State convergence and keyspace reduction of the
Mixer stream cipher

Sui-Guan Teo!, Kenneth Koon-Ho Wong', Leonie Simpson'2?, and Ed Dawson'!

! Information Security Institute,
Queensland University of Technology
{sg.teo,kkwong,e.dawson}@qut.edu.au
2 Faculty of Science and Technology,
Queensland University of Technology
GPO Box 2434, Brisbane Qld 4001, Australia

1r.simpson@qut.edu.au

Keywords: Stream cipher, initialisation, state convergence, Mixer, LILI, Grain

Abstract. This paper presents an analysis of the stream cipher Mixer,
a bit-based cipher with structural components similar to the well-known
Grain cipher and the LILI family of keystream generators. Mixer uses
a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The
analysis is focused on the initialisation function of Mixer and shows that
there exist multiple key-IV pairs which, after initialisation, produce the
same initial state, and consequently will generate the same keystream.
Furthermore, if the number of iterations of the state update function
performed during initialisation is increased, then the number of distinct
initial states that can be obtained decreases. It is also shown that there
exist some distinct initial states which produce the same keystream, re-
sulting in a further reduction of the effective key space.

1 Introduction

Many keystream generators for stream ciphers are based on shift registers, partic-
ularly Linear Feedback Shift Registers (LFSRs). Using the output of a regularly-
clocked LFSR directly as keystream is cryptographically weak due to the linear
properties of LESR sequences. To mask this linearity, stream cipher designers use
LFSRs and introduce non-linearity either explicitly through the use of nonlinear
Boolean functions or implicitly through through the use of irregular clocking.

Some stream ciphers use both explicit and implicit methods to provide non-
linearity. For example, the LILI family of keystream generators [1,5] produce
keystream by using the contents of one LFSR to control the clocking of a second
LFSR. A nonlinear filter function is applied to the contents of the second LFSR
to produce the keystream. Thus the LILI family of keystream generators may
be viewed as irregularly clocked nonlinear filter generators.

In this paper, we analyse the Mixer stream cipher [3], with a particular focus
on the initialisation function. Mixer is another stream cipher which uses both
implicit and explicit methods to provide nonlinearity. The explicit nonlinearity
comes from the use of a nonlinear fedback shift register, while the implicit non-
linearity is derived from the use of a function which controls how many times a
particular shift register is clocked.

In this paper we describe two major problems with Mixer. Firstly, the ini-
tialisation function of Mixer results in state convergence, so that by the time
the initialisation phase is complete, multiple key-IV pairs have converged to
produce the same initial state. Furthermore, the number of key-IV pairs which
produce the same initial state increases as the number of iterations of the state
update function performed during the initialisation increases. That is, the num-
ber of distinct initial states decreases as the number of iterations performed in
the initialisation process increases. Secondly, the use of the shrinking generator
style irregular clocking during keystream generation results in the existence of
equivalent initial states - that is, distinct initial states which produce the same
keystream. This is not a desirable feature.

The remainder of this paper is organised as follows. Section 2 describes the
Mixer specification in detail. In Section 3, we present our analysis, outlining
weaknesses in both the initialisation process and the keystream generation pro-
cess. We demonstrate both the state convergence that occurs during the ini-
tialisation process and the circumstances under which Mixer will generate the
same keystream even when the initial states are distinct. Section 4 compares the
security provided by Mixer with that of two well-known ciphers which use simi-
lar components, and discusses how different compositions of similar components
can affect the security. Section 5 presents our conclusions and outlines possible
directions for future work.

2 Specification of the Mixer keystream generator

The Mixer keystream generator design has much in common with two well-
known stream ciphers, the LILI family of stream ciphers [1,5] and Grain-80 [2].
The clock-control operation from LILI and the identical nonlinear Boolean func-
tion from Grain-80 are used in Mixer to provide nonlinearity. Like both LILI
and Grain, the Mixer design is based on two shift registers. Specific details of
the structure, initialisation and keystream generation processes for Mixer are
described below.

