
PEKSrand: Providing Predicate Privacy in
Public-key Encryption with Keyword Search

Benwen Zhu∗, Bo Zhu∗, Kui Ren†
∗Concordia Institute for Information Systems Engineerings(CIISE)

Concordia University
(be zh, zhubo)@encs.concordia.ca

†Department of Electrical and Computer Engineering
Illinois Institute of Technology

kren@ece.iit.edu

Abstract—Recently, Shen, Shi, and Waters introduced the
notion of predicate privacy, i.e., the property that t(x) reveals
no information about the encoded predicate p, and proposed
a scheme that achieves predicate privacy in the symmetric-key
settings. In this paper, we propose two schemes. In the first
scheme, we extend PEKS to support predicate privacy based
on the idea of randomization. To the best of our knowledge, this
is the first work that ensures predicate privacy in the public-
key settings without requiring interactions between the receiver
and potential senders, the size of which may be very large.
Moreover, we identify a new type of attacks against PEKS,
i.e., statistical guessing attacks. Accordingly, we introduce a new
notion called statistics privacy, i.e., the property that predicate
privacy is preserved even when the statistical distribution of
keywords is known, and propose a scheme that makes a tradeoff
between statistics privacy and storage efficiency (of the delegate).
According to our analysis and experimental results, compared
to PEKS, both of our schemes introduce reasonable additional
communication and computation overheads and can be smoothly
deployed in existing systems.

I. INTRODUCTION

Public-key Encryption with Keyword Search (PEKS) intro-
duced by Boneh et al. [5] is the first practical asymmetric
searchable encryption scheme, as well as the first predicate
encryption scheme. It is originally designed for the purpose
of intelligent email routing. For example, as shown in Figure 1,
a user R may receive emails through different devices, e.g.,
a PDA or a desktop at the office. Hence, she/he may want
to selectively forward emails with certain keywords to a
specific device, e.g., emails that contain the word “agenda” are
forwarded to the PDA. To protect data confidentiality, emails
are encrypted at the sender side. Hence, the mail server G has
no access to the content of emails. To delegate G the capability
of performing selective forwarding, however, G is assigned
a set of trapdoors that are corresponding to keywords that
might be used for searching at a later time. For a keyword x,
the corresponding trapdoor t(x) is generated from the master
secret held only by R and is used to define a predicate p. Upon
receiving a ciphertext, G can verify whether the corresponding
plaintext is equal to x based on the predicate.

Most previous works on predicate encryption concentrate

on plaintext privacy, i.e., the property that ciphertexts reveal
no information about the encrypted data to any party without
the private key other than what is inherently revealed by the
trapdoors. However, researchers also identified a few other
security/privacy issues relevant to PEKS [3], [7], [1], [15]. One
major concern is to limit the delegate’s capability of keyword
searching within a certain time frame [3], [1]. Another impor-
tant concern is that PEKS is subject to offline keyword guess-
ing attacks firstly identified by Byun et al [7]. Later, Shen, Shi,
and Waters formalized the second concern and introduced the
notion of predicate privacy [15], i.e., the property that t(x)
reveals no information about the encoded predicate p. They
also proposed a predicate encryption scheme that can achieve
both plaintext privacy and predicate privacy in the symmetric-
key settings. Moreover, Shen, Shi, and Waters claimed that
it is inherently impossible to achieve predicate privacy in the
public-key setting, such as PEKS. Interesting though, several
researchers had actually proposed a few solutions to this
problem [3], [1]. However, Shen, Shi, and Waters’s claim
may be based on an implicit assumption that the proposed
solution should not conflict with one of the aims of PEKS, i.e.,
making keyword search possible without interaction between
the sender and receiver, which was indicated by Baek et al
[3]. Such an assumption is definitely reasonable, since in
practice the size of potential senders could be a huge number.
Moreover, the proposed solutions [3], [1] require to share some
secret, in the form of either a set of public keys of the receiver
[1] or the method of refreshing keywords [3], [1], between
senders and the receiver. Considering the huge number of
potential senders, the overhead of synchronizing the secret and
protecting it from disclosure is overwhelming.

Formally, the predicate p of the equality test in PEKS can be
defined as p(e(x), t(x)) = 1, in which x is the keyword, e(x)
is the encryption of x, and t(x) is the trapdoor derived from x
and the private key held only by R. In reality, the mail server G
is usually considered as a semi-trusted entity, which is honest-
but-curious [8]. Since the public-key encryption function does
not require a secret key, G can encrypt any plaintext of her
choice and then evaluate the resulting ciphertext with the



Fig. 1. Public Key Encryption with Keyword Search Framework

trapdoors assigned by R. By verifying whether the resulting
ciphertext satisfies the predicate associating with a trapdoor,
G learns whether the chosen plaintext is equal to the keyword
that is corresponding to the trapdoor. In other words, the mail
server G can launch an attack similar to brute-force password
attacks. In particular, PEKS is especially fragile to this type
of attacks in those applications, in which there exists a small
set of keywords that are frequently used, such as “Urgent”
and “Classified”. In this paper, we refer this type of attacks as
brute-force guessing attacks.

Our solution to brute-force guessing attacks are based on
two basic ideas. One is to introduce randomness into the
procedure of generating trapdoors so as to avoid the determin-
istic one-to-one mapping between a searching keyword and
the corresponding trapdoor. It is also the underlying idea of
previous solutions [3], [1]. The other is to limit the knowledge
of the secret introducing randomness to only one or a small set
of entities. Through creating random instances of keywords,
the actual plaintexts used in the generation of trapdoors are
known only to the entities that know the secret used in the
randomization. Hence, in terms of the intelligent email routing,
the semi-trusted mail server G cannot launch brute-force
guessing attacks any more. On the other hand, by limiting
the holders of the secret, the overhead of synchronizing and
protecting the secret is much smaller.

