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Abstract. We show how to construct semi-bent Boolean functions from PSap-
like bent functions. We derive infinite classes of semi-bent functions in even

dimension having multiple trace terms.
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1. Introduction

A number of research works in symmetric cryptography are devoted to problems
of resistance of various ciphering algorithms to the fast correlation attacks (on
stream ciphers) and the linear cryptanalysis (on block ciphers) and to the analysis
of various classes of approximating functions and constructions of functions with the
best resistance to such approximations. Some general classes of Boolean functions
play a central role with this respect: the class of bent functions [33], i.e., of Boolean
functions of an even number of variables that have the maximum possible Hamming
distance from the set of all affine functions (see for instance [5]), its subclasses of
homogeneous bent functions [32], hyper-bent functions [34], and generalizations of
the notion: semi-bent functions [9], Z-bent functions [12], negabent functions [31],
etc.

In this paper we investigate constructions of the so called semi-bent functions.
The term of semi-bent function has been introduced by Chee, Lee and Kim at
Asiacrypt’ 94. These functions have been previously investigated under the name
of 3-valued almost optimal Boolean functions in [2]. Also, they are particular
cases of the so-called plateaued functions [35]. Semi-bent functions are studied
in cryptography because, besides having low Hadamard transform which provides
protection against fast correlation attacks [25] and linear cryptanalysis [23], they
can possess desirable properties in addition to the propagation criterion and low
additive autocorrelation, such as resiliency and high algebraic degree.

The paper is organized as follows. In section 2, we fix our main notation and
recall the necessary background. Next, in section 3, given a spread of F2n , we
consider two particular kinds of bent functions defined over F2n whose restrictions
to the elements of the spread are constant or linear. We show in Theorem 1 that
the sum of two bent functions of each kind is semi-bent and we prove that all the
semi-bent functions whose restrictions to the elements of the spread are affine equal
such sums. We also provide a more general statement than Theorem 1 for Partial
spreads (Theorem 2). Section 4 is devoted to constructions of semi-bent functions.
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2. Notation and preliminaries

For any set E, we will denote E \ {0} by E? and the cardinality of E by #E.

• Boolean functions and polynomial forms:
Let n be a positive integer. A Boolean function f on F2n is an F2-valued function
over the Galois field F2n of order 2n (or over the vector space Fn2 but in this pa-
per we shall always endow this vector space with the structure of field, thanks to
the choice of a basis of F2n over F2). The weight of f , denoted by wt(f), is the
Hamming weight of the image vector of f , that is, the cardinality of its support
Supp(f) := {x ∈ F2n | f(x) = 1}.
For any positive integer k, and for any r dividing k, the trace function from F2k to
F2r , denoted by Trkr , is the mapping defined as: ∀x ∈ F2k , T rkr (x) :=

∑ k
r−1
i=0 x2ir

.
In particular, the absolute trace over F2 is the function Trn1 (x) =

∑n−1
i=0 x

2i

.

Recall that, for every integer r dividing k, the trace function Trkr satisfies the
transitivity property, that is, Trk1 = Trr1 ◦ Trkr .
Every non-zero Boolean function f defined over F2n has a (unique) trace expansion
of the form:

∀x ∈ F2n , f(x) =
∑
j∈Γn

Tr
o(j)
1 (ajxj) + ε(1 + x2n−1)

called its polynomial form, where Γn is the set of integers obtained by choosing one
element in each cyclotomic coset of 2 modulo 2n − 1, o(j) is the size of the cyclo-
tomic coset of 2 modulo 2n − 1 containing j, aj ∈ F2o(j) and, ε = wt(f) modulo 2.
The algebraic degree of f is equal to the maximum 2-weight of an exponent j for
which aj 6= 0 if ε = 0 and to n if ε = 1.

• Niho power functions:
Let n = 2m be an even integer. Recall that a positive integer d (always under-

stood modulo 2n−1) is said to be a Niho exponent, and xd is a Niho power function,
if the restriction of xd to F2m is linear or in other words d ≡ 2j (mod 2m − 1) for
some j < n. As we consider Trn1 (xd), without loss of generality, we can assume that
d is in the normalized form, with j = 0, and then we have a unique representation
d = (2m − 1)s+ 1 with 2 ≤ s ≤ 2m.