2.1 Components of Mixer

The keystream generator of Mixer [3] is based on two shift registers, denoted
A and B, of lengths 128-bits and 89-bits, respectively. Register A is a regularly
clocked LFSR with the feedback function A(z). Register B is an irregularly
clocked NFSR with the feedback function B(x), with clocking controlled by
register A. In this paper, we use the notation A:[i] to denote the contents of

the ith stage of register A at time ¢, where ¢ € {0,1,...127}. Similarly, we use
the notation By[j] to denote the contents of the jth stage of register B at time
t, where j € {0,1,...88}. The feedback functions for the two registers are as
follows.

The feedback function of A is the weight 67 primitive polynomial A(x) defined
as:
Ax) =14z +a5 +a7 +a8+2° + 2l + 2 4 15 4 216 4 517
+ 28 2B 4 % 4 2% 4230 4 o35 4 236 39 4 240
a3 gty AT 4 49 | 050 L 051y 052 | 53 | 055
4 %0 4 257 4 258 4 200 4 201 4 265 4 266 4 267 4 270
+a 2 B ™ 2T 4 2™ 4280 a8 4 B2
187 4 90 4 94 4 06 4 1102 | 103 4 o104 4 105
4106 4 108 4 o111 4 115 | 117 4 o119) 122

+ 1'123 + $124 T .1?125 T .T126 4 1‘128

where + denotes addition in GF(2).
The feedback function for NLFSR B(x) is the composition of a linear feed-

back polynomial By (z) and the nonlinear function By (z). That is, B(z) is
defined as:

B(z) = Br(z) + ByL(x) 1)
where Bp,(z) is defined as:
L4+ a+ 2% 4+ 2% 4 258 4 25° 4 280 4 2% 4 2% (2)
and By () is:
88
Byi(e) = [[(0® B,(0) 3)
j=1

Note that By () is equal to 1 with probability 2738, In the analysis presented
in this paper, the feedback function B(z) is approximated by By (x), an approx-
imation that holds with very high probability.

The clocking of Register B is under the control of register A. An integer
function, Fryr, takes the contents of w selected stages of register A as input
and outputs an integer ¢(b), which is the number of times register B is to be
clocked. Fynt is defined as:

ct(b) = Frnre = 1420 Ayfio) + 21 - Agin] + .. 42971+ Ayl 1]

where w € {0,1,2,...127} and 49,41, ...%-1 € {0,1,2,...,127}. Note that the
Mixer specification does not fix the value for w, nor does it specify the tap

positions for the inputs to Fyyr, but it does recommend that w € {2,3,...7}
be used for efficiency reasons.

A nonlinear Boolean function, g(x), is used to determine whether the output
of Register B will be used or discarded. The function g(z) is defined as:

g(z) =x1 4+ 24 + 2023 + 2223 + 23x4 + x0x1x2 4 202223+
202224 + rlx2xd + 222324

The inputs z0, z1, 2, x3, x4 at time ¢ are the contents of the five stages of
register A: A.[7], A¢[37], A¢[73], A[91] and A.[123], respectively.

Figure 1 illustrates the components of Mixer and the interaction of its com-
ponents during both the initialisation (includes both solid and dotted lines) and
keystream generation (solid lines only) processes.

FinT
LFSR A [NLFSR B
e
A(z) - Y I

-
il

B(x)

g(z)

:

Select/Discard

Fig. 1. Mixer state update functions

2.2 Initialisation of Mixer

The Mixer initialisation process can be divided into two phases: the loading
phase, during which the key and IV are loaded into the shift registers; and the
initialisation state update phase, where the key and IV values are 'mixed’ to
prepare an initial state before keystream generation begins.

Let the individual bits of the 128-bit key K be denoted kg, k1, . .. k127, and
the individual bits of the 64-bit IV, V' be denoted by vg, v1,...vg3. The loading
phase of Mixer is performed as follows. The key, K, is loaded into register A
such that A[i] = k;, for 0 < ¢ < 127. The IV, V, is loaded into register B such
that B[i] = vli], for 0 < i < 63. The remaining stages of register B are filled
with ones. In this paper, we refer to a Mixer internal state at the completion of
the loading phase as a loaded state.