Besides brute-force guessing attacks, an alternative attack
that may be launched by the mail server is to make use
of external knowledge about the statistical distribution of
keywords to identify the relation between a trapdoor/predicate
and a keyword. We call it as a statistical guessing attack. For
example, in an application the probabilities that a keyword
x and any other keyword are matched are 20% and no more
than 10%. In such a case, the mail server can easily deduce the
trapdoor corresponding to x by simply counting the number
of times that each trapdoor is matched. Note that, the method
of refreshing keywords by appending the time period to the
keyword before the encryption is still subject to this type of
attacks, because it does not change the statistical distribution
of keywords within the same time period. Informally, the idea
of our solution to statistical guessing attacks is to spread

out the statistical distribution of keywords. In the previous
example, it is much more difficult for the mail server to guess
when the probabilities that a trapdoor mapped to keyword x
and a trapdoor mapped to any other keyword are matched
are 2% and no more than 1%, given that the same number
of keyword matching events are observed. Apparently, when
the mail server observes a sufficient number of events, it can
still figure out the mappings between trapdoors and keywords.
Hence, we have to refresh such mappings before it happens.
In this paper, we provide detailed analysis on identifying an
appropriate balance between privacy and efficiency.

In this paper, we proposed the PEKSrand scheme to pro-
vide strong privacy protection in PEKS. PEKSrand has two
variants: PEKSrand-BG and PEKSrand-SG. Both variants are
robustly against brute-force guessing attacks, and thus can
ensure predicate privacy in the scenarios where the statistical
distribution of keywords to be searched is unknown. Com-
pared to PEKSrand-BG, PEKSrand-SG can further mitigate
statistical guessing attacks at the cost of the storage overhead
on the delegate, e.g., the mail server in the intelligent email
routing application. According to our analysis and experimen-
tal results, both schemes introduce reasonabel additional com-
munication and computation overheads and can be smoothly
deployed in existing systems.

The remainder parts of this paper are organized as follows.
In Section II, we briefly review PEKS. In Section III, we
present the basic ideas of our solutions. The PEKSrand-BG
and PEKSrand-SG schemes are presented in Section IV and
Section V, respectively. Afterwards, we present the analysis
on security and privacy of PEKSrand and the measures to
the on-line guessing attacks in Section VI and Section VII
respectively. The efficiency analysis and simulation results are
presented in Section VIII, followed by the related work in
Section IX. We draw the conclusion in Section X.

II. A BRIEF REVIEW OF PEKS

As shown in Figure 1, there are three types of entities in the
PEKS scheme [5]: receiver R, sender, and server G. PEKS
consists of the following four procedures:

1) KeyGen(s): Takes as input a security parameter s, the
receiver R generates a PEKS public/private-key pair, i.e.,
{Apub, Apriv}, as well as other public parameters;

2) Trapdoor(Apriv , x): given the private key Apriv and
a keyword x, the receiver R produces a corresponding
trapdoor Tx;

3) PEKS(Apub, x): given the receiver’s public-key (i.e.,
Apub) and a keyword x, a sender generates the PEKS
ciphertext of a message (e.g., an email) to be sent to R,
which is denoted as S;

4) Test(S, Tx): given the received PEKS ciphertext
S = PEKS(Apub, x′) and a trapdoor Tx =
Trapdoor(Apriv , x), the server G outputs ‘yes’ if
x = x′ and ‘no’ otherwise.

An instantiated construction of PEKS is based on a bilinear
map of elliptic curves. It uses two cyclic groups G1, G2

of the same prime order p and a symmetric bilinear map



e : G1 × G1 → G2 between them. If we use a multiplicative
notation to describe the operation in G1 and G2, e has
following properties:

• Bilinear: e(gx, gy) = e(g, g)xy for all integers x, y ∈
[1, p], g ∈ G1;

• Non-degenerate: e(g, g) �= 1 and if g is a generator of
G1 then e(g, g) is a generator of G2;

• Computable: There is a polynomial time algorithm to
compute e(g, h) ∈ G2 for all g, h ∈ G1.

The security of PEKS is based on the assumption of Elliptic
Curve DLP, which is believed to be intractable for certain
carefully chosen groups including the group that is formed by
the points on an elliptic curve defined over a finite field. More
specifically, given two points on an elliptic curve, g and g x,
where x is a scalar, it is computationally infeasible to obtain
x, if x is sufficiently large.

III. BASIC IDEAS OF OUR SOLUTIONS

We observe that, PEKS’s incompetence in ensuring predi-
cate privacy is due to two facts. On the one hand, the keywords
used to create trapdoors in the targeted applications (e.g.,
intelligent email routing) are meaningful dictionary words. On
the other hand, there exists a deterministic one-to-one mapping
between a keyword and a trapdoor.

Based on this observation, our first idea is to randomize
the original keywords so that the transformed keywords used
to generate the trapdoors are not meaningful dictionary words
any more. A naı̈ve solution is that, user R (i.e., the receiver)
and all other users (i.e., senders) share a secret N , which is
concatenated with original keywords (e.g., the key refreshing
solution proposed by Baek, Safiavi-Naini, and Susilo [3]) or
is used as the key for hashing original keywords. However,
such privacy protection is frail, since the protection of the
shared secret is difficult. If any sender is compromised, which
is very likely given that the size of the set of senders is usually
large, this protection relies entirely on the security of the semi-
trusted delegate. Moreover, it is also not suitable for scenarios
where the membership of the set of senders might be dynamic,
which results in additional costs of key/secret management.
To address this issue, we limit the entities that hold the secret
used for randomization to only one or a small set of proxy
servers, which are well protected and thus are more secure
than normal senders. This method also greatly reduces the
cost of key/secret management. The PEKSrand-BG Scheme is
built upon the first idea.

Another idea is to map a keyword to multiple trapdoors
instead of one. It can weaken the effectiveness of statistical
guessing attacks at the cost of the increasing overhead of
storing trapdoors at the semi-trusted delegate. The PEKSrand-
SG Scheme is developed through a combination of both ideas.

In our design, besides the three types of entities in the
original PEKS system, we add a new type of entities called
proxy server. In the remained parts of this paper, to avoid
confusions, we denote searching server and proxy server as
gateway and proxy, respectively.

