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Abstract. Hash functions are usually composed of a mode of operation on top of a concrete
primitive with fixed input-length and fixed output-length, such as a block cipher or a permu-
tation. In practice, the mode is oĞen sequential, although parallel (or tree) hashing modes are
also possible. The former requires less memory, while the laĴer has several advantages such as
its inherent parallelism and a lower cost of hash value re-computation when only a small part
of the input changes. In this paper, we consider the general case of (tree or sequential) hashing
modes that make use of an underlying hash function, which may in turn be sequential. We
formulate a set of three simple conditions for such a (tree or sequential) hashing mode to be
sound. By sound, we mean that the advantage in differentiating a hash function obtained by
applying a tree hashing mode to an ideal underlying hash function from an ideal monolithic
hash function is upper bounded by q2/2n+1 with q the number of queries to the underlying
hash function and n the length of the chaining values. We provide a proof of soundness in
the indifferentiability framework. The conditions we formulate are easy to implement and to
verify, and can be used by the practitioner to build a tree hashing mode on top of an existing
hash function. We show how to apply tree hashing modes to sequential hash functions in an
optimal way, demonstrate the applicability of our conditions with two efficient and simple
tree hashing modes and provide a simple method to take the union of tree hashing modes that
preserves soundness. It turns out that sequential hashingmodes using a compression function
(i.e., a hash function with fixed input-length) can be considered as particular cases and, as a
by-product, our results also apply to them. We discuss the different techniques for satisfying
the three conditions, thereby shedding a new light on several published modes.

Keywords: hash functions, tree hashing modes, sequential hashing modes, indifferentia-
bility

1 Introduction

Most hash functions are iterated, that is, the message blocks are processed sequentially,
and the processing of a block requires all previous blocks to be processed. This limits the
efficient use of multi-processors and single-instruction multiple-data (SIMD) units, when
hashing a single (long) message. By adopting tree hashing, several parts of the message
can be processed simultaneously, and parallel architectures are used more efficiently in
the hashing of single messages. Tree hashing has other advantages: on the condition that
chaining values are kept, adapting the hash of amessage aĞermodifying only a small part
of it can be done with much less effort than for a sequential hash function. On the other
hand, tree hashing uses more memory and may be less efficient than sequential hashing
for small messages.

Nevertheless, tree hashing can be implemented sequentially or only partially exploit-
ing the parallelism available in the chosen tree structure. Except for the memory footprint
and for short messages, it can be advantageous to use a tree enabling a high level of par-
allelism and let the target platform organize the computation to take advantage of this
parallelism or less.



Tree hashing was already introduced in [18], and in [14] a tree hashing mode was
proposed, which is provably collision-resistant if the underlying compression function
(i.e., a hash function with fixed input-length(FIL) ) is collision-resistant. In this paper, we
treat the general case of tree hashing modes that call a hash function with no restrictions
on its input- or output-length. These modes can be used to construct tree hashing when a
sequential hash function is available. Clearly, our treatment remains valid for compression
functions.

Sequential hashing can be seen as a particular case of tree hashing, where all nodes of
the tree except a single leaf node have degree one. The main goal of sequential hashing
modes is to construct a variable input-length (VIL) hash function from a function with
fixed input- and output-length such as a compression function, a permutation or a block
cipher. Hence, the security of sequential and tree hashing modes can be analyzed using
the same techniques, and we obtain the same conditions for both.

Our aim is to formulate a number of simple conditions for a tree or sequential hashing
mode to be sound. In Section 3 we show that any hashingmode can be distinguished from
a random oracle by generating a collision in the chaining value. We call a hashing mode
sound if this is the most efficient generic distinguishing aĴack.

For proving the soundness, we base ourselves on the indifferentiability framework
introduced by Maurer et al. in [17] and applied to hash functions by Coron et al. in [13].

1.1 The indifferentiability framework

The indifferentiability framework as introduced in [17] by Maurer et al. is an extension of
the classical notion of indistinguishability. It deals with the interaction between systems
where the objective is to show that two systems cannot be told apart by an adversary able
to query both systems but not knowing a priori which system is which. It was applied by
Coron et al. to iterated hash function constructions in [13]. The first system contains two
subsystems: the hash function construction and the compression function. The second
system contains as one of its subsystems an ideal function that has the same interface
as the hash function construction in the first system. As both systems must have equal
interfaces toward the distinguisher, the second system must have a subsystem offering
the same interface as the compression function. This subsystem is called a simulator.

For hash function constructions, a random oracle usually serves as an ideal function.
We use the definition of random oracle from [5]. A random oracle, denotedRO, takes as
input binary strings of any length and returns to each input a random infinite string, i.e.,
it is a map from Z∗2 to Z∞

2 , chosen by selecting each bit ofRO(s) uniformly and indepen-
dently, for every s.

In most important use cases, a construction with a proven upper bound on the differ-
entiating advantage can replace the ideal primitive (here a random oracle) in any cryp-
tosystem, up to a security loss bounded by that differentiating advantage. However, it
has been shown in [22] that the indifferentiability framework does not cover all use cases:
there are use cases where a random oracle offers security, whereas a sequential (or tree)
hash function construction does not, even if proven indifferentiable. An example pro-
posed byRistenpart et al. is the hash-based storage auditing, inwhich a server has to prove
to the client that it really stores the file uploaded by the client. In a nutshell, the server
should return Z = Hash(File||C) for a client-chosen challenge C. Using a hash function
with finite state size, a malicious server could just store the last chaining value and not the
complete file; using a random oracle, however, would force the server to actually store the
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complete file. This protocol can easily be fixed by requesting Z = Hash(C||File) instead,
but it nevertheless calls for caution when doing composition: plugging in a sequential (or
tree) hash function in a protocol secure in the random oracle model. The authors define
the concepts of single-stage games and multi-stage games to address these issues, where
the hash-based storage auditing security implies a multi-stage game. Indifferentiability
proofs following the framework of [17] only cover single-stage composition. We refer to
[22] for an in-depth treatment. Fortunately, indifferentiability covers security against sev-
eral generic aĴacks that include collision aĴacks, (second) preimage aĴacks and their vari-
ants and generic aĴacks against keyed modes [1, Section B].