To complete the initialisation process, the initialisation state update phase
must be performed. This involves performing 200 iterations of the initialisation

state update function. Consider S;, the internal state at time ¢, (the contents of
the two registers A; and By). For each iteration the following process, as shown
in Figure 1 (with both solid and dotted lines), is followed:

1. Clock register A once.
2. For the updated state A;y1, calculate:

(a) The integer value c¢;11(b) using Fryr.
(b) The output of the nonlinear Boolean function g(x)

3. Clock register B c(b) times.

4. If g(x) = 0 then this iteration is complete.

5. If g(z) = 1 then XOR the output bit of B (after ¢(b) clocks) with the contents
of both register stages A[127] and BJ[88].

In this paper, the XOR operation described in Step 5 is referred to as the
mixing operation. This is the only operation in the initialisation state update
function where contents of the two registers are directly combined. The output
bit from register B which is XORed is referred to as the mizing bit, and denoted
m.

During the initialisation phase, no keystream is produced. After 200 iterations
of the initialisation state update function, registers A and B are in an initial state
and ready to begin keystream generation.

2.3 Keystream Generation

During keystream generation the state update function is similar to the initiali-
sation state update function. The only difference is that the mixing operation is
not used, and the output of register B is used directly as the keystream. That
is, for each iteration the following process, as shown in Figure 1 (with solid lines
only), is followed:

1. Clock register A once.
2. For the updated state A;11, calculate:

(a) The integer value c¢;11(b) using Fryr.
(b) The output of the nonlinear Boolean function g(x)
3. Clock register B c(b) times.
4. If g(x) = 0 then this iteration is complete.
5. If g(x) = 1 then the output bit of B becomes the keystream bit z;.

This process continues until sufficient keystream bits have been generated to
encrypt or decrypt the message. Mixer is intended as a binary additive stream
cipher, so encryption and decryption are performed by XORing the keystream
produced with plaintext or ciphertext, respectively.

3 Analysis of Mixer

Mixer takes a 128-bit key, K, and a 64-bit IV, V| as inputs to the initialisation
process. Thus, there are a total of 2128164 = 2192 possible loaded states. The
total Mixer internal state size is the sum of the lengths of registers A and B:
128 + 89 = 217, so there are a total of 2217 possible internal states. Ideally, the
initialisation process would result in 2'92 distinct initial states for keystream
generation, and Mixer could produce 2'9? distinct possible keystream sequences.
That is, each key-IV pair should produce a distinct keystream. However this is
not the case for Mixer. This analysis explores two main causes for the reduction
in the Mixer keystream generator: the internal state convergence that occurs
during the initialisation process, and the existence of “equivalent states” —
distinct initial states which produce the same keystream. These two problems
each result in a reduction of the effective keyspace of Mixer.

3.1 Analysis of the Mixer initialisation process

Our analysis of the initialisation process is based on the observation that the ini-
tialisation state update function is not bijective. Considering the state transition
in the forwards direction, given a value of S;, there is a single next state value
for Siy1. However, when considering the state transition in the reverse direction,
given a value of Siy1, there may be multiple possible state values for S;. That
is, there is the possibility of state convergence occurring during an iteration of
the initialisation state update function. The Mixer initialisation process involves
200 iterations of the state update function. In this section we examine the state
convergence during one iteration of the initialisation state update function, and
across the 200 iterations of the initialisation process.

State transition possibilities during initialisation. Recall the Mixer ini-
tialisation state update function given in Section 2.2 requires calculation of the
output of the Boolean function g(z), with the update of the two register stages
A[127] and B[88] with the mixing value m conditional on the value of g(x). The
possibilities for the state transitions from S; to Sy are:

1. g(z) = 0. No mixing operation occurs, regardless of the value of m.

2. g(z) = 1 and m = 0. The mixing operation occurs. However, as the mix-
ing operation is GF(2) addition, the contents of A[127] and B[88] remain
unchanged after the mixing operation. That is, the outcome is the same as
when g(x) = 0.

3. g(x) = 1 and m = 1: The mixing operation occurs, and the contents of
A[127] and BI[88] are complemented. We refer to this as effective mixing.