Fig. 2. The Framework of the PEKSrand-BG Scheme

We assume that, both the proxy and the gateway are semi-
trusted. In other words, they do not launch active attacks (e.g.,
probe-response attacks [13], [4], [16]) or collude with any
malicious user, unless being compromised. We also assume
that there exist certain security mechanisms that can detect the
compromise that occurs on any proxy or the gateway (e.g.,
through monitoring behavior inconsistent with the protocol)
and recover it within a short period. Hence, we assume
that, although the adversary is capable of compromising the
gateway or a proxy, she cannot control both all proxies and
the gateway at the same time. We argue that this assumption
is reasonable in practice, in particular in the PEKSrand-SG
scheme, where a set of proxies instead of one are used.

IV. THE PEKSRAND-BG SCHEME

The framework of the PEKSrand-BG scheme is illustrated
in Figure 2. We denote the receiver and the sender as Alice
and Bob, respectively. Now, Bob wants to send a message
(e.g., an email) to Alice, who relies on the gateway to route
the incoming messages based on the keywords contained in
the messages.

In PEKSrand-BG, to be resistant to brute-force guessing
attacks, Alice transforms the original meaningful keywords
using a secret during the trapdoor generation. To guarantee
that the searching function is still workable with randomized
keywords without any interaction between Bob and Alice, we
employ a proxy which sits between senders and the gateway.
The proxy’s major responsibility is to pre-process the PEKS
ciphertexts received from the senders before forwarding them.
We specify two hash functions H1 : {0, 1}∗ → G1 and H2 :
G2 → {0, 1}log p. The detailed procedures are as follows.
• KeyGen(s): Alice picks a random number α ∈ Z ∗

p and a
generator g of G1, and then outputs a public/private key pair
Apub = [g, h = gα] and Apriv = α. Afterward, Alice chooses
a secret number k ∈ Zp and calculates it’s multiplicative
inverse as k−1 ∈ Zp which satisfies k ∗ k−1(mod p) = 1.
At the end of this step, Alice sends k−1 to the proxy through
a secure channel between Alice and the proxy;
• Trapdoor(Apriv , x, k): Given the private key Apriv = α,

the secret k and a keyword x, Alice produces the trapdoor
Tx = H1(x)α∗k and delivers it to the gateway through another
secure channel between Alice and the gateway;
• PEKS(Apub, x): For a keyword x, Bob first picks a ran-

dom number r ∈ Z∗
p , and computes t = e(H1(x), hr) ∈ G2,



then outputs the PEKS ciphertext S = [gr, H2(t)]. Then, the
PEKS ciphertext S is sent to the proxy;
• PEKSrand(S, k−1): For each PEKS ciphertext S re-

ceived, the proxy updates it with the multiplicative inverse
number k−1. More specifically, the transformed PEKS cipher-
text (i.e., the PEKSrand ciphertext) is calculated as S ′ =
[gr∗k−1

, H2(t)]. Afterwards, the proxy forwards S ′ to the
gateway.
• Test(S′, Tx): Let each PEKSrand ciphertext S ′ = [A, B].

The gateway tests if H2(e(Tx, A)) = B. If so, then it is a
match otherwise it is not match.

V. THE PEKSRAND-SG SCHEME

Although PEKSrand-BG is efficient and can defend brute-
force guessing attacks, we still have a few concerns about
the security of this scheme. In PEKSrand-BG, we raise the
threshold of breaking the system through compromising online
server(s) from a single gateway in PEKS to two servers (i.e., a
gateway and a proxy). However, in security-critical scenarios,
we may want to further raise the bar. The other concern is
that, the PEKSrand-BG scheme is still vulnerable to statistical
guessing attacks. It is due to the fact that, the PEKSrand-
BG scheme breaks only the deterministic and direct mapping
between a meaningful keyword and the corresponding trapdoor
through randomizing the original keyword but not the indirect
one-to-one mapping between the original keyword and the new
trapdoor. Hence, the frequency of the appearance of a specific
keyword is the same as that of the corresponding trapdoor or
predicate. Consequently, in the scenarios where the adversary
has extra knowledge on the statistical distribution of keywords,
the PEKSrand-BG scheme fails to protect predicate privacy.

For the first concern, a naı̈ve solution of maintaining a few
proxies holding the same secret k does not work. Even worse,
it actually increases the risk of server compromises. Therefore,
we think about increasing both the number of proxies and
the number of secrets stored among the set of proxies. As
to the second concern, our solution is to transform the one-
to-one mapping, either direct or indirect, between an original
keyword and a corresponding trapdoor in PEKS into a one-to-
many mapping. To address these two concerns, in PEKSrand-
SG we employ a combination of two methods: Proxy Farm
and Random Walk.

A proxy farm consists of N proxies, each of which stores a
distinct multiplicative inverse. In a simple application of this
proxy farm method, upon receiving a PEKS ciphertext, the
proxy performs the same type of ciphertext transformation as
in PEKSrand-BG, with its own multiplicative inverse. After-
wards, the proxy forwards the resulting PEKSrand ciphertext
to the gateway. In such a scheme, the PEKSrand ciphertexts
corresponding to the same keyword are verified by distinct
trapdoors at the gateway, if they are generated by different
proxies. In other words, the original one-to-one mapping has
been converted into a one-to-F mapping, where F is an
important parameter related to privacy protection. As a result,
the gateway has to store all the F trapdoors corresponding to
the same keyword. Hence, the storage overhead at the gateway

Fig. 3. The Framework of the PEKSrand-SG Scheme

is increased by a factor of F . In addition, we need F proxies in
the proxy farm. Although the storage overhead at the gateway
is reasonable in practice1, it is costly to maintain a proxy farm
with a large size, considering the level of security protection
and trust level required. To mitigate this overhead, we integrate
the idea of random walk into the proxy farm method. Now,
a ciphertext will be transformed multiple times with distinct
inverses instead of only once before it is finally forwarded to
the gateway. Let U and u denote the number of proxies in
the proxy farm and the number of times that a ciphertext is
transformed with distinct inverses. In such a new method, with
a proxy form with size U , we can achieve the same level of
privacy protection as that is provided by a proxy form with size
Cu

U in the simple application of this proxy farm method. The
framework of the PEKSrand-SG scheme, which incorporates
the ideas of proxy forma and random walk, is shown in Figure
3.