1.2 Previous work

Provable security of tree hashing was already investigated in [24] and upper bounds on
the differentiating advantage have been given, e.g., for the mode used in MD6 [23]. This
present paper was inspired by the proofs in [23], which were unfortunately quite specific
for the mode of use adopted in MD6. Instead, our goal was to be more general, and we
wanted to formulate a set of simple conditions that should be easy to verify and imple-
ment, and sufficient for a tree hashing mode to be sound. We presented the ideas that lie
at the basis of this paper for the first time in [8]. In the meanwhile, the authors of [23]
independently set out to do the same thing, and the results of their work surfaced in the
pre-proceedings of Fast SoĞware Encryption Workshop 2009 and was later slightly re-
fined in the proceedings version [15].

1.3 Our contributions

Despite the similarity between the conditions in this paper and those in [15], this present
paper has a substantial added value with respect to prior work:

1. Our set of conditions allowing more freedom in the definition of the hashing mode
than that of [15]. We provide a detailed comparison in Section 4.1.

2. While [15] only covers modes on top of a (FIL) compression function, our model al-
lows inner hash functionswith variable input-length. This allows amodular approach
with standardized tree hashing modes calling standardized sequential hash function
as inner functions.

3. Our model allows both inner hash function and outer hash functions have indefinite
output-length, unlike [15].

4. Our bound on the differentiating advantage is as tight as theoretically possible (see
Section 3). The bound in [15] is a factor 4r + 2 higher, with r is the number of chaining
values that fit in the input of the inner hash function (e.g., r = 4 in MD6 [23] and r = 3
in SHA-2 [20]).

5. Our treatment also applies to the specific case of sequential modes. This sheds a new
light on these modes and even yields improved bounds for some of them (see Sec-
tions 8.4 and 8.6).

1.4 Organization of the paper

The remainder of this paper is organized as follows. We first propose a general, flexible,
definition of tree hashing modes in Section 2. AĞer giving an upper bound on the achiev-
able security level due to the birthday bound in Section 3, we introduce in Section 4 a set
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of simple and easy-to-verify conditions for tree hashing modes that result in sound tree
hashing and compare our conditions with the properties defined in [15]. AĞer adapting
the indifferentiability seĴing of [13] to tree hashing in Section 5, we provide in Section 6
the proof of an upper bound on the differentiating advantage valid for any tree hashing
mode satisfying our conditions.

In Section 7, we discuss how a tree hashing mode can be built on top of a sequential
hash function, provide two practical examples of sound tree hashing modes and give
a simple method to take the union of tree hashing modes that preserves soundness. In
Section 8, we show that the conditions we propose for tree hashing modes also make
sense for sequential hashing modes. We take the point of view of these conditions to give
a fresh look at techniques used in the definition of sequential modes.

Finally, Appendix A explains the difference between this version of the paper with
the previous ones, Appendix B provides some illustrations related to Section 4 and Ap-
pendix C discusses the cost measure defined in Section 5.2.

2 Tree hashing modes

Most hash functions are constructed in a layered fashion. Traditionally, hash functions
have variable input-length and fixed output-length. There is a mode of use that processes
the input and in turn calls an underlying function F. Usually, this underlying function is
a compression function.

In this section,we generalize this idea.We do not impose limits to the input- or output-
length of the underlying function called the inner hash function and denoted by F . Our
generalization allows for dealing with hierarchical hash functions obtained by applying
a tree hashing mode to an inner hash function that is itself sequential. Still, our treatment
is generic enough to also cover the case of Merkle-Damgård style hashing with F a com-
pression function (see Section 8).

The combination of a tree hashing mode T and an inner hash function F defines a hash
function T [F ] that we call the outer hash function. In general, the outer hash function has
variable input-length and arbitrary output-length.

A tree hashingmode and the resulting outer hash functionmay be parameterized. For
example, one may put as parameter the height of the tree or the degree of the nodes (see,
e.g., Section 7.2). So in general, a tree hashing function takes as input a message M and
the parameter values A for a set of parameters that are specific to the tree hashing mode.

2.1 Hashing as a two-step process

The tree hashingmode specifies for any given combination of message length and param-
eter values the number of calls toF and how the inputs in these calls must be constructed
from the message and the output of previous calls to F . For a given input (M, A), the
result is the hash h = T [F ](M, A).

We express tree hashing as a two-step process:

Template construction The mode of use T generates a so-called tree template Z that only
depends on the length |M| of the message and on the parameters A. We write Z =
T (|M|, A). The tree template consists of a number of virtual strings called node tem-
plates. Each node template specifies for a call to F how the input must be constructed
from message bits and from the output of previous calls to F (see Section 2.3).
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Template execution The tree template Z is executed by a generic template interpreter Z
for a specific message M and a particular F to obtain the output h = T [F ](M, A).
The interpreter produces an intermediate result called a tree instance S that is a tree
consisting of node instances. Each node instance is a bitstring that is constructed ac-
cording to the corresponding node template and presented to F . We express this as
S = Z [F ](M, Z). The hash result is finally obtained by h = F (S∗), where S∗ is a
particular node of S, called the final node (see Section 2.2).

Hence, h = T [F ](M, A) is a shortcut notation to denote first Z = T (|M|, A) then S =
Z [F ](M, Z) and finally h = F (S∗). See Figure 1 below for a toy example.

We now define the tree template set of a mode.
Definition 1. The tree template set of a mode T , denoted by ZT , is the (possibly infinite) set of
all tree templates that can be generated by T . Formally:

ZT = {Z | ∃(ℓ, A) such that Z = T (ℓ, A)}.

In this paper, we only consider tree hashing modes that can be described in this way.
However, this is without loss of generality. While we split the function’s input in the pa-
rameters A and the message content M, this is only a convention. If the tree template has
to depend on the value of bits in M, and not only on its length, the parameters A can be
extended so as to contain a copy of such message bits. In other words, the definition of
the parameters A is just a way to cut the set of possible tree templates into equivalence
classes identified by (|M|, A). As far as we know, all hashing modes of use proposed in
literature allow a straightforward identification of the parameters that influence the tree
structure.

2.2 The tree structure

The node templates of a tree template Z are denoted by Zα, where α denotes its index.
Similarly, node instances are denoted by Sα. As such, the nodes of tree templates and tree
instances form a directed acyclic graph and hence make a tree.

We now introduce some terminology and concepts related to the tree topology. These
are valid both for templates and instances, and we simply say “node” and “tree”.

– A node may have a unique parent node. We denote the index of the parent of the node
with index α by parent(α). (We assume that the node indexes α faithfully encode the
tree structure, so that the function parent can work alone on the index given as input).
In a tree, all nodes have a parent except one; we call this the final node and use the
index ∗ to denote it. By contrast, we call the other nodes inner nodes.

– We say the node with index α is a child of the node with index parent(α). A node may
have zero, one or more children. We call the number of children of a node its degree
and a node without children a leaf node.