• Walsh Hadamard transform:
Let f be a Boolean function on F2n . Its “sign” function is the integer-valued
function χ(f) := (−1)f . The W alsh Hadamard transform of f is the discrete
Fourier transform of χf , whose value at ω ∈ F2n is defined as follows:

∀ω ∈ F2n , χ̂f (ω) =
∑
x∈F2n

(−1)f(x)+Trn
1 (ωx).

Recall the well-known Parseval’s relation∑
ω∈F2n

χ̂f
2(ω) = 22n.
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and also this inverse formula∑
ω∈F2n

χ̂f (ω) = 2n(−1)f(0).

It is easy to see that not all values of the values of the Walsh transform have the
same sign. This comes from the fact that ∑

ω∈F2n

χ̂f (ω)

2

=
∑
ω∈F2n

χ̂f
2(ω)

which implies that it is impossible to have χ̂f (ω) ≥ 0 for all ω as well χ̂f (ω) ≤ 0
for all ω, unless f is affine.

• Bent, semi-bent and hyper-bent functions:
Bent functions [33] can be defined as follows:

Definition 1. A Boolean function f : F2n → F2 (n even) is said to be bent if
χ̂f (ω) = ±2

n
2 , for all ω ∈ F2n .

Semi-bent functions [9, 10] can be defined as follows, for n even and for n odd:

Definition 2. Let n be an even integer. A Boolean function f : F2n → F2 is said
to be semi-bent if if χ̂f (ω) ∈ {0,±2

n+2
2 }, for all ω ∈ F2n .

It is well Known ( see for instance [5]) that the algebraic degree of a semi-bent
Boolean function defined on F2n is at most n

2 .

Definition 3. Let n be an odd integer. A Boolean function f : F2n → F2 is said
to be semi-bent if if χ̂f (ω) ∈ {0,±2

n+1
2 }, for all ω ∈ F2n .

Hyper-bent functions [34] have properties still stronger than bent functions.
More precisely, they can be defined as follows:

Definition 4. A Boolean function f : F2n → F2 (n even) is said to be hyper-bent
if the function x 7→ f(xi) is bent, for every integer i co-prime with 2n − 1.

• The Dillon Partial Spread classes:
The Partial Spread class PS , introduced in [11] by Dillon, is the set of all the sums
(modulo 2) of the indicators of 2

n
2−1 or 2

n
2−1+1 disjoint n

2 -dimensional subspaces of
F2n (disjoint meaning that any two of these spaces intersect in 0 only, and therefore
that their sum is direct and equals F2n). Dillon denotes by PS− (resp. PS+ ) the
class of those bent functions for which the number of n

2 -dimensional subspaces is
2

n
2−1 (resp. 2

n
2−1 + 1).

Dillon exhibits a subclass of PS−, denoted by PSap, whose elements are defined
in an explicit form:

Definition 5. Let n = 2m. The Partial Spread class PSap consists of all functions
f defined over F2n as follows: let g be a balanced Boolean function over F2m (ie.
wt(g) = 2m−1) such that g(0) = 0 (in fact this last condition is not necessary for f
to be bent). Define a Boolean function f from F2m × F2m to F2 as f(x, y) = g(xy )
( i.e g(xy2m−2)) with x

y = 0 if y = 0.
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All the bent functions from the PSap class defined by Dillon [11] are hyper-bent.
They are the functions or the complements of the functions defined over F2n and
whose supports have the form

⋃
u∈S uF?2m where U is the set {u ∈ F2n | u2m+1 = 1}

and S is a subset of U of size 2m−1.
In the whole paper n = 2m is an (even) integer.

3. Characterizations of semi-bent functions

Recall [11] that a collection {Ei, i = 1, . . . , 2m+1} of vector spaces of dimension
m such that:

(1) Ei ∩ Ej = {0} for every i and j,
(2)

⋃2m+1
i=1 Ei = F2n .

is called a spread.

Conjecture 1. We conjecture that, for every spread {Ei, i = 1, . . . , 2m + 1},
there exists a bent Boolean function h defined over F2n such that, for every i, the
restriction of h to Ei is linear.

In the next theorem, we characterize when a function whose restriction to every
E∗i is affine is semi-bent:

Theorem 1. Let m ≥ 2 and n = 2m. Let {Ei, i = 1, . . . , 2m + 1} be a spread in
F2n and h a Boolean function whose restriction to every Ei is linear. Let S be any
subset of {1, . . . , 2m + 1} and g =

∑
i∈S 1Ei

(mod 2) where 1Ei
is the indicator of

Ei. Then g + h is semi-bent if and only if g and h are bent.