A. Procedures of the PEKSrand-SG Scheme

The PEKSrand-SG scheme consists of the four phases:
setup, encrypt, random-walk, and keyword-searching.

1) Setup: To initialize the whole system, the following
system-wide parameters are defined: U is the number of
proxies that form the proxy farm, while u is the number
of distinct proxies involved in a random walk; the security
parameter s determines the size, p, of the groups G1 and G2,
and e is a symmetric bilinear pairing between two groups
and defined as e : G1 × G1 → G2. Similar to PEKSrand-
BG, to generate a system wide public key pair, Alice picks
a random α ∈ Z∗

p and a generator g of G1, and outputs
Apub = [g, h = gα] and Apriv = α.

To initialize the PEKSrand function in a proxy farm consist-
ing of U proxies, Alice chooses U secret numbers (k i, for i =
1, 2, . . . , U ) and calculates the corresponding multiplicative
inverses k−1

i that satisfies ki ∗ k−1
i (mod p) = 1. Then, Alice

sends each proxy a distinct < i, k−1
i > pair through a secure

channel.
For each keyword x specified by Alice, C u

U trapdoors
corresponding to x, denoted as T j

x(j ∈ {1, 2, . . . , Cu
U}), are

1Please refer to Section VIII-A for more details.



generated. The trapdoors T j
x ’s are calculated as follows:

T
j
x = H1(x)

α∗∏
i∈Vj

ki
, for j ∈ {1, 2, . . . , C

u
U} (1)

where Vj is a subset of {1, 2, . . . , U} with u elements.
Let Ij denote a string that concatenates all elements in Vj

with a predefined delimiter, such as “:”. For example, given
that Vj = {2, 4, 7}, Ij is denoted as “2:4:7”. Finally, Alice
distributes all Cu

U pairs of < Ij , T j
x > to the gateway through

a secure channel.
2) Encrypt: In the encrypt phase of PEKSrand-SG, Bob

encrypts the keyword x in the same way as in PEKSrand-BG
and outputs the PEKS ciphertext S = [gr, H2(t)]. Afterwards,
S is forwarded to a randomly chosen proxy in the proxy farm.

3) Random-Walk: Without loss of generality, we assume
that proxy P1 is the first proxy receiving the PEKS ciphertext
S and P1 holds the inverse k−1

1 . P1 transforms the ciphertext
with k−1

1 and outputs S1 = [gr∗k−1
1 , H2(t)]. Then, proxy P1

generates a < E1, S1 > pair, where E1 is the index of
the multiplicative inverse held by proxy P1 in the format of
a string (i.e., “1” in this case), and forwards the pair to a
randomly chosen proxy in the farm other than itself.

Without loss of generality, we assume that the path of
the random walk within the proxy farm is P1 → P2 →
. . . → Pu, and proxy Pi holds a multiplicative inverse
k−1

i for i = 1, 2, . . . , u. For the following random walk
process, we denote the PEKSrand ciphertext pair that a
proxy Pi receives from another proxy as < Ex, Sx =
[gr∗k−1

1 ∗k−1
2 ···∗k−1

x , H2(t)] > where x represents the number of
proxies that have performed a transformation on the ciphertext
so far during the random walk. Proxy P i first checks whether
the index of its multiplicative inverse is indicated in Ex. If
it is true, it means that proxy Pi has previously performed a
transformation on this ciphertext. In such a case, P i simply
forwards the received pair to a randomly chosen proxy again
without any modification. Otherwise, proxy P i will update the
pair as < Ex+1, Sx+1 = [gr∗k−1

1 ∗k−1
2 ···∗k−1

x ∗k−1
(x+1) , H2(t)] >,

where Ex+1 is the concatenation of Ex and the index of
the multiplicative inverse of Pi, separated by the predefined
delimiter. Afterwards, proxy Pi checks the number of the
indexes of inverses that appear in Ex+1. If it is less than u,
Pi forwards the pair to a randomly chosen proxy in the farm
other than itself. If it is equal to u, the random walk process
is complete, and proxy Pi will forward the < Eu, Su > pair
to the gateway.

4) Keyword-Searching: The whole trapdoor set that Alice
assigns to the gateway can be divided into C u

U subsets, each of
which contains d trapdoors for d keywords that Alice chooses
and is corresponding to a unique combination of u proxies.
Each subset can be labeled with the corresponding I j for
j ∈ {1, 2, . . . , u}. Upon receiving a < Eu, Su > pair
from the last hop of the proxy farm, instead of searching the
whole trapdoor set, therefore, we may first identify the subset
of trapdoors corresponding to the combination of proxies that
have performed the transformation operation on the ciphertext.
It can be done by simply comparing Xu with the Ij’s of
subsets that the gateway receives from Alice.

Once the subset of trapdoors is determined, the gateway
performs the keyword searching step in the same way as
in the PEKSrand-BG scheme. Let Su = [A, B] denote the
received PEKSrand ciphertext. More detailedly, the gateway
executes Test(Su, T j

x) to verify whether H2(e(T j
x , A)) = B is

satisfied. If so, it means that the original plaintext contains the
keyword corresponding to the trapdoor used in the verification,
i.e., x. The correctness of the verification is shown as follows.

H2(e(T j
x , A)) = H2(e(H1(x)α∗k1∗k2∗···∗kn , gr∗k

−1
1 ∗k

−1
2 ∗···∗k−1

n ))

= H2(e(H1(x), g)
α∗k1∗k2∗···∗kn∗r∗k

−1
1 ∗k

−1
2 ∗···∗k−1

n )

= H2(e(H1(x), g)α∗r∗k1∗k
−1
1 ∗k2∗k

−1
2 ∗···∗kn∗k−1

n )

= H2(e(H1(x), g)
α∗r

)

= B

VI. SECURITY AND PRIVACY ANALYSIS OF THE

PEKSRAND SCHEMES

In this section, we analyze the level of security and privacy
achieved in the PEKSrand-BG and PEKSrand-SG schemes.