– We say that a node Zα is an ancestor of a node Zβ if α = parent(β) or if Zα is an ancestor
of the parent of Zβ. In other words, Zα is a parent of Zβ if there exists a sequence of
indices α0, α1, αd−1 such that α = α0, αi−1 = parent(αi) and αd−1 = parent(β). We say
Zβ is a descendant of Zα and d is the distance between Zα and Zβ. Clearly, the final node
has no ancestors and a leaf node has no descendants.

– Every node Zα is a descendant of the final node and the distance between the two is
called the height of α. The final node has by convention height 0. The height of a tree
is the maximum height over all its nodes.
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– We denote the restriction of a tree Z to a set of indices J as the subset of its nodes with
indices in J and denote it as ZJ . The restriction is a subtree if it contains a node of which
all other nodes in the restriction are descendant. We call a subtree a final subtree if it
contains the final node. We call a subtree a leaf subtree if for each node it contains, it
also contains all its descendants in Z. Note that a leaf subtree is fully determined by
the index of the single node that is the ancestor of all the nodes it contains. We call a
subtree a proper subtree of a tree if it does not contain all its nodes.

2.3 Structure of node templates

A node template Zα is a sequence of template bits Zα[x], 0 ≤ x < |Zα|, and instructs the
forming of a bitstring called the node instance Sα in the following way. Each template bit
has a type and the following aĴributes, depending on its type (and purpose):
Frame bits Represent bits fully determined by A and |M| and covers padding, IV values

and coding of parameter value A. A frame bit only has a single aĴribute: its binary
value. Upon execution, the template interpreter Z assigns the value of frame bit Zα[x]
to bit Sα[x].

Message pointer bits Represent bits to be taken from themessage. Amessage pointer bit
has a single aĴribute: its position. The position is an integer in the range [0, |M| − 1] and
points to a bit position in a message string M. Upon execution, Z assigns the message
bit M[y] to Sα[x], where y is the position aĴribute of Zα[x].

Chaining pointer bits Represent bits to be taken from the output of a previous call to F .
Chaining pointer bit have two aĴributes: a child index and a position. The child index β
identifies a node that is the child of this node and the position is an integer that points
to a bit position in the output ofF . Upon execution,Z assigns chaining bitF (Sβ)[y] to
Sα[x], with β the child index aĴribute of chaining pointer bit Zα[x] and y is its position
aĴribute (A chaining value is the sequence of all chaining bits coming from the same
child.).

Execution of a tree template for a specificmessage M and functionF now just consists
of executing its node templates, where each template node Zα is executed only aĞer its
children are processed. This results in a tree instance S with nodes Sα.

We illustrate the process in Figure 1 with a toy example taking a message of 28 bits
and with 3-bit chaining values. In the nodes of the tree template, the dark gray blocks
contain message pointer bits, the light gray chaining pointer bits and the white contain
frame bits. The tree template is independent of the bits of M and of F . The tree instance
is obtained by filling in the message bits and computing the chaining values by applying
F to the nodes leĞ-to-right.

We can define compliance of instances with templates.
Definition 2. A tree instance S is compliant with a tree template Z iff it has the same tree topol-
ogy, the corresponding nodes have the same length and the values of the frame bits in Z match the
corresponding bits in S. A tree instance S is final-subtree-compliant with a tree template Z iff
the laĴer has a proper final subtree with which S is compliant.
In these definitions, we assume that the mode does not generate templates where a given
message pointer bit or chaining pointer bit occurs twice. The case of repeating message
pointer bits or chaining pointer bits could be covered butwould complicate the definitions
of compliance puĴing a burden on the readability of the paper.

We can define compliance of instances with modes.
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Fig. 1. Toy example tree template (leĞ) and instance (right)

Definition 3. A tree instance S is compliant with a mode T iff ZT contains a tree template it
is compliant with. A tree instance S is final-subtree-compliant with a mode T iff ZT contains
a tree template it is final-subtree-compliant with.

3 The birthday bound and the size of chaining values

In this section, we show that collisions in chaining values result in behavior not observed
in a random oracle and hence impose an upper bound on the strength of the tree hashing
mode.

Let us try to produce a collision in the output of T [F ]. Consider two inputs (M, A)
and (M′, A) with messages of equal length. As |M| = |M′| they will have the same tree
templates Z = Z′ = T (|M|, A). For some fixed index α, we construct pairs of messages
that differ only in bits that are mapped to Zα and its descendants (e.g., if Zα is a leaf node,
they only differ in a single node). This difference can only propagate to the final node via
the chaining bits with child index α in its parent node. Let the number of these chaining
bits be denoted by nα. For the two messages, these chaining bits will consist of a selection
of output bits from F (Sα) and F (S′α) respectively. Hence, a collision in the output of F
restricted to these nα bits implies an output collision in T [F ].

Assuming that F behaves like a random oracle, the success probability of having a
collision in its output restricted to n bits aĞer trying N inputs is

1−
N−1

∏
i=0

(
1− i

2n

)
≈ 1− exp

(
−N(N − 1)

2n+1

)
.

If N < 2−n/2 this is upper bounded by:

N(N − 1)
2n+1 .

This reasoning is independent of the value of index α, so an upper bound to this success
probability imposes a lower bound on the length of the shortest chaining value in the
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tree. We can therefore logically expect a tree hashing mode to have the same length for all
chaining values.

Our definition of templates allows for composing chaining values using bits of arbi-
trary positions of the output ofF . If we assumeF generates its bits in a sequential fashion,
the most efficient way is to take the first n output bits of F . We call the first n bits of F (s)
the chaining value of s and denote the truncation ofF to its first n output bits byFn. Hence,
in the following we will assume that Fn is used for computing the chaining values.

This birthday bound limits the achievable security one can expect from such a hashing
mode. Theorem 1, proven in Section 6.2, actually achieves this bound and is thus as tight
as theoretically possible.

4 Sufficient conditions for sound tree hashing

In this section, we formulate three conditions that a tree hashing mode T should satisfy.
In Section 6 we will prove that the strength of a tree hashing mode that satisfies these
three conditions coincides with the birthday bound. The first two conditions stem from
the ability to generate collisions. The last condition prevents a generalization of length
extension.

We start by defining the concept of inner collisions.

Definition 4. An inner collision in T [F ] is a pair of inputs (M, A) and (M′, A′) such that their
corresponding tree instances are different: S ̸= S′ but have equal final-node instances S∗ = S′∗.

