj � 1
�
= 1

for any pair of distinct prime divisors pi and pj of M . In particular, we have

gcd

�
rni � 1
ri � 1

; qnj � 1
�
= 1

for all 1 � i � u and all 1 � j � v, and so we get gcd (�R; TQ) = 1.

Thirdly, since gcd (�R; TQ) = 1, by Lemma 23 there exist two integers k1 and k2 such

that

t1 + k1 � �R = t2 + k2 � TQ:

Set

t� = t1 + k1 � �R = t2 + k2 � TQ. (31)

Note that f (x) is also a typical primitive polynomial of degree n over Z=(R), and so by

(2) of Lemma 1, there exists a primitive element �R of Z=(R) such that x
�R � �Rmod f (x)

holds over Z=(R). Applying x�R � �Rmod f (x) to m1 we can get

m1 (t1 + k1 � �R) =
h
m1 (t1) � (�R)

k1
i
modR

= 0. (32)

Since TQ is the period of m2 and m3, we have

m2 (t2 + k2 � TQ) = m2 (t2) and m3 (t2 + k2 � TQ) = m3 (t2) . (33)

Then (28), (31), (32) and (33) yield

a (t�) = [Q �m1 (t
�) +R �m2 (t

�)]modM

= [Q �m1 (t1 + k1 � �R) +R �m2 (t2 + k2 � TQ)]modM
= R �m2 (t2) (34)

and

b (t�) = [Q �m1 (t
�) +R �m3 (t

�)]modM

= [Q �m1 (t1 + k1 � �R) +R �m3 (t2 + k2 � TQ)]modM
= R �m3 (t2) . (35)
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Finally, if [m2 (t2)�m3 (t2)]modQ = 1, then we get8<: 0 < m2 (t2) = w < Q

m3 (t2) = w � 1
or

8<: m2 (t2) = 0

m3 (t2) = Q� 1
.

If 8<: 0 < m2 (t2) = w < Q,

m3 (t2) = w � 1,

then (34) and (35) together with the fact that R is an odd integer give

[a (t�)]mod 2 = [R � w]mod 2 = [w]mod 2 6= [w � 1]mod 2 = [R � (w � 1)]mod 2 = [b (t�)]mod 2 ,

a contradiction to the assumption that [a]mod 2 = [b]mod 2. If8<: m2 (t2) = 0,

m3 (t2) = Q� 1,

then (34) and (35) yield

a (t�) = 0 and b (t�) =M �R.

By Lemma 22 we get [a]mod 2 6= [b]mod 2, a contradiction.

Similarly, we can show [a]mod 2 6= [b]mod 2 if [m2 (t2)�m3 (t2)]modQ = Q� 1.

Therefore, we have that R =M . This completes the proof.

The following Corollary 25 immediately follows from Theorem 11 and Theorem 20.

Corollary 25 Let f(x) be a typical primitive polynomial of degree n = 2k+1 over Z=(M)

with k � 1. If

(1) Conjecture 16 is true; and

(2)
�
1�

Pr
i=1

pi�1
pni �1

�
>
Pr

k=2

P
1�i1<���<ik�r

Qk
j=1(pij�1)p

n=2
ij

lcm
�
pni1
�1;pni2�1;:::;p

n
ik
�1
� ; and

(3) (M;n) is a distinguishable pair,

then for a; b 2 G0(f(x);M), a = b if and only if [a]mod 2 = [b]mod 2.
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Remark 26 Experiment shows that there are about 61:148% of (M;n)�s satisfying condi-

tions (2) and (3) of Corollary 25 when M runs through all possible values between 1 and

10; 000; 000 and n runs through all odd integers between 3 and 19.

Note that Conjecture 16 naturally holds for the case of prime numbers, and so we can

immediately get the following Corollary 27 by replacing the condition (1) of Corollary 25

with the estimate of Theorem 15.