A. Security Analysis

The security of both PEKSrand schemes relies on the
difficulty of the Elliptic Curve DLP: suppose gx and gx∗k−1

(resp. gx∗k) are two points on an elliptic curve where both
k−1 (respectively, k) and x are scalars. Given gx and gx∗k−1

(resp. gx∗k), it is computationally infeasible to obtain k−1

(respectively, k) , if k−1 (resp. k) is sufficiently large.
In the PEKSrand-BG scheme, due to the usage of random-

ized keywords, in order to break the system, e.g., compromis-
ing data confidentiality, the adversary has to compromise both
the gateway and the proxy. In the PEKSrand-SG scheme, the
protection is further enhanced in the sense that the adversary
has to compromise both the gateway and at least u proxies.

B. Privacy Analysis

As an extension of PEKS, both variants of the PEKSrand
scheme inherit PEKS’s capability of ensuring plaintext privacy.
Hence, in this paper we limit privacy analysis to the protection
of predicate privacy, more specifically, privacy protection
against brute-force guessing attacks and statistical guessing
attacks. In addition, since these two types of attacks require
the knowledge of trapdoors, which is only held by the semi-
trusted gateway and the receiver, in the following analysis we
focus on privacy protection against the gateway.

1) Protection against Brute-force Guessing Attacks: The
root cause of brute-force guessing attacks against the original
PEKS scheme is that, a predicate represents a deterministic
and direct mapping between the original keyword and a
trapdoor. In both variants of the PEKSrand scheme, such a
mapping is changed. More specifically, the mapping repre-
sented by a predicate is neither deterministic (i.e., the original
keyword is randomized before the generation of the trapdoor),
nor direct (i.e., the mapping between the original keyword and
the trapdoor is indirect, although there exists a direct mapping
between the randomized keyword and the trapdoor). As a
result, they are robust against brute-force guessing attacks.



2) Protection against Statistical Guessing Attacks: Unlike
brute-force guessing attacks, in statistical guessing attacks the
adversary has extra knowledge of the statistical distribution of
keywords. We observe that, in spite of the randomization of
keywords before trapdoor generation, in PEKSrand-BG there
exists an indirect mapping between the original keyword and
the trapdoor that is generated from a randomized instance of
the original keyword. And such a mapping can be revealed
through first recording the history of trapdoor mapping during
the keyword searching procedure and then comparing the
frequency of a specific keyword, which is obtained from the
extra knowledge of the statistical distribution of keywords,
with the frequency that each trapdoor has been successfully
matched. Hence, the PEKSrand-BG scheme is vulnerable to
statistical guessing attacks.

Since it is not feasible to limit the keyword usage at the
sender side, we consider to mitigate the observed matched
frequency of trapdoors during keyword searching phase at the
gateway side. In the PEKSrand-SG variant, each keyword is
mapped to multiple trapdoors instead of one in PEKSrand-BG.
Theoretically, the PEKSrand-SG scheme is also vulnerable
to statistical guessing attacks, since the expansion from one-
to-one mapping to one-to-many mapping is applied to all
keywords. Therefore, for two keywords x1 and x2, if the
frequency of x1 is higher than that of x2, in PEKSrand-SG
the frequency of any trapdoor that is mapped to x 1 is still
higher than the frequency of any trapdoor that is mapped
to x2. For example, suppose that statistically the frequencies
of x1 and x2 are 20% and 10%, respectively. Assume that,
a proxy farm consisting of five proxies is deployed and
each ciphertext has been transformed two times before being
forwarded to the gateway. Hence, each keyword is mapped
to C2

5 = 10 trapdoors, and statistically the frequency of any
trapdoor derived from x1 (i.e., 2%) is higher than that of
any trapdoor derived from x2 (i.e., 1%). However, intuitively,
given the same number of total successful trapdoor matching 2,
to distinguish two events with the statistical probability of
2% and 1%, respectively, is more difficult than to distinguish
two events with the statistical probability of 20% and 10%,
respectively. In the following, we seek the theoretical basis
that supports such an intuition and estimate the effectiveness
of this method.

We begin with the entropy analysis [9]. We first define
the mapping factor F as the number of trapdoors that are
mapped to a single keyword. Hence, F is equal to 1 and C u

U

in PEKSrand-BG and PEKSrand-SG, respectively, where U
and u denote the number of proxies in the proxy farm and
the number of times that a ciphertext is transformed with
distinct inverses. Let X = {x1, x2, . . . , xk} denote the
set of all keywords that the receiver chooses. Let TBG =

2In the theoretical analysis, we ignore unsuccessful trapdoor matching
due to two reasons. The adversary’s knowledge of the statistical distribution
of keywords is defined in terms of all matched keywords. Moreover, we
argue that taking unsuccessful trapdoor matching into consideration actually
introduces noise to the statistical distribution and thus favor our goal of privacy
protection.

{T1, T2, . . . , Tk} denote the set of trapdoors corresponding to
X in the PEKSrand-BG scheme. Let pi denote the probability
that keyword xi or the corresponding trapdoor T i is used.
Hence, the entropy of keywords X or trapdoors TBG in the
PEKSrand-BG scheme, denoted as EBG, can be calculated
according to Equation (2).

EBG = −
k∑

i=1

pi log pi (2)

Let TSG = {T 1
1 , . . . , T F

1 , T 1
2 , . . . , T F

2 , . . . , T 1
k , . . . , T F

k }
denote the set of trapdoors corresponding to X in the
PEKSrand-SG scheme. pj

i denote the probability that trapdoor
T j

i is used. In the PEKSrand-SG scheme, each keyword is
mapped to F trapdoors evenly. Thus, we have p j

i = pi

F .
Consequently, the entropy of keywords X or trapdoors T SG in
the PEKSrand-SG scheme, denoted as ESG, can be calculated
as follows.