Clearly, an inner collision implies that T [F ](M, A) = T [F ](M′, A′).
A collision of Fn can be used to generate an inner collision in T [F ]. On the contrary,

an inner collision does not necessarily imply an output collision of Fn. For instance, let
us try to produce an inner collision without a collision in Fn. Consider two inputs (M, A)
and (M′, A′) leading to tree templates Z and Z′. We choose the values of (|M|, A) and
(|M′|, A′) in such a way that for all nodes Zα we have Zα = Z′α except for a particular
node Zβ and its descendants. Node Zβ has one descendant Zγ and Z′β is a leaf node. Ad-
ditionally, Zβ and Z′β have the same length and in the positions where there are chaining
pointer bits in Zβ, there are message pointer bits in Z′β. For a given M, we can now com-
pute all node instances; this includes the chaining bits in Sβ by instantiating its descendant
Sγ and evaluating Fn(Sγ). We can then construct M′ such that S′β = Sβ and S′α = Sα for
all other nodes in Z′. As S has onemore node than S′, the tree instances are not equal, and
hence, we have an inner collision. This is illustrated with a simple example in Figure 4,
Appendix B.

In this case, the inner collision is possible because the node templates Zβ and Z′β are
different. A simple way to avoid this situation is mandating that T is tree-decodable.

Definition 5. A mode of use T is tree-decodable if there are no tree instances that are both
compliant and final-subtree-compliant with that mode, and there exists a deterministic algorithm
Adecode that, given a tree instance S with index set J, has the following behaviour:

– If S is compliant with T , Adecode returns a flag “compliant”.
– Else if S is final-subtree-compliant with T , Adecode returns a flag “final-subtree-compliant”,
a node index β ̸∈ J such that parent(β) ∈ J and the list of positions in Sparent(β) of the
corresponding chaining pointer bits 0 to n− 1. We call the index β an expanding index of S.

– Else Adecode returns a flag “incompliant”.
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The running time of Adecode shall be O(m) with m total number of bits in S.

Note that Adecode can be specific to the mode but can only use the information contained
in the tree instance. Also, this definition includes the case where Adecode can identify the
chaining values and their aĴributes in a node from the sole information in that node in-
stance, or the case where it does so from information in that node instance and all its
ancestors.

We can now prove the following lemma, leading to our first condition.

Lemma 1. When T is tree-decodable and T uses Fn to compute chaining values, an inner colli-
sion in T [F ] implies an output collision in Fn.

Proof. Let S ̸= S′ produce an inner collision. Now, let J define a final subtree SJ and a final
subtree S′J such that SJ = S′J and they have an expanding index β with Sβ ̸= S′β. We have
that Sparent(β) = S′parent(β) and the chaining values with child index β are fully determined
by SJ . It follows that Fn(Sβ) = Fn(S′β) and hence we have an output collision in Fn.

We must now prove that there exists a set J such that SJ = S′J and it has an expanding
index β such that Sβ ̸= S′β. We do this in a recursive way. We have per definition S∗ = S′∗
and hence we can take initially J = {∗}, clearly defining a final subtree.

We can now repeat the following procedure until a set J is found that satisfies the
conditions above. If J defines a final subtree, tree-decodability guarantees that there exists
an expanding index β. If we can find an expanding index β such that Sβ ̸= S′β we have
found our J. Otherwise,we expand J by adding β: J ← J∪{β}. Clearly, this J again defines
a final subtree with SJ = S′J . This process can only stop in three ways. First, for the current
set J an expanding index β is found with Sβ ̸= S′β. Second, J covers all node indices of
either S or S′ but not in both. In this case, one tree is a proper final subtree of the other,
which contradicts our assumption of tree-decodability. Third, J covers all node indices of
both S or S′. This implies S = S′, which contradicts our initial assumption S ̸= S′.

⊓⊔

Condition 1 T is tree-decodable.

Naturally, we can have an output collision in T [F ] without an inner collision if there
are message bits that are not mapped to any template node or if two template trees result-
ing from two different messages of the same length and different parameters are equal in
all frame bits and chaining pointer bits, but not in message pointer bits. For that reason,
we introduce the concept of message-completeness.

Definition 6. A mode of use T is message-complete if for all combinations (|M|, A) the re-
sulting tree template contains all |M|message pointer bits at least once and there is a deterministic
algorithm Amessage that, given a tree instance S compliant with T , provides the list of positions in
S of message pointer bits 0 to |M| − 1. The running time of Amessage shall be O(m) with m the
total number of bits in S.

Message-completeness implies that the message can be fully reconstructed from the tree
instance.

Condition 2 T is message-complete.
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The third condition is related to a property that generalizes length extension to tree
hashing. Assume we have two trees S and S′ corresponding with inputs (M, A) and
(M′, A′) with a particular property. First of all, S′ has the same topology as a leaf sub-
tree SJ of S containing a node Sα and all its descendants. Second, there is a one-to-one
mapping ψ between the indices of S′ and the elements of J that preserves the parent-
child relation: parent(ψ(β)) = ψ(parent(β)) and for which ψ(α) = ∗. Finally, we have
Sψ(β) = S′β.

As Sα = S′∗, we have T [F ](M′, A′) = F (S′∗) = F (Sα). Hence, one can compute
T [F ](M, A) without knowing the message bits of M mapped to the subtree SJ and just
knowing T [F ](M′, A′). This is illustratedwith a simple example in Figure 5, Appendix B.

This property is not present in a random oracle and could be easily checked by a dis-
tinguisher. It can be avoided in several ways, such as fixing the topology of the trees.
However, imposing the condition that there is a way to distinguish final nodes from in-
ner nodes is a way to solve this problem that allowsmore flexibility. This can be expressed
as follows:

Definition 7. A mode of use T is final-node separable if any node instance that is an inner
node in a tree instance compliant with T is, as a single-node tree instance, neither compliant nor
final-subtree-compliant with that mode.

For a mode that is both final-node-separable and tree-decodable, Adecode will return “in-
compliant” to any node instance that is an inner node in a compliant tree instance.

Now we can formulate our third condition:

Condition 3 T is final-node separable.

A simple way to implement final-node separability is by domain separation between
final and inner nodes, e.g., by starting (or ending) each node with a frame bit indicating
whether it is a final or inner node. Note that if F is a random oracle, this is equivalent
to saying that the function applied to the final node is a different one than the function
applied to the inner nodes and hence is similar to an output transformation (with arbitrary
output-length though).

Verifying whether a given hash mode satisfies these conditions is typically straight-
forward. For some concrete examples, we refer to Sections 7.2, 7.5 and 8.