Note that g is then in the Partial Spread class PS and h is in a class generalizing
the class that Dillon denotes by H in [11].

We can modify the hypothesis of Theorem 1 by assuming that we have only a
partial spread. We need then to add a condition on the Ei’s, and we have only a
sufficient condition (not a necessary and sufficient one) for g + h being semi-bent:

Theorem 2. Let g be a bent function in the PS class, equal to the sum modulo
2 of the indicators of l := 2m−1 or 2m−1 + 1 pairwise “disjoint” vector paces Ei
having dimension m, and h a bent function which is linear on each Ei. Assume
additionally that for every c ∈ F2n there exist at most 2 indices i such that ∀e ∈
Ei, h(e) = Trn1 (ce). Then g + h is semi-bent.

4. Constructions of semi-bent functions

4.1. Constructions in bivariate form. Let F2n be identified with F2m × F2m

thanks to the choice of an orthonormal basis (F2n being identified with F2m × F2m

thanks to the choice of a basis (1, w) of F2n over F2m). We consider the vector
spaces Ea = {(x, ax); x ∈ F2m} where a ∈ F2m and E∞ = {(0, y); y ∈ F2m} =
{0} × F2m . The bivariate version of the spread {uF2m ; u ∈ U} is the spread
{Ea ; a ∈ F2m}∪ {E∞}. It can be directly checked that the Ea’s and E′ are indeed
vector spaces of dimension m, and we have Ea ∩Eb = {0} for every pair (a, b) such
that a 6= b and E∞ ∩ Ea = {0} for every a ∈ F2m . Note that any function g in
the PSap class can be viewed as the indicator of 2m−1 or 2m−1 + 1 of these vector
spaces. Moreover, function h having linear restrictions to the Ea’s is necessarily

defined as h(x, y) =
{
Trm1

(
xH

(
y
x

))
if x 6= 0

Trm1 (µy) if x = 0 , x, y ∈ F2m , for some mapping
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H over F2m and some µ ∈ F2m . Then for every (c, c′) ∈ F2m × F2m the set I(c)
equals {a ∈ F2m ;∀x ∈ F2m , T rm1 (xH(a)) = Trm1 (cx + c′ax)} = {a ∈ F2m ;H(a) =
c + c′a} if c′ 6= µ and {a ∈ F2m ;H(a) = c + c′a} ∪ {∞} if c′ = µ. Hence, the sets
I(c, c′) depend on the pre-image of c by the mapping H + c′Id. The necessary and
sufficient condition for h being bent is that, denoting G(x) = H(x) + µx, then G
is a permutation and for every c′ 6= 0 the function G(x) + c′x is 2-to-1. Such bent
functions have been first introduced by Dillon in [11]. He could exhibit in the class
of such functions only the example of the function h in Corollary 3 below. But
eight other examples have been found recently in [6] and lead to Corollary 4.

Corollary 3. Let g be a function in the PSap class. Let i be any integer co-prime
with m and h(x, y) = Trm1 (xy2i−1). Then the function g + h is semi-bent.

Indeed, h belongs to the Maiorana-McFarland class of bent functions since the
function y2i−1 is a permutation of F2m , the restriction of h to Ea is linear for every
a and its restriction to E∞ is null.

Remark 1. According to [1, Theorem 6], the permutations y2i−1 are the only per-
mutations π such that xπ(x) is linear.

Corollary 4. Let g be a function in the PSap class. Let h be one of the following
functions:

• h(x, y) = Trm1 (x−5y6), x, y ∈ F2m where m is odd;
• h(x, y) = Trm1 (x−3·(2k+1)y3·2k+4), x, y ∈ F2m , where m = 2k − 1;
• h(x, y) = Trm1 (x1−2k−22k

y2k+22k

), x, y ∈ F2m , where m = 4k − 1;
• h(x, y) = Trm1 (x1−22k+1−23k+1

y22k+1+23k+1
), x, y ∈ F2m , where m = 4k + 1;

• h(x, y) = Trm1 (x1−2k

y2k

+ x−(2k+1)y2k+2 + x−3·(2k+1)y3·2k+4), x, y ∈ F2m ,
where m = 2k − 1;

• h(x, y) = Trm1 (x
5
6 y

1
6 + x

3
6 y

3
6 + x

1
6 y

5
6 ), x, y ∈ F2m , where m is odd;