ESG = −
k∑

i=1

F∑

j=1

p
j
i log p

j
i = −

k∑

i=1

F∑

j=1

pi

F
log

pi

F

= −
k∑

i=1

pi log
pi

F
= −

k∑

i=1

pi(log pi − log F )

= −
k∑

i=1

pi log pi +
k∑

i=1

pi log F

= EBG +

k∑

i=1

pi log F = EBG + log F (3)

According to Equation (3), compared to PEKSrand-BG, the
entropy of keywords X is improved by a value of log F in
PEKSrand-SG. In addition, Equation (3) also shows that, by
increasing the mapping factor F , we can achieve better privacy
protection on keywords. In practice, compared to entropy,
probability is a more intuitive representation of the privacy
criteria. Hence, in the following we present the probability
analysis so as to illustrate the trade-off between privacy and
efficiency in a more clear and intuitive manner.

To perform further analysis, we introduce a new concept
called n-F undistinguishable. Let n denote the total number
of successful trapdoor matching. Given a pair of trapdoors
TA and TB corresponding to keywords A and B, respectively,
without loss of generality, we assume that the frequency of A
is higher than that of B according to the statistical distribution
of keywords. If the actual number of times that trapdoor T B

is matched is no less than that of trapdoor TA, we say that
“the trapdoor TA is n-F undistinguishable from the trapdoor
TB”. Hence, our design goal is to maximize the probability
of n-F undistinguishable, denoted as pn−F . Further, let pBG

n−F

and pSG
n−F denote the probability of n-F undistinguishable in

PEKSrand-BG and PEKSrand-SG, respectively.
If we view each trapdoor matching as an experiment with

only two possible results (i.e., “TA is matched” and “Other-
wise”), the probability of trapdoor TA is matched kA times
in a sequence of n independent matching experiments can
be calculated using Equation (4) according to the binomial
distribution.



Fig. 4. Probability Comparison of PEKSrand-BG and PEKSrand-SG (10–
250)

pA−k = f(n, kA, pA) = CkA
n p

kA
A (1 − pA)n−kA (4)

where pA is the statistical probability that trapdoor TA is
matched in the n independent experiments.

Similarly, if we view each trapdoor matching as an exper-
iment with only two possible results (i.e., “TB is matched”
and “Otherwise”), among the remained n − kA independent
matching experiments (namely, excluding kA independent
experiments matching TA), the probability of trapdoor TB

is matched kB times, given that trapdoor TA is matched kA

times, can be calculated using Equation (5) according to the
binomial distribution.

pB−k = f(n − kA, kB ,
n

n − kA

· pB)

= C
kB
n−kA

(
n

n − kA

· pB)kB (1 − n

n − kA

· pB)n−kA−kB (5)

where pB is the statistical probability that trapdoor TB is
matched in terms of all n experiments including those ex-
periments matching TA. Hence, pBG

n−F can be calculated as
shown in Equation (6).

pBG
n−F =

n∑

kA=0

[f(n, kA, pA) ∗
n−kA∑

kB=kA

f(n − kA, kB ,
n

n − kA
· pB)]

=
n∑

kA=0

[CkA
n p

kA
A (1 − pA)n−kA ∗

n−kA∑

kB=kA

C
kB
n−kA

(
n · pB

n − kA
)kB (1 − n · pB

n − kA
)n−kA−kB ] (6)

In the PEKSrand-SG, the one-to-one mapping between an
original keyword and a corresponding trapdoor is transformed
into a one-to-F mapping. Accordingly, the statistical prob-
abilities of any trapdoor T ′

A mapped to keyword A and any
trapdoor T ′

B mapped to keyword B are changed into p ′
A = pA

F

Fig. 5. Tradeoff between Statistics Privacy and Storage Efficiency

and p′B = pB

F , respectively. Hence, pSG
n−F can be calculated

according to Equation (7).

pSG
n−F

=

n∑

kA=0

[f(n, kA, p′
A) ∗

n−kA∑

kB=kA

f(n − kA, kB ,
n

n − kA

· p′
B)]

=

n∑

kA=0

[C
kA
n (

pA

F
)
kA (1 − pA

F
)
n−kA ∗

n−kA∑

kB=kA

C
kB
n−kA

[
npB

(n − kA)F
]kB [1 − npB

(n − kA)F
]n−kA−kB ] (7)

Let pSG′
n−F denote the probability of n-F undistinguishable in

PEKSrand-SG, given any possible pair of trapdoors TA and TB

corresponding to keywords A and B, respectively. According
to Equation (8), we know that pSG

n−F = pSG′
n−F .

p
SG′
n−F =

F∑

i=1

F∑

j=1

pij · p
(i,j)
n−F =

F∑

i=1

F∑

j=1

1

F 2
· p

SG
n−F = p

SG
n−F (8)

where pij denote that the probability of a specific pair that
consists of the ith trapdoor corresponding to keyword A and
the jth trapdoor corresponding to keyword B is chosen and
p
(i,j)
n−F denote the probability of n-F undistinguishable when

such a pair is chosen.
In Figure 4, we compare the probabilities of n-F undis-

tinguishable in PEKSrand-BG and PEKSrand-SG under four
settings of pA and pB . As shown in Figure 4, pSG

n−F is
much higher than pBG

n−F in all settings. Nonetheless, careful
readers may notice that in Figure 4 the probability of n-F
undistinguishable may drop to a low level if n is big enough,
i.e., by observing a large number of trapdoor matching records,
even in the PEKSrand-SG scheme.