4.1 Comparison with tree based modes of Dodis et al.

The five “required properties of Mode of Operation” listed in [15] correspond to a large
extent with our three conditions, but not quite.

First, the condition unique parsing is similar to our condition tree-decodability. How-
ever, according to the definition in [15], unique parsing of any node instance that may
occur in a tree instance implies that it must be possible to identify the chaining pointer
bits, frame bits and message pointer bits with just access to the node instance itself. This
is a restricted case of our tree-decodability. While for unique parsing the node instance
coding is either fixed or must contain some frame bits fully specifying its composition,
in tree-decodability only the chaining pointer bits of a single expanding index β must be
found. For doing this, information may be derived from the part of the tree that has al-
ready been decoded. In general, our condition requires less frame bits to be inserted and
thus allows for a beĴer trade-off between flexibility and efficiency.
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Second, the property root predicate fully coincides with our condition on final-node
separability.

Third, in our conditions, there is no equivalent for the so-called straight-line program
structure property. Rather, it corresponds to our definition of a tree hashing mode in Sec-
tion 2. At first sight, the two definitions of tree hashingmodes are rather different. This is,
however, just a difference in presentation. In this paper, we clearly distinguish two parts
in the input: a message part M of which only the length has an impact on the tree tem-
plate, and a parameter part that determines the tree template. In [15] they are presented
as a single input called “message” and no distinction is made between the two types of
input. As discussed in Section 2, our definition allows a large amount of flexibility and
can actually implement any “straight-line program structure”.

Fourth, there is no equivalent either for the property final output processing. It says
that the output of applying the inner hash to the final node undergoes a function ζ that
must be an “efficiently computable, regular function” for which “the set of all preim-
ages ζ−1(h) must be efficiently sampleable given h”. An example of such a function is
truncation (chopping) of the output and it seems that this function is introduced as a gen-
eralization of truncation to accommodate an outer hash function output-length different
from the inner hash function output-length. In our approach, we study the differentiat-
ing advantage from a random oracle with variable output-length and the need for such a
complication does not appear. Clearly, truncating the output does not harm the differen-
tiating advantage as it gives an adversary less information. Moreover, the application of
any balanced function (as ζ above) to the output also preserves it.

Finally, the property message reconstructionmaps to message-completeness.

4.2 Property preserving aspects

Independently of the bounds proved below, some properties hold when the three condi-
tions of Section 4 are satisfied.

First, given message-completeness, producing a collision in the first m output bits of
T [F ](M, A) implies either an m-bit collision in F (S∗) or an inner collision. In the laĴer
case, Lemma 1 implies that one produces a collision in Fn. Therefore, the tree hashing
mode preserves the collision resistance of the inner hash function.

Then, a similar idea applies to the preimage aĴack. Given an m-bit output value s, an
adversary who can find an input (M, A) such that the first m bits of T [F ](M, A) are s can
reconstruct the tree node instances and compute the final node S∗. She is thus able to find
a preimage on the inner hash function F (For second preimage, this reasoning does not
apply as a second preimage for T [F ] can be constructed by finding a second preimage of
F for any inner node, and hence, it is not a second preimage of some designated output).

5 Adoption of the indifferentiability framework

In this section we specify and motivate the distinguisher’s seĴing, how we compute the
cost of queries and the resulting definition of indifferentiability of a tree hashing mode.

5.1 The distinguisher’s seĴing

We study the differentiating advantage of a tree hashing mode T , calling an ideal inner
hash function F , from an ideal outer hash function G. This leads to the seĴing illustrated

11



Fig. 2. The differentiability setup

in Figure 2. The system at the leĞ is T [F ] and F , and the adversary can make queries
to both subsystems separately, where the former in turn calls the laĴer to construct its
responses. The distinguisher has the following interfaces to this system:

– H taking as input (M, A, ℓ) with M a binary string, i.e., M ∈ Z∗2 , A the value of the
mode parameters and ℓ the requested output-length, and returning a binary string
y ∈ Zℓ

2;
– I taking as input (s, ℓ)with s a binary string s ∈ Z∗2 and ℓ the requested output-length,
and returning a binary string t ∈ Zℓ

2.

When queried at the interface H with a query (M, A, ℓ), the leĞ system returns y =
T [F ](M, A) truncated to ℓ bits. When queried at the interface I with a query (s, ℓ), it
returns t = F (s) truncated to ℓ bits.

The system at the right consists of an ideal hash function G implementing the interface
H and a simulator S implementing the interface I . We define the ideal hash function as
G[RO], whereRO is a random oracle. Upon receiving a query (M, A, ℓ), G constructs the
tree template Z = T (|M|, A) and encodes it together with the message M in an injective
way, denoted by enc(M, Z,flag “success”) (the last argument is for domain separation as
detailed in Section 6.1). It queries RO with the laĴer as argument returns its response
to the distinguisher. G[RO] returns independent outputs for different messages. It also
returns independent outputs for equalmessages but parameter values leading to different
tree templates. However, for equal messages and different parameter values leading to
equal tree templates it returns equal outputs.

The output of S should look consistent with what the distinguisher can obtain from
the ideal hash function G[RO], like if S was F and G[RO] was T [F ]. To achieve that,
the simulator can queryRO, denoted by S [RO]. Note that the simulator does not see the
distinguisher’s queries to G[RO]. Summarizing, S implements the interface I and when
queried with (s, ℓ), it responds with S [RO](s, ℓ).

Indifferentiability of T [F ] from the ideal function G[RO] is now satisfied if there ex-
ists a simulator S such that no distinguisher can tell the two systems apart with non-
negligible probability, based on their responses to queries it may send.
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In this seĴing, the distinguisher can send queries Q to both interfaces. Let X be either
(T [F ],F ) or (G[RO],S [RO]). The sequence of queries Q to X consists of a sequence
of queries to the interface H, denoted QH and a sequence of queries to the interface I ,
denoted QI . QH is a sequence of triplets QH,i = (Mi, Ai, ℓi), while QI is a sequence of
couples QI ,i = (si, ℓi).

We can now define T -consistency.

Definition 8. For a given set of queries Q and their responsesX (Q), T -consistency is the prop-
erty that the responses from the H interface are equal to those that one would obtain by applying
the tree hashing mode T to the responses from the I interface (when the queries QI suffice to
perform this calculation), i.e., that X (QH) = T [X (QI )](QH).

Note that T -consistency is per definition always satisfied by the system on the leĞ but not
necessarily by the system on the right.