Since A has a primitve feedback function and g(x) is a balanced nonlinear
Boolean function, the probability that g(z) = 1 is expected to be very close
to 0.5. Of the 4 possible g(x) and m value combinations, effective mixing oc-
curs with a probability of 0.25. Thus, when considering state convergence when

Mixer’s initialisation function is being run forwards, the probability of state con-
vergence occurring is also 0.25. When we consider all possible 217-bit states, and
perform an initialisation process consisting of R iterations of the initialisation
state update function, clearly, due to state convergence, the set of possible ini-
tial states that can be obtained will contain fewer than 22'7 distinct states and
could be estimated by 227 x 0.75%. Note that in the initialisation process we
begin the state update phase of the initialisation process with only 2!°2 possible
loaded states and not 22!7. If we assume that the iterations of Mixer’s initiali-
sation process are independent events then n,, the upper-bound on the number
of possible distinct initial states can be estimated by

Ny = 2192 x 0.75% (4)

Consider inverting the initialisation state update function. That is, given S;11
we want to obtain S;. Both A and B are shift registers, and can be clocked in the
reverse direction. Recall from 2.1 that register A is a regularly clocked LFSR,
which controls the clocking of register B. The only uncertainty in performing
this is whether there was effective mixing to create S;11. The possibilities for
the state transitions from S;11 to Sy are conditional on g(z) and m:

1. g(x) = 0. No mixing occurred. In this case, we use A;+1 to calculate ¢(b) =
Frnr(A¢41), and clock register A back one time and register B back ¢(b)
times.
2. g(x) = 1. Mixing has occurred, but the effect depends on the value of m:
(a) If m = 0 then (as for the case when g(x) = 0) use A;11 to calculate
c(b) = Frnr(Ai1), and clock register A back one time and register B
back ¢(b) times.

(b) If m = 1 then complement both A[127] and B[88], and then use A;11
to calculate ¢(b) = Fynr(Ai4+1), and clock register A back one time and
register B back ¢(b) times.

The value of g(z) is readily obtained from A;;. The difficulty in inverting the
state update function lies with computing the value of m. We cannot obtain this
directly from By as it is discarded from register B after the mixing operation.
Therefore, given g(x) = 1 we have two possibilities to consider (that m could
have been either 1 or 0) corresponding to two possible previous states. If each of
the iterations of Mixer’s initialisation process resulted in state convergence, the
number of possible distinct initial states, is given by

ny = 2192 % 0.5% (5)
This is possible but highly unlikely, as g(x) is a balanced function, so Equation

5 forms a lower bound.

Bounds on number of equivalent loaded states Equations 4 and 5 above
give an upper and lower bounds on the predicted number of distinct initial states
that will be obtained after an R iteration process. Table 1 provides the computed

value for n, and n; for the various values of R between 0 and 200. From Table
1, for 200 iterations of Mixer’s initialisation process, the lower bound on total
number of distinct states would result in all possible loaded states converging
to a single initial state and the upper bound would result in 2'%° distinct initial
states, which is less than the total key-space of Mixer.

R 0 25 50 100 150 200
2192 2167 2142 292 242 1
2192 2181.6 2171.2 2150.5 2129‘7 2109

ny
Lz

Table 1. Bounds on the predicated number of distinct initial states, n; and n.,, after
an R iteration initialisation process

From Table 1 we observe two things. Firstly, is the large potential reduction of
the possible state space from 2217 to 2199, This is smaller 2!2%, the total number
of possible keys. This implies that there is the possibility that the same secret
key and different IVs would produce the same initial state. Secondly, notice the
trend that as R increases, the number of possible distinct initial states decreases.
This implies that the more rounds of initialisation we perform, the number of
distinct initial states decreases.

The bounds given in Table 1 do not take into account the formatting require-
ments when the IV is loaded in the NLFSR. Recall from Section 2.2 in the first
phase of initialisation. The 64-bit IV is loaded into the 89-bit NLFSR and the
remaining stages are filled with ones. Therefore, each loaded state will produce
an initial state. However, if we take an initial state and invert the initialisation
state update function R times, the set of possible states we obtain may include
states that are not valid loaded states. We still need to check that the last 25-bits
of the NLFSR are all-ones. This formatting requirement makes calculating the
actual number of distinct states difficult, so we refer to the estimates provided
in Table 1.

3.2 Equivalent states during Mixer keystream generation

During keystream generation, LFSR, A is autonomous. That is, there is no mixing
operation introducing values from register B into A. Therefore, state convergence
due to the 'mixing’ operation will not occur during the keystream generation
process.