Corollary 27 Let f(x) be a typical primitive polynomial of degree n = 2k+1 over Z=(M)

with k � 1. If

(1) Q+1
4
�
P
djQ
d>1

d3=2

�(d)
�
�
ln d
�
+ 1

5

�
for every nonprime divisor Q of M ; and

(2)
�
1�

Pr
i=1

pi�1
pni �1

�
>
Pr

k=2

P
1�i1<���<ik�r

Qk
j=1(pij�1)p

n=2
ij

lcm
�
pni1
�1;pni2�1;:::;p

n
ik
�1
� ; and

(3) (M;n) is a distinguishable pair,

then for a; b 2 G0(f(x);M), a = b if and only if [a]mod 2 = [b]mod 2.

Remark 28 Experiment shows that there are about 38:403% of (M;n)�s satisfying the con-

ditions of Corollary 27 when M runs through all possible values between 1 and 10; 000; 000

and n runs through all odd integers between 3 and 19.

5 Conclusion

Letm be an integer greater than 1. This paper studies the distinctness problem of primitive

sequences over Z= (m) modulo 2. For the case of m = pe, a prime power, the problem was

completely solved in [19]. For the case of m = pq, a product of two distinct prime numbers,

[21] �rst gave a partial answers, and then [18] almost completely solved it with the help

of convincing experimental data. Consequently, the aim of this paper is trying to tackle
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any square-free modulus and a class of primitive sequences of order 2k + 1 is proved to be

distinct modulo 2. It is not surprising to �nd that as the number of prime factors of the

modulus m increases, the problem becomes more and more resistant to be solved. Thus to

improve the results of this paper and to completely solve this problem for general modulus

will rely on more profound results in number theory.

Appendix A: Proof of Theorem 13

As a preparation, we �rst introduce a result of Bugeaud, Corvaja and Zannier [24].

Lemma 29 ([24, Theorem 1]) If a < b are two integers greater than 1 which are multi-

plicatively independent (that is, the only integer solution (x; y) of the equation axby = 1 is

(x; y) = (0; 0)), then for any given real number " > 0, there exists an integer N" such that

gcd (an � 1; bn � 1) < an" for all integers n > N".

Proof of Theorem 13. Since the left-hand side of (21) is equal to 1 as n ! 1, it su¢ ces

to show that the right-hand side of (21) is equal to 0 as n!1, i.e.,

lim
n!1

rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� = 0. (36)

Recall thatM = p1p2 � � � pr is the canonical factorization ofM with 3 � p1 < p2 < � � � < pr.

Given a real number " > 0. For any 1 � i < j � r, it follows from Lemma 29 that there

exists an integer N (i;j)
" such that

gcd
�
pni � 1; pnj � 1

�
< pn"i for all integers n > N (i;j)

" .

Set

N" = maxf
�
ln pi
ln p1

�N (i;j)
"

�
j 1 � i < j � rg,

where dae denotes the smallest integer greater than or equal to a. Then it is clear that

gcd
�
pni � 1; pnj � 1

�
< pn"1 , 1 � i < j � r and n > N": (37)
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Let 2 � k � r and 1 � i1 < � � � < ik � r. It follows from (37) that if n > N", then

lcm
�
pni1 � 1; p

n
i2
� 1; : : : ; pnik � 1

�
�

Qk
j=1(p

n
ij
� 1)Q

1�j<s�k gcd(p
n
ij
� 1; pnis � 1)

� p
�k2n"=2
1 �

Yk

j=1
(pnij � 1)

� p
�r2n"=2
1 �

Yk

j=1
(pnij � 1):

Consequently, we haveQk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� � p
r2n"=2
1 �

Yk

j=1

�
pij � 1

�
p
n=2
ij

pnij � 1

< p
r2n"=2
1 �

Yk

j=1
p
1�n=2
ij

� p
r2n"=2
1 �M �

Yk

j=1
p
�n=2
ij

. (38)

Note that k � 2 and pij > p1 for 1 � j � k, and so (38) yieldsQk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� < pr2n"=21 �M � p�nk=21 � pr
2n"=2
1 �M � p�n1 =M � p�

n
2
�(2�r2")

1 .