5.2 The cost of queries

The differentiability bounds in [13] are expressed as a function of the total number q of
queries and their maximum input-lengths. In [7] a bound is expressed as a function of
a cost, that is proportional to the total length of the queries and their responses. In this
paper, we use a third approach: we quantify the contribution of the queries to H and to
I using a common unit, which is a query to the interface I . This is motivated by the fact
that queries toH and queries to I behave very differently when addressing (T [F ],F ): a
query toHmay require many calls to F , while a query to I , when applied to F , requires
only a single call.

The cost q of queries to a system X is the total number of calls to F it would yield if
X = (T [F ],F ), either directly due to queries QI , or indirectly via queries QH to T [F ].
The cost of a sequence of queries is fully determined by their number and their input.

– Each query QI ,i to I contributes 1 to the cost.
– Each queryQH,i = (Mi, Ai, ℓi) toH costs a number fT (|Mi|, Ai), depending on the tree
hashing mode T , the mode parameters Ai and the length of the input message |Mi|.
The function fT (|M|, A) counts the number of calls T [F] needs to make to F from the
template produced for parameters A and message length |M|. Note that fT (|M|, A)
is also the number of nodes produced by T (|M|, A).

In addition, we define the cost not to take into account duplicate queries. Two queries
QI ,i = (si, ℓi) and QI ,j = (sj, ℓj) with si = sj are counted as one, and cost as much
as a single query (si, max(ℓi, ℓj)). Similarly, two queries QH,i = (Mi, Ai, ℓi) and QH,j =
(Mj, Aj, ℓj) with Mi = Mj and Ai = Aj are counted as one, and cost as much as a single
query (Mi, Ai, max(ℓi, ℓj)). Note that this is only an a posteriori accounting convention
rather than a suggestion to replace overlapping queries by a single one. This convention
only benefits to the adversary and is thus on the safe side regarding security; see also
Appendix C for some additional discussion.

5.3 Definition

We can now adapt the definition as given in [13] to our seĴing.

13



Definition 9 ([13]).A tree hashing mode T with oracle access to an ideal hash function F is said
to be (tD, tS, q, ϵ)-indifferentiable from an ideal hash function G[RO] if there exists a simulator
S [RO], such that for any distinguisher D it holds that:

|Pr [D[T [F ],F ] = 1]− Pr [D[G[RO],S [RO]] = 1] | < ϵ.

The simulator has oracle access to RO and runs in time at most tS. The distinguisher runs in
time at most tD and has a cost of at most q. The value ϵ is an upper bound on the differentiating
advantage. We speak about indifferentiability when the differentiating advantage is a negligible
function of the security parameter n.

6 Upper bound on the differentiating advantage

In this section, we always assume that the conditions presented in Section 4 are fulfilled
by the tree hashing mode T . We first describe the simulator and its general goal. We then
prove an upper bound on the differentiating advantage by means of a series of lemmas
and a final theorem. We follow a proof technique very similar to the one we introduced
in [7].

6.1 The simulator and T -decoding

The adversary can verify T -consistency in the followingway. She takes any couple (M, A)
and the constructs from (|M|, A) the template Z = T (|M|, A). Subsequently, s executes
the template Z. In this process, she produces all node instances of the tree instance S =
Z [F ](M, Z) and makes for each of them a query to I requesting n bits. For the final node
S∗ of S, she queries I with (S∗, ℓ). She then makes the query (M, A, ℓ) toH and compares
the responses. For T -consistency, these must be the same. Note that in case the distin-
guisher is addressing the system (G[RO],S [RO]), the simulator has received queries for
all node instances in S. This reasoning remains valid if the distinguisher queriesH before
or between queries to I .

Our simulator has a set T in which it keeps for each inner-node query a couple with
the node s and the chaining value c it returned. We say that a final-node instance s is
message-bound if the set T allows reconstructing the corresponding input message M and
tree template Z, denoted by the couple (M, Z). This is an important concept in our proof.
Algorithm 1 aĴempts to extract the couple (M, Z) from T and a given final node, by first
reconstructing the complete tree instance using the known pairs (s, t) in T. If it succeeds
in obtaining (s, t) using T, Conditions 1 and 2 imply that it can then reconstruct (M, Z)
from this tree instance. In this case it will return a flag “success” and the couple (M, Z).
If it can only form a tree that is final-subtree-compliant with T , it returns the flag “dead
end” and the chaining value c whose preimage could not be found in the set T. If at some
point, the tree it is generating becomes incompliant with T , it returns a flag “incompliant
coding”. Note that T -decoding as specified in Algorithm 1 is a deterministic algorithm as
the algorithms Adecode and Amessage are deterministic.

In our T -decoding algorithm, wemake use of aworking tree template. This is the same
as a tree template, except that it can have a fourth type of bit called undetermined, denoted
as 2. A string of ℓ undetermined bits is denoted as 2ℓ.

Algorithm 2 specifies the simulator S [RO]. It has two sets for the purpose of behav-
ing deterministically and T -consistently. First, as already explained, it keeps track of the
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Algorithm 1 T -decoding
1: input: s and set T
2: output: flag and pair (M,Z) or chaining value c
3: Initialization: J = {∗}, S∗ = s and Z∗ = 2|s|

4: while Adecode(SJ) returns flag “final-subtree-compliant” do
5: Fill in the chaining pointer bits of the expanding index in Z
6: Let c be the chaining value corresponding to expanding index β extracted from SJ
7: if there is exactly one entry (s′, t) ∈ T with t = c then
8: Let J = J ∪ {β}, Sβ = s′ and Zβ = 2|s

′ |

9: else
10: return flag “dead end” and c
11: end if
12: end while
13: if Adecode(SJ) returns flag “incompliant” then
14: return flag “incompliant coding”
15: else
16: Reconstruct the message pointer bits in ZJ by calling Amessage(SJ)
17: Determine the remaining undetermined bits (all frame bits) in ZJ by copying them from SJ
18: Reconstruct M from SJ using the message pointer bits in ZJ .
19: return flag “success” and (M, Z)
20: end if

chaining values it generated for queries that may be inner nodes in a set T of couples (s, c)
with s ∈ Z∗2 and c ∈ Zn. We denote the set of first members of (s, c) ∈ T by Tin and the
set of second members by Tout. Second, it keeps track of all dead ends it has generated in
a set P ⊆ Zn

2 . Both T and P are initialized to the empty set.
Upon receipt of a query (s, ℓ), it subjects it to T -decoding and subsequently generates

its response and updates its sets T and P based on its outcome.