• h(x, y) = Trm1

([
δ2(x−3+1)+δ2(1+δ+δ2)(x−2+x−1)

x−4+δ2x−2+1 + x1/2
]

[
δ2(y4+y)+δ2(1+δ+δ2)(y3+y2)

y4+δ2y2+1 + y1/2
])

, x, y ∈ F2m , where Trm1 (1/δ) = 1 and,
if m ≡ 2 [mod 4], then δ 6∈ F4 ;
• h(x, y) = Trm1 (x [A(x)] [B(y)]), x, y ∈ F2m , where m is even,

A(x) = x−1/2 +
1

Tr2m
m (b)

(
Tr2m

m (br)(x−1 + 1)+

Tr2m
m ((bx−1 + b2

m

)r)(x−1 + Tr2m
m (b)x−1/2 + 1)1−r

)
B(y) = y1/2 +

1
Tr2m

m (b)
(
Tr2m

m (br)(y + 1)+

Tr2m
m ((by + b2

m

)r)(y + Tr2m
m (b)y1/2 + 1)1−r

)
r = ± 2m−1

3 , b ∈ F22m , b2
m+1 = 1 and b 6= 1.

Then the function g + h is semi-bent.



6

References

[1] T. Berger, A. Canteaut, P. Charpin and Y. Laigle-Chapuy. On almost perfect nonlinear func-

tions. IEEE Trans. Inform. Theory, vol. 52, no. 9, pp. 4160-4170, 2006.
[2] A. Canteaut, C. Carlet, P. Charpin and C. Fontaine. On cryptographic properties of the cosets

of R(1,m), IEEE Trans. Inform. Theory, Vol. 47, pp. 1494-1513, 2001.
[3] C. Carlet. Two new classes of bent functions. In Proceedings of EUROCRYPT’93, Lecture

Notes in Computer Science 765, pp. 77-101, 1994.

[4] C. Carlet. Generalized Partial Spreads, IEEE Transactions on Information Theory, vol. 41,
no. 5, pp. 1482-1487, 1995.

[5] C. Carlet. Boolean Functions for Cryptography and Error Correcting Codes. Chapter of the

monography “Boolean Models and Methods in Mathematics, Computer Science, and Engineer-
ing” published by Cambridge University Press, Yves Crama and Peter L. Hammer (eds.). pp.

257-397, 2010.

[6] C. Carlet and S. Mesnager. On Dillon’s class H of bent functions, Niho bent functions and
o-polynomials. Cryptology ePrint Archive, Report no 649. Available at http://eprint.iacr.org,

2010.

[7] P. Charpin and G. Gong. Hyperbent functions, Kloosterman sums and Dickson polynomials,
IEEE Trans. Inform. Theory (54) 9, pp 4230–4238, 2008.

[8] P. Charpin, E. Pasalic, and C. Tavernier, On bent and semi-bent quadratic Boolean functions,

IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4286- 4298, 2005.
[9] S. Chee and S. Lee and K. Kim. Semi-bent Functions Advances in Cryptology-ASIACRYPT94.

Proc. 4th Int. Conf. on the Theory and Applications of Cryptology, Wollongong, Australia, 1994,
Pieprzyk, J. and Safavi-Naini, R., Eds., Lect. Notes Comp. Sci. Vol. 917, pp 107-118, 1994.

[10] J. H. Cheon and S. Chee. Elliptic curves and resilient functions Lecture Notes in Computer

Science, Vol. 2015 pp 386–397, 2000.
[11] J. Dillon. Elementary Hadamard difference sets PhD dissertation, University of Maryland,

1974.

[12] H. Dobbertin, and G. Leander. Cryptographers Toolkit for Construction of 8-
Bit Bent Functions. Cryptology ePrint Archive, Report no. 2005/089. Available at

http://eprint.iacr.org/2005/089 2005.

[13] H. Dobbertin and G. Leander and A. Canteaut and C. Carlet and P. Felke and P. Gaborit.
Construction of bent functions via Niho Power Functions, Journal of Combinatorial therory,

Serie A 113, pp 779-798, 2006.

[14] R. Gold, Maximal recursive sequences with 3-valued recursive crosscorrelation functions,
IEEE Trans. Inform. Theory, vol. IT-14, no. 1, pp. 154-156, 1968.

[15] F. Gologlu. Almost Bent and Almost Perfect Nonlinear Functions, Exponential Sums, Ge-
ometries ans Sequences, PhD dissertation, University of Magdeburg, 2009.