To address this issue, we need to perform periodical secret
refreshments, i.e., executing the setup phase in PEKSrand-SG
after executing a predetermined number of successful trapdoor
matchings, which we call the refreshing threshold. Apparently,
there exists a trade-off between privacy and efficiency. More



TABLE I
MAPPING FACTORS AND REFRESHING THRESHOLDS WHEN pSG

n−F ≥ 0.5

(U , u) F TD TD/F
(5, 2) 10 53 5.30
(6, 3) 20 108 5.40
(7, 3) 35 189 5.40
(8, 4) 70 379 5.41
(9, 4) 126 683 5.42
(10, 5) 242 1367 5.65
(11, 5) 462 2507 5.43

specifically, Figure 5 shows the trade-off between the probabil-
ity of n-F undistinguishable and the refreshing threshold when
pA = 30% and pB = 20%. Note that, given that the number of
proxies is fixed, to maximize the mapping factor F , we choose
u = �U

2 �. According to Figure 5, given a specific requirement
on pSG

n−F , by slightly increasing the number of proxies in
the proxy farm, the refreshing threshold can be improved
significantly. For example, assume that we set the privacy
requirement as pSG

n−F ≥ 0.5, Table I shows the maximum
refreshing threshold satisfying the privacy requirement under
different settings of proxy farm and random walking. The
mapping factor and the refreshing threshold is denoted as
F and TD, respectively, in Table I. When the setting of
random walking is (U, u) = (5, 2), the maximum refreshing
threshold is only 53. By simply increasing the number of
proxies to 10 and 11, the maximum refreshing threshold is
increased to 1367 and 2507, respectively. We argue that, such
refreshing thresholds are sufficient for many real applications,
e.g., intelligent email routing. A more detailed analysis about
the overhead of the proposed scheme is given in Section VIII.

VII. RESISTANT TO ON-LINE GUESSING ATTACKS

As an improvement, PEKSrand is robust against off-line
guessing attacks. Unfortunately, it does not guard again on-
line guessing attacks, in that theoretically the semi-trusted (or
intruded) gateway can act as a sender, by sending the PEKS
chipertext of a keyword of her choice. Then she can receive
the corresponding PEKSrand ciphertext from proxy server(s),
and use it to test against possessed trapdoors.

In reality, these attacks can be prevented easily, since the
semi-trusted (or intruded) gateway is required to operate on-
line. Therefore, those on-line activities can be constrained
by deploying misbehavior monitors such as Process Monitor
[14]. In addition, since the gateway is reluctant to append
identity information to avoid trace back, it baffles her to
distinguish probes from other ciphertexts, considering the huge
volume of traffic passing the gateway 24/7. Moreover, an
important server, such as the gateway in PEKSrand, is usually
protected properly by various security mechanisms such as
IDS. Hence, an on-line intruder is usually captured at the
early stage of attacks, and the server can be recovered shortly
if needed. We also suggest to perform secret and trapdoor
refreshment after recovery, i.e., executing KeyGen(s) and
Trapdoor(Apriv , x, k) in PEKSrand-BG, and setup phase in
PEKSrand-SG once, respectively, in case trapdoors are leaked

for further attacks.

VIII. EFFICIENCY ANALYSIS AND EMPIRICAL RESULTS

Our PEKSrand implementation leverages the Identity Based
Encryption [6] algorithms implemented in the MIRACL li-
brary [12]. We adopt the well-known Tate Pairing, which is the
heart of the ciphertext generation, transformation, and testing
processes. In our extension of PEKS, a 512-bit prime p is used
for effective 1024-bit security, and G1 and G2 are groups on
the supersingular elliptic curve y2 = x3 + x mod p with 160-
bit group order q = 2159 + 217 + 1, a prime which divides
p.

We simulate the PEKSrand-BG and PEKSrand-SG schemes
on a desktop with an Intel(R) Core (TM)2 2.13GHz CPU (64-
bit processor) and 2GB RAM. The programs run on Windows
XP Professional operation system with ADO database connec-
tion to a Microsoft SQL 2000 database server.

A. Computation Overhead

Compared to the original PEKS, in terms of computation,
PEKSrand-BG introduces only one additional exponential
calculation per ciphertext at the proxy. In PEKSrand-SG,
similarly, each proxy involved in the random walking pro-
cess performs only one additional exponential calculation per
ciphertext.

Note that, the number of trapdoor matching that the gateway
needs to perform in PEKSrand-SG is the same as that of the
original PEKS. It is due to the fact that, the trapdoor matching
process is limited to a subset that contains d elements, where d
is the number of keywords that Alice chooses, in spite that the
total number of trapdoors is increased by a factor of F . More
specifically, the gateway needs to perform d

2 trapdoor matching
operation on average. Hence, the only additional operation at
the gateway is to identify the subset that should be subject to
the following trapdoor matching operation.

On our testbed, an exponential multiplication and a trapdoor
matching operation take only 5 milliseconds and 13 millisec-
onds, respectively. And the operation of identifying a subset is
also very efficient. It takes only 15 milliseconds in the worst
case (i.e., U = 11 and F = 462). Therefore, compared to the
original PEKS scheme, the additional computation overhead
introduced by the PEKSrand schemes is negligible. Moreover,
given a reasonable size of keywords to be searched, the actual
computation overhead is small in most real world applications.

Table II shows the simulation results about the performance
of the original PEKS and two PEKSrand schemes. The sample
set we used are 256 keywords extracted from the Enron Email
Dataset [11]. For each round, we randomly chose 50 out of
256 keywords and encrypt them, and then record both the
number of trapdoor matching operations performed, as well
as the exact time used at the gateway. Let #Test and TTime

denote the number of trapdoor matching operations performed
to identify all 50 keywords chosen and the time used that
complete the keyword matching process. The results shown in
the Table II are the averages of 50 rounds.



TABLE II
SIMULATION RESULTS

Scheme #Test TTime (Second)

PEKS 6510 88.61
PEKSrand-BG 6510 88.61
PEKSrand-SG 6510 88.63

B. Storage Overhead

PEKSrand-BG has the same storage overhead at the gate-
way, since the number of trapdoors assigned to the gateway
in PEKSrand-BG is the same as that of PEKS. In contrast, in
PEKSrand-SG, the storage overhead is increased by a factor
of F , while the original one-to-one mapping in PEKS is
converted into a one-to-F mapping.

In our implementation, to achieve effective 1024-bit secu-
rity, the size of a trapdoor is 128 bytes. Thus, given that there
are 256 keywords in our simulation, the total storage overheads
of PEKSrand-BG and PEKSrand-SG at the gateway’s side are
32768 bytes and 32768*F bytes, respectively. We argue that,
the storage overhead of PEKSrand-SG is still acceptable in
many real world applications, considering that nowadays it is
common that the hard drives of a server have the capacity of
1TB or more [10]. For example, in the intelligent email routing
application, gateway with 1TB storage can support more than
213 users, given that F = 462 and the number of keywords
that each user specifies is 28 on average.