– If T -decoding returns “incompliant coding” and there is not yet a couple in T with s
as its first member, the simulator randomly generates a chaining value c and adds the
couple (s, c) to T for the purpose of acting deterministically. In generating c, it avoids
collisions in Tout and therefore line 7 of Algorithm 1 does not have to explicitly treat
the case of multiple entries. Moreover, it also avoids values in P to make sure that
nodes that have returned a flag “dead end” upon their first T -decoding will also do
so for all later ones. It then returns as response the first ℓ bits of the chaining value c
of the pair (s, c) ∈ T appended with the result of calling RO with c as input for the
purpose of acting in a deterministic way.

– If T -decoding returns a flag “dead end,” the simulator adds the chaining value c to P
and callsRO with s as input for the purpose of acting in a deterministic way.

– If T -decoding is successful this means s is message-bound. The simulator calls RO
with the resulting couple (M, Z) for guaranteeing T -consistency.

In each of the cases, the simulator makes a call to the random oracle, but every time for
a different purpose. The calls to the random oracle can be seen as calls to three different
random oracles. This is realized by applying domain separation by means of the flag that
is the last argument of the encoding function.
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Algorithm 2 The simulator S [RO]
1: input: (s, ℓ) (interface I)
2: output: string in Zℓ

2
3: Call T -decode(s, T) resulting in flag and a result
4: if flag is “incompliant coding” then
5: if s ̸∈ Tin then
6: Select c randomly from Zn

2 \ (P ∪ Tout)
7: Add (s, c) to T
8: end if
9: Let c be the chaining value corresponding to s in T
10: return the first ℓ bits of (c||RO(enc(s,flag “incompliant coding”)))
11: else if flag is “dead end” and result is c then
12: Set P← P ∪ {c}
13: return the first ℓ bits ofRO(enc(s,flag “dead end”))
14: else if flag is “success” and result is (M, Z) then
15: return the first ℓ bits ofRO(enc(M, Z,flag “success”))
16: end if

6.2 The proof

We prove a bound on the differentiating advantage in a series of lemmas. Our simulator
behaves deterministically and T -consistently as long as P ∪ Tout is not equal to Zn

2 . We
call this saturation:

Definition 10. The simulator is saturated when P ∪ Tout = Zn
2 in Algorithm 2 .

Note that for the simulator to be saturated it must have received at least 2n queries.

Lemma 2. The simulator acts as a deterministic function as long as it is not saturated.

Proof. We must prove that when the simulator receives a query (s, ℓ), the response t will
be consistent to the response t′ of any previous query (s, ℓ′). This implies that if ℓ < ℓ′, t
must be equal to t′ truncated to ℓ bits, if ℓ > ℓ′, the first ℓ bits of t must be equal to t′ and
if ℓ = ℓ′, t must be equal to t′.

The simulator constructs the response depending on the outcome of T -decoding. We
will first show that T -decode(s, T) has the same result for all queries (s, ℓ)with common
s. Or equivalently, the way the simulator adds entries (s, c) cannot change the result of
T -decode(s, T).
T -decode(s, T) is a deterministic algorithm, and the only step that depends on the set

T is the finding of an entry (s′, c)with c the chaining value corresponding to the expanding
index. Note that set T only contains couples (s, c) for which T -decoding of s has resulted
in the flag “incompliant coding.” It follows that adding entries to T could only affect
T -decode(s, T) in two cases:

– It would cause T to have multiple entries (s, c)with the same c-value where in a prior
call to T -decoding there was exactly one. The simulator avoids this by choosing the
chaining values c added to Tout different from all chaining values already in Tout. (So
the case that in line 7 of Algorithm 1 there are multiple entries cannot occur. Similarly,
line 9 of Algorithm 2 unambiguously retrieves one value c.)

– It would cause T to have an entry (s′, c)where in a prior call to T -decoding there was
none with second member c (so a dead end). The simulator avoids this by choosing
the chaining values c added to Tout different from all chaining values in the set P,
containing all dead-end chaining values.
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The simulator returns a response consisting of the first ℓ bits of a string V that it con-
structs differently depending on the outcome of T -decode(s, T). It does this in a deter-
ministic way, depending on the flag that T -decode(s, T) returns:

– “incompliant coding”: V consists of the second member of (s, c) stored in T followed
by a random string fully determined by s. The simulator adds the couple (s, c) to T
upon the first query with s as first member.

– “dead end”: V is a random string fully determined by s.
– “success”:V consists of the response ofRO to a querywith the encoding of the couple
(M, Z) that is the result of the T -decoding. We have shown above that adding entries
to T as done by the simulator cannot change the result of T -decoding.

⊓⊔

Lemma 3. The responses of (G[RO],S [RO]) are T -consistent as long as the simulator S is not
saturated.

Proof. First of all, fromLemma2 it follows that the simulatorwill behave as a deterministic
function for any query as long as it is not saturated.

According to Definition 8, T -consistency implies that there is a set of queries to the
simulator corresponding to the execution of a template Z for a message M and a query
for the corresponding final-node instance S∗ and such that its response S [RO](S∗) is
different fromRO(enc(M, Z,flag “success”)).

Thanks to final-node separability (Condition 3) and tree-decodability (Condition 1),
T -decoding can distinguish between queries withmessage-bound final nodes S∗ and oth-
ers.Wewill show that the simulator avoids giving T -inconsistent responses in both cases.

In the case of queries with nodes that are not message-bound final nodes, this is im-
mediate since there is no information in the QI queries and their responses to show in-
consistency.

In the case of message-bound final nodes, final-node separability (Condition 3) guar-
antees that the inner-node queries will be recorded into the set T and so S∗ is message-
bound to (M, Z). The T -decoding of the final node will then lead to reconstruction of
the corresponding tree instance S thanks to tree-decodability (Condition 1) and the fact
that Tout has no collisions while it is not saturated. From message-completeness (Con-
dition 2) it follows that the message M can be reconstructed from the found tree in-
stance S. The combination of tree-decodability andmessage-completeness implies that T -
decoding can successfully reconstruct the tree template Z. Finally, the simulator queries
RO(enc(M, Z,flag “success”)) to make its response T -consistent per construction. ⊓⊔

Lemma 4. As long as the simulator is not saturated, any sequence of queries QH can be con-
verted to a sequence of queries QI , where QI gives at least the same amount of information to the
adversary and has no higher cost than that of QH.

Proof. For each query QH,i = (Mi, Ai, ℓi), we can produce the template from Ai and |Mi|.
This template determines exactly how the query QH,i can be converted into a set QI of
fT (Ai, |Mi|) queries to interface I . From the definition of the cost, it follows that the cost of
QI cannot be higher than that of QH; the cost can be lower if there are redundant queries
in QI . ⊓⊔
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Lemma 5. The advantage of an adversary in distinguishing between F and S [RO] with the
responses to a sequence of q < 2n queries QI is upper bounded by:

ϵn(q) = 1−
q−1

∏
i=0

(
1− i

2n

)
.