Assume that S is the total number of distinct initial states we can obtain after
all 2192 possible key-IV pairs have been used in initialisation. At this point, we
would expect that Mixer will produce 8 distinct keystreams. However, this is not
the case. This is because the Mixer keystream generator employs a “shrinking
generator” style mechanism to determine whether the output of register B will
be used as a keystream bit or discarded. Thus it will also suffer from a known

weakness of shrinking generators. For the shrinking generator there exist distinct
initial states, known as equivalent states, which produce the same keystream [4].

Recall from Section 2.3, if the value of g(z) is 0, the output of register B is
discarded and no keystream is produced. It is not until the value of g(z) is 1
that the first bit of keystream is produced. Suppose we have an initial state, Sg,
with component register states A} and B}. For this initial state g(z) = 1, so the
first keystream bit is produced immediately. Let the keystream produced when
keystream generation is commenced in this state be denoted Z. Now consider an
alternative initial state, S, with component register states A and B{. Suppose
for this initial state g(x) = 0, so no keystream bit is produced. Further suppose
that after the state update function is applied, S = S}. That is, we are now in
the state from which the production of Z began. Therefore the two distinct states
S8 and S} can be considered equivalent, as both produce the same keystream
sequence, Z.

Note that the binary sequence formed by successive outputs of g(z) is the
output of the nonlinear filter generator formed by applying g(z) to the five
stages of LFSR A. Statistics regarding run lengths for the binary sequences
produced by LFSRs are well known, but less is known regarding the distribution
of nonlinearly filtered LFSR. Analysis by Teo et al. [6] on the tuple distributions
of nonlinear filtered LFSRs outputs show that they are not uniform for small
LFSR sizes. This implies that the number of initial states generated for each
keystream is not uniformly distributed. However, as g(x) is balanced, we expect
that P(g(z) = 0) = 0.5 so the number of distinct number keystreams is expected

to be about half the number of distinct initial states g

4 Security comparison with ciphers based on similar
components

The Mixer design has some similarities to other well known stream ciphers. Like
both the LILI [1,5] and Grain [2] families of stream ciphers, Mixer is based on
two shift registers. In fact, Br(z) used in Mixer is the same as the feedback
function for the 89-bit LFSR used in LILI-128. Mixer also uses two additional
functions: an integer clocking function and a nonlinear Boolean function as a
filter function. The LILI keystream generators also use two such functions.

The Mixer integer clocking function is also similar to that used in the LILI
keystream generators and the Mixer nonlinear filter function is the same as the
filter function used in Grain-80. However, all three ciphers use these components
in different ways. A summary of the components of all three ciphers is given in
Table 2, and a brief outline of how the three ciphers use these components
during initialisation and keystream generation is given in Table 3. For a full
description of the operations, the reader is referred to the specification papers
of the individual ciphers.

10

Cipher LILI-IT Mixer Grain

Register A 128-bit LFSR 128-bit LFSR, 80-bit LFSR

Register B 127-bit LFSR 89-bit NLFSR 80-bit NLFSR

Irregular clocking v v X

Boolean function 12-bit Boolean Same g(z) function
function

Table 2. Comparison of components in Mixer, LILI and Grain.

Cipher

Initialisation

Keystream generation

Mixer

Grain-80v1

LILI-IT

Output from nonlinear Boolean
function is used to decide if the
mixing operation occurs.

Output from nonlinear function
is XORed with the feedback bit
in both registers at every clock

Output from nonlinear Boolean
function is used to reload LILI-
IT’s registers.

Output from nonlinear is used in
a shrinking-generator fashion to
decide if output of B is to be used
as keystream bit.

Output from nonlinear function
is used as the keystream bit.

Output from nonlinear filter is
used as the keystream bit.

Table 3. State update functions in Mixer, LILI and Grain.

11

4.1 Comparison between Mixer and Grain

As Table 3 shows, the initialisation function of Mixer and Grain are similar.
However, there are some notable differences. For Grain, the nonlinear Boolean
function takes selected stages from both registers as inputs to a nonlinear func-
tion, the output of which is used in the mixing operation. This mixing operation
happens every time the registers are clocked, regardless of the output from the
nonlinear filter. In comparison, the inputs to the Boolean function used in Mixer
are selected stages from the LFSR only, and the output of the function is used
in a shrinking-generator fashion, to determine which of the output bits from the
NLFSR will be used in the mixing operation. This slight modification in the in-
teraction between the three similar components during initialisation has a great
impact on the security properties of both ciphers.