C. Communication Overhead

If we view the proxy in PEKSrand-BG or the proxy farm
in PEKSrand-SG as a transparent component between the
sender and the gateway, there is actually no additional traffic
generated in the PEKSrand schemes, since the same number
and size of ciphertexts are transmitted, although the content of
packets are changed. However, the PEKSrand schemes indeed
introduce some delay due to the ciphertext transformation and
random walking within the proxy farm. Fortunately, as shown
in Section VIII-A, the ciphertext transformation operation
is lightweight. In addition, analysis in Section VI-B2 (in
particular Table I) shows that only a small u, e.g., 4 or 5,
is sufficient to satisfy the privacy requirement of most real
world applications.

In PEKSrand-SG, the communication loads between a
receiver and the gateway is increased by C u

U − 1 times,
in comparison with PEKS, to deliver trapdoors in both the
setup and the periodical secret refreshments. However, as we
presented in Section VI-B2, the frequency of the refreshment
is reasonable small for most real world applications.

IX. RELATED WORK

The development of PEKS boosts many useful applications
such as secure searchable automated remote email storage [2].
However, recent research on attacks against PEKS [3], [7],
[1], [15] may discourage the usages of PEKS in real world
applications.

Baek, Safiavi-Naini, and Susilo first brought the attention
to the unlimited capability of keyword matching once the

delegate is assigned the trapdoors [3]. They proposed to
refresh the keywords by attaching time period information to
them before performing the PEKS encryption. Later, Abdalla
et al. proposed the public-key encryption with temporary
keyword search (PETKS) scheme that aims at the same issue
[1]. Two constructions are given. One is to generate a different
key pair of the receiver for each time period. The other is
the same as the one proposed by Baek, Safiavi-Naini, and
Susilo [3]. Both works [3], [1] require interactions between
the receiver and a large number of potential senders, and thus
is impractical for real-world applications, e.g., intelligent email
routing.

Byun et al. found that PEKS is susceptible to the offline
keyword guessing attack, which is equivalent to the brute-force
guessing attack defined in this paper. They claimed that anyone
(insider/outside) can launch such attacks. However, such a
claim is based on the assumption that the attacker can capture
the valid trapdoor. They did not propose any countermeasure
against the attack. Afterwards, Shen et al. formalized this
type of attacks and defined predicate privacy in the context
of predicate encryption system. They also gave a predicate
privacy-preserving construction in the symmetric key setting
for the inner-product predicate [15].

X. CONCLUSION

In this paper, we identified a new type of attacks against
the original PEKS scheme (i.e., statistical guessing attacks)
and proposed the PEKSrand scheme that aims at protecting
predicate privacy and statistics privacy, which is a new concept
introduced by us. Both variants of the PEKSrand scheme
can prevent brute-force guessing attacks. However, only the
PEKSrand-SG scheme can be used to mitigate statistical
guessing attacks at the cost of a higher storage overhead
at the gateway or delegate. According to our analysis and
experimental results, both schemes introduce reasonable ad-
ditional communication and computation overheads and can
be smoothly deployed in existing systems.

REFERENCES

[1] Michel Abdalla et al. Searchable encryption revisited: Consistency
properties, relation to anonymous IBE, and extensions. Journal of
Cryptology, 21(3):350–391, 2008.

[2] Adam J. Aviv, Michael E. Locasto, Shaya Potter, and Angelos D.
Keromytis. SSARES: Secure searchable automated remote email stor-
age. In Computer Security Applications Conference (ACSAC), pages
129–139, 2007.

[3] Joonsang Baek, Reihaneh Safavi-Naini, and Willy Susilo. Public key
encryption with keyword search revisited. Cryptology ePrint Archive,
Report 2005/191.

[4] John Bethencourt, Jason Franklin, and Mary Vernon. Mapping internet
sensors with probe response attacks. In USENIX Security Symposium,
2005.

[5] Dan Boneh, Giovanni D. Crescenzo, Rafail Ostrovsky, and Giuseppe
Persiano. Public key encryption with keyword search. In EUROCRYPT
2004, volume 3027 of Lecture Notes in Computer Science, pages 506–
522, 2004.

[6] Dan Boneh and Matthew Franklin. Identity-based encryption from the
Weil pairing. SIAM J. of Computing, 32(3):586–615, 2003.



[7] Jin Wook Byun, Hyun Suk Rhee, Hyun-A Park, and Dong Hoon
Lee. Off-line keyword guessing attacks on recent keyword search
schemes over encrypted data. In Secure Data Management, Third VLDB
Workshop 2006, volume 4165 of Lecture Notes in Computer Science,
pages 75–83.

[8] Oded Goldreich. Secure Multi-Party Computation, October 2002.
Working draft, Version 1.4.

[9] R. M. Gray. Entropy and information theory. New York, Springer
Verlag, 1990.

[10] IBM. Ibm system storage product guide.
[11] Bryan Klimt and Yiming Yang. The Enron corpus: A new dataset

for email classification research. In European Conference on Machine
Learning 2004, volume 3201 of Lecture Notes in Computer Science,
pages 217–226, 2004.

[12] Shamus Software Limited. Multiprecision integer and rational arithmetic
C/C++ library (MIRACL).

[13] Patrick Lincoln, Phillip Porras, and Vitaly Shmatikov. Privacy-
preserving sharing and correlation of security alerts. In USENIX Security
Symposium, pages 239–254, 2004.

[14] Mark Russinovich and Bryce Cogswell. Process monitor.
[15] Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in

encryption systems. In 6th Theory of Cryptography Conference 2009,
volume 5444 of Lecture Notes in Computer Science, pages 457–473,
2009.

[16] Yoichi Shinoda, Ko Ikai, and Motomu Itoh. Vulnerabilities of passive
internet threat monitors. In USENIX Security Symposium, pages 209–
224, 2005.