Proof. The distinguishing advantage is defined as

Adv(A) = |Pr[A[F ] = 1]− Pr[A[S [RO]] = 1]|.

We provide an upper bound of the advantage by computing the total variation distance
between the two statistical distributions.

Since F is a random oracle, the responses to q different queries are independent and
uniformly distributed over Z2

n. For the simulator S , the distributions depend on the out-
come of T -decoding. The responses to queries for which T -decoding returns “success”
or “dead end” are uniformly and independently generated as they are the responses of
calls to the random oracle with different inputs thanks to including the flags in the en-
coding for domain separation. The responses to queries for which T -decoding returns
“incompliant coding” avoid inner collisions in their first n bits. The remaining bits are
again uniformly and independently generated by yet other calls to the random oracle.
Hence, we are only interested in the first n output bits of the responses to queries for
which T -decoding returns “incompliant coding”.

The simulator chooses them from the set Zn
2 \ (P ∪ Tout). Each query can add at most

one element Tout. The response to the i-th query is chosen from at least 2n − i + 1 val-
ues. AĞer q queries, there are at least (2n)(q) (where a(n) denotes a!/(a− n)!) possible re-

sponses, each with equal probability 1/(2n)(q). This gives Adv(A) ≤ 1− (2n)(q)
2nq = ϵn(q).

⊓⊔

We have now all the ingredients to prove our main theorem.

Theorem 1. A tree hashing mode T [F ] that uses Fn for the chaining values and satisfies Con-
ditions 1, 2 and 3, is (tD, tS, q, ϵ)-indifferentiable from an ideal hash function, for any tD, tS =
O(q3 + q2m), q < 2n and any ϵ with ϵ > ϵn(q), with q the cost of queries as defined in Section 5.2
and m the maximum size in bits of the trees processed by the simulator S .

Proof. We consider an adversary that ismore powerful than required; the boundwe prove
is also valid for the actual adversary who cannot do beĴer. For a given cost, the adversary
can issue the queries QI and QH in any order she wishes. AĞer she is done, we give
her for free additional queries Q′I derived from the queries QH as in Lemma 4 and their
responses. Since the queries Q′I are issued at the end of the process, they have no impact
on the state of the simulator S when issuing the original queries QI .

From Lemma 4, the queries QI ∪Q′I do not have a cost higher than that of QI ∪QH.
Since q < 2n, we are sure that P ̸= Zn

2 in the simulator even aĞer issuing the free extra
queries Q′I . As a consequence, Lemma 2 and Lemma 3 guarantee T -consistency of all the
queriesQI ∪QH ∪Q′I . Thismeans that the responses to the queriesQI ∪Q′I give the same
information as those to QI ∪QH ∪Q′I .We can therefore concentrate on the distinguishing
probability using only the queries QI = QI ∪Q′I and their response X (QI ).

For any fixed sequence of queries QI , we look at the problem of distinguishing the
random variable F (QI ) from the random variable S [RO](QI ). Lemma 5, upper bounds
the advantage to ϵn(q).
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For the complexity of the simulator, we have tS = O(q3 + q2m). Namely, for each of
the q queries, the simulator performs T -decoding. The laĴer builds a tree instance with at
most q nodes, and for each of these nodes, an entry must be found in the set T containing
at most q entries. This accounts for O(q3). Additionally, T -decoding executes Adecode at
most q times and Amessage a single time. This accounts for O(q2m). ⊓⊔

If q is significantly smaller than 2n, we can use the approximation 1 − x ≈ e−x for
x ≪ 1 to simplify the expression for ϵn(q):

ϵn(q) ≈ 1− e−
q(q−1)
2n+1 <

q(q− 1)
2n+1 ≈ q2

2n+1 .

7 Application to tree hashing

In the following subsection, we discuss the approach of using a tree hashingmode calling
a sequential hash function. This is followed by two simple examples of tree hashingmodes
and a method to combine different hashing modes into one. We also discuss tree hash
codings that satisfy the three conditions and on which multiple modes can be built and
discuss some real-world hashing modes in the light of our conditions.

One can build a tree hashing mode calling a compression function, where it is as-
sumed to behave as a fixed input-length (FIL) random oracle. The typical block cipher
based compression function constructions, such as the Davies-Meyer mode, are trivially
differentiable from a random oracle and are therefore not covered by our proof. On the
contrary, it has been shown in [23,15,7] that a random permutation can be converted to a
FIL random oracle simply by fixing part of its input and truncating its output.

7.1 Tree mode calling a sequential hash function

Sequential hashing modes typically come either with a security claim or an upper bound
on the differentiating advantage of the form N2/2c+1, where N relates to the number of
queries to the underlying function f and c is a security parameter (e.g., the length of the
inner chaining values or the capacity).

If we use a tree hashing mode (outer mode) calling a sequential hash mode (inner
mode) calling anunderlying function f , the total differentiating advantage is upper bound
by the sum of the outer advantage q2/2n+1 and of the inner advantage N2/2c+1. To mea-
sure the cost of an adversary, we choose as unit the evaluation of the function f since in
practice it bears the bulk of the computational workload. In this context, the best an ad-
versary can do is to choose messages in the outer mode that result in short node instances
(e.g., r blocks).We assume that a call to the sequential hash function results in only a small
constant number r of calls to f , leading to q = rN.

For an underlying function of given dimensions, one can now determine the optimal
values of the chaining value size n and of the security parameter c for providing a given
security level. We do the exercise for a sponge function [6,7]. Assume we have a permuta-
tion f andwewant to limit the total differentiating advantage to N2/2c′+1 for some target
value c′. We further assume that r = 1, i.e., the tree hashing mode allows the adversary
to query small node sizes at the cost of only one evaluation of the permutation f . The
optimal choice of parameters in this case is to use the sponge construction with capacity
equal to c = c′ + 1 and a tree hashing mode with chaining values of length n = c′ + 1.

19



7.2 Two simple examples

We now present two simple examples of tree hashing modes. These two modes are also
discussed in [10], where they are instantiated with the Kђѐѐюј sponge function. In both
modes, the tree parameters A = (H, D, B) are composed of the height H of the tree, the
degree D of the nodes and the leaf block size B.

All nodes end with a frame bit indicating whether it is a final or an inner node. Also