In the Mixer keystream generator proposal [3], the cryptanalysis section dis-
cusses a number of possible attack scenarios, including a chosen-1V attack. Kanso
claims the initialisation process provides resistance to this type of attack, based
on the work of Wu and Preneel [7] “that the initial states for any two chosen
IV’s are algebraically and statistically unrelated”. This is the same claim made
in the Grain proposal [2] on its resistance to chosen-IV attacks. Although the
initialisation functions for Mixer and Grain are similar in terms of the mixing
operation, they are not the same. Therefore the security provided by the ini-
tialisation function for Grain is not necessarily transferable to that of Mixer.
However, as there are some similarities in the initialisation strategies, it is worth
considering whether known attacks on the initialisation process of Grain can also
be applied to Mixer.

Zhang and Wang [8] point out the existence of particular loaded states for
which the Grain cipher will provide minimal security. They use the term, a weak
key-IV to describe a loaded state which, after the initialisation process is com-
plete, results in the LFSR being in an all zero state. When the LFSR is in an
all-zero state after initialisation, the Grain keystream generator is only depen-
dent on the NLFSR. In this case, Zhang and Wang were able to approximate
the Grain NLFSR, mount distinguishing attacks, and recover the initial state of
Grain using algebraic attacks. For an implementer of the Grain algorithm, it is
important to check that neither register is in a all-zero state before keystream
generation commences. Zhang and Wang calculated that Grain80-V1 could have
as many as 254 weak key-IV pairs. Having this many weak key-IV pairs could re-
sult in performance degradation if Grain80-V1 was used in applications requiring
frequent re-keying, possibly making it unsuitable for time-critical applications.

The attack of Zhang and Wang could also be extended to find weak-key
IV pairs for other states. For example, it could be possible to find weak-key
IV pairs which would, after Grain’s initialisation is complete, result in Grain’s
LFSR being in an all one state. In their paper, Zhang and Wang give a linear
recursion for Grain’s NLFSR [8]. Therefore, it could be possible to find weak
key-IV pairs which would give the same initial state for both Grain’s LFSR and
NLFSR. However, such state could be more difficult to find, since both registers
are regularly clocked, in contrast to Mixer, which uses irregular clocking.

12

Although the feedback functions of Mixer ensure that the all-zero state in
Mixer for either register is not possible, this does not imply that the initialisation
process is secure. Nor does it guarantee ”‘that the initial states for any two
chosen IV’s are algebraically and statistically unrelated”’. The implication of
our findings on state convergence are that, in order to reduce the possibility of
equivalent loaded states, we should perform few iterations of the initialisation
state update function, and preferably not perform any initialisation operations
at all, since for R = 0, AST = 22'7. However, not mixing the contents of registers
A and B leaves Mixer vulnerable to other attacks. If no mixing occurs, then the
contents of register B (from which the keystream is obtained) are known, and
the key forms the initial state of LFSR A. Under these circumstances chosen-1V
attacks and a differential approach may be quite effective in revealing the key.

4.2 Comparision of Mixer and LILI-II

Both LILI-II and Mixer use an integer function to control the number of times
the clock-controlled LFSR is clocked. During LILI-IT’s initialisation function,
two sets of 255-bit output sequences are generated. These sets of 255-bit output
sequences are used to re-populate LILI’'s LFSRs. After the second 255-bit output
sequence is loaded into the LFSRs, keystream generation is ready to commence.

This might seem similar to what Mixer and Grain do during their initialisa-
tion process, but there are two differences. The first difference is that while Mixer
and Grain update their registers with the mixing bit using addition modulo 2,
LILI replaces the contents of the registers with the 255-bit output sequence.
Secondly, each reloading procedure of LILI requires 255-bits of output to be
produced before the reloading operation commences. This requires 255 clocks of
the clock-control register. For Mixer and Grain, the mixing operation can (could
in the case of Mixer) occur each time a register is clocked.