[16] T. Helleseth. Some results about the cross-correlation function between two maximal linear

sequences, Discr. Math., vol. 16, pp. 209232, 1976.
[17] T. Helleseth. Correlation of m-sequences and related topics, in Proc. SETA98, Discrete Math-

ematics and Theoretical Computer Science, C. Ding, T. Helleseth, and H. Niederreiter, Eds.

London, U.K.: Springer, 1999, pp. 4966.
[18] T. Helleseth and P. V. Kumar. Sequences with low correlation, in Handbook of Coding

Theory, Part 3: Applications, V. S. Pless, W. C. Huffman, and R. A. Brualdi, Eds. Amsterdam,

The Netherlands: Elsevier, 1998, ch. 21, pp. 17651853.
[19] K. Khoo, G. Gong, and D. R. Stinson, A new family of Gold-like sequences, in Proc. IEEE

Trans. Inform. Theory Lausanne, Switzerland, p.181,2002.
[20] K. Khoo, G. Gong, and D. R. Stinson, A new characterization of semibent and bent functions
on finite fields, Des. Codes. Cryptogr., vol. 38, no. 2, pp. 279-295. 2006.

[21] G. Leander. Monomial Bent Functions. IEEE Trans. Inform. Theory (52) 2, pp 738–743,
2006.

[22] G. Leander and A. Kholosha. Bent functions with 2r Niho exponents. IEEE Trans. Inform.

Theory 52 (12), pp 5529–5532, 2006
[23] M. Matsui. Linear cryptanalysis method for DES cipher. Proceedings of EUROCRYPT’93,

Lecture Notes in Computer Science 765, pp. 386-397, 1994.

[24] F.J. McWilliams and N.J.A. Sloane. Theory of Error-Correcting Codes, North-Holland, 1977.



7

[25] W. Meier and O. Staffelbach. Fast correlation attacks on stream ciphers. Advances in Cryp-
tology, EUROCRYPT’88, Lecture Notes in Computer Science 330, pp. 301-314, 1988.

[26] S. Mesnager. A new class of Bent Boolean functions in polynomial form. Proceedings of

international Workshop on Coding and Cryptography, WCC 2009, pp 5-18,2009.
[27] S. Mesnager. A New Class of Bent and Hyper-bent Boolean Functions in Polynomial Forms.

journal Design, Codes and Cryptography. In press.

[28] S. Mesnager. A new family of hyper-bent Boolean functions in polynomial form. Proceedings
of Twelfth International Conference on Cryptography and Coding, Cirencester, United Kingdom.

M. G. Parker (Ed.): IMACC 2009, LNCS 5921, pp 402-417, Springer, Heidelberg (2009).
[29] J. Mykkeltveit. The covering radius of the (128, 8) Reed Muller code is 56, IEEE Trans.

Inform. Theory 26 (1980), 359362.

[30] Y. Niho. Multi-valued cross-correlation functions between two maximal linear recursive se-
quences, Ph.D. dissertation, Univ. Sothern Calif., Los Angeles, 1972.

[31] M.G. Parker and A. Pott. On Boolean Functions Which Are Bent and Negabent, Int. Work-

shop on Sequences, Subsequences, and Consequences (SSC 2007), Los Angeles, USA, 2007. Re-
vised Invited Papers, Golomb, S.W., Gong, G., Helleseth, T., and Song, H.-Y., Eds., Lect. Notes

Comp. Sci. 4893 (2007), 9-23.

[32] C. Qu, J. Seberry, and J. Pieprzyk. Homogeneous Bent Functions, Discrete Appl. Math. 102
no. 1-2 , 133-139, 2000.

[33] O.S. Rothaus. On ”bent” functions, J. Combin.Theory Ser A 20, pp. 300-305, 1976.

[34] A. M. Youssef and G. Gong. Hyper-Bent Functions, Advances in Crypology Eurocrypt’01,
LNCS, Springer, pp. 406-419, 2001.

[35] Y. Zheng and X. M. Zhang. Relationships between bent functions and complementary

plateaued functions, Lecture Notes in Computer Science, Vol. 1787, pp. 60-75, 1999.
[36] Y. Zheng and X. M. Zhang. Plateaued functions, Advances in Cryptology-ICICS1999 (Lecture

Notes in Computer Science). Berlin, Germany: Springer-Verlag, vol.1726, pp. 284-300, 1999.