Hence it can be seen that
rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� < 2r �M � p�
n
2
�(2�r2")

1 .

Then choosing " < r�2, we get

0 �
rX
k=2

X
1�i1<���<ik�r

Qk
j=1(pij � 1)p

n=2
ij

lcm
�
pni1 � 1; pni2 � 1; : : : ; pnik � 1

� < 2r �M � p�n=21 . (39)

Since r, M and p1 are all �xed integers with p1 � 3, then 2r �M � p�n=21 is equal to 0 as

n!1, and so (36) follows from (39).

Appendix B: Proof of Theorem 19

Lemma 30 ([26, Theorem 2]) Let N+ be the set of all positive integers. There is a subset

S of N+ with asymptotic density 1 such that, for m 2 S,

�(m) = m= (lnm)ln ln lnm+A+O((ln ln lnm)
�1+") ,
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where A = 0:2269688 : : : and " > 0 is �xed but arbitrarily small.

Let I be the set of all square-free odd integers. Note that the asymptotic density of I

in N+ is 4
�2
6= 0 (see [27, Theorem 1]), and so by Lemma 30 we can easily get the following

Corollary 31.

Corollary 31 Let I be the set of all square-free odd integers. There is a subset S of I with

asymptotic density 1 such that, for m 2 S,

�(m) = m= (lnm)ln ln lnm+A+O((ln ln lnm)
�1+") ,

where A = 0:2269688 : : : and " > 0 is �xed but arbitrarily small.

As usual, for an integer m � 1 we denote by �(m) the number of distinct positive

integer divisors of m. We will make use of the following estimate of �(m) :

ln �(m) = O

�
lnm

ln ln(m+ 2)

�
; (40)

see [28, Theorem 5.2].

With the above preparations, we now can prove Theorem 19.

Proof of Theorem 19. By Theorem 15, it su¢ ces to prove that there is a subset S of I

with asymptotic density 1 such that the inequality

m+ 1

4
�
X
djm
d>1

d3=2

� (d)
�
�
ln d

�
+
1

5

�
(41)

holds for m 2 S.

Let m be a square-free odd integer and d > 1 a divisor of m. Note that

� (m) = lcm(� (m=d) ; � (d)) � � (m=d) � � (d) ;

and

� (m=d) < m=d � (m=d)3=2 ;



30

and so
d3=2

� (d)
� m3=2

� (m)
. (42)

Applying (42) to the right-hand side of (41) we getX
djm
d>1

d3=2

� (d)
�
�
ln d

�
+
1

5

�
�

X
djm
d>1

m3=2

� (m)
�
�
lnm

�
+
1

5

�

< � (m) � m
3=2

� (m)
�
�
lnm

�
+
1

5

�
< C � � (m) � m

3=2

� (m)
� lnm,

where C is some absolute constant. Hence the inequality (41) holds if

m

4
� C � � (m) � m

3=2

� (m)
� lnm. (43)

It follows from Corollary 31 that there is a subset S
0
of I with asymptotic density 1 such

that for m 2 S 0
,

�(m) = m= (lnm)ln ln lnm+A+O((ln ln lnm)
�1+") , (44)

where A = 0:2269688 : : : and " > 0 is �xed but arbitrarily small. Note that � (m) =

O
�
m1= ln ln(m+2)

�
, and so the right-hand side of (43) is

O
�
m

1
2
+ 1
ln ln(m+2) (lnm)ln ln lnm+1+A+O((ln ln lnm)

�1+")
�
. (45)

It can be seen that (45) is m1=2+o(1) as m ! 1. Therefore there exists an integer N such

that the inequality (43) holds for m 2 S 0
and m � N . Set

S = fm 2 S 0 j m � Ng.

Then S is also a subset of I with asymptotic density 1 and the inequality (41) holds for

m 2 S. This completes the proof.
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