The design aspect which caused state convergence in Mixer and the all-zero
state LFSR state in Grain can be attributed to the way the mixing operation is
implemented in Mixer and Grain. Since the same operation is not employed in
LILI-IT’s initialisation function, the same vulnerability would not be present in
LILI-II.

5 Conclusion

This paper presents an analysis of the Mixer keystream generator, with a par-
ticular focus on the initialisation process. Two major problems with this process
are identified.

Firstly, the initialisation function of Mixer results in state convergence, so
that multiple key-IV pairs (different loaded states) produce the same initial
state for keystream generation, and hence the same keystream. This is due to
a combination of irregular clocking and the mixing operation employed during
the initialisation state update function. There are multiple key-IV pairs which
converge to the same initial state. Furthermore, the number of key-IV pairs

13

which produce the same initial state increases as the number of iterations of the
state update function performed during the initialisation increases. One way to
prevent this state convergence problem is not perform any initialisation steps at
all and immediately produce keystream the moment Mixer is in its loaded state.
However, this could leave Mixer vulnerable to other cryptanalytic attacks.

Secondly, the use of the shrinking generator style irregular clocking during
keystream generation results in the existence of equivalent initial states - that
is, distinct initial states which produce the same keystream. This results in a
further reduction of the effective key space.

Mixer has structural similarities with several other well-known ciphers, par-
ticularly the LILI and Grain families of keystream generators. Mixer also employs
a similar initialisation strategy to that of the Grain family of stream ciphers.
However, the ciphers are not identical and the security analysis provided for
those ciphers does not suffice as a security analysis for Mixer. It is shown that
Mixer does not have the weak Key-IV problem which exists for the Grain ci-
phers. However, the Mixer initialisation function has other fundamental flaws,
identified in this paper. Based on our research, the Mixer cipher cannot claim
to offer 128-bit security, and should not be considered suitable for cryptographic
use where this is required.

References

1. Clark, A., Dawson, E., Fuller, J., Goli¢, J.D., Lee, H.J., Millan, W., Moon, S.J.,
Simpson, L.: The LILI-II Keystream Generator. In Batten, L.M., Seberry, J., eds.:
ACISP 2002. Volume 2384 of Lecture Notes in Computer Science., Springer (2002)
pp 25-39

2. Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain Family of Stream
Ciphers. In Robshaw, M., Billet, O., eds.: New Stream Cipher Designs: The eS-
TREAM Finalists. Volume 4986 of Lecture Notes in Computer Science., Springer
(2008) pp 191-209

3. Kanso, A.A.: Mixer — A new stream cipher. Journal of Discrete Mathematical
Sciences and Cryptography 11(2) (2008) pp 159-179

4. Simpson, L., Goli¢, J.D., Dawson, E.: A Probabilistic Correlation Attack on the
Shrinking Generator. In Boyd, C., Dawson, E., eds.: Information Security and
Privacy (ACISP 98). Volume 1438 of Lecture Notes in Computer Science., Springer
(1998) pp 147-158

5. Simpson, L., Dawson, E., Goli¢, J.D., Millan, W.: LILI Keystream Generator. In
Stinson, D.R., Tavares, S., eds.: SAC 2000. Volume 2012 of Lecture Notes in Com-
puter Science., Springer (2000) pp 248-261

6. Teo, S.G., Simpson, L., Dawson, E.: Bias in the Nonlinear Filter Generator Out-
put Sequence. In Ariffin, M.R.K., Ahmad, R., Said, M.R.M., Goi, B.M., Heng,
S.H., Abu, N.A., Mas’ud, M.Z., eds.: Proceeding of Cryptology 2010; The Second
International Cryptology Conference. (2010) pp 40-46

7. Wu, H., Preneel, B.: Chosen IV Attack on Stream Cipher WG. eSTREAM,
ECRYPT Stream Cipher Project, Report 2005/045 (2005) Available from http:
//www.ecrypt.eu.org/stream/papersdir/045.pdf,.

14

8. Zhang, H., Wang, X.: Cryptanalysis of Stream Cipher Grain Family. Cryptology
ePrint Archive, Report 2009/109 (2009) Available from http://eprint.iacr.org/
2009/109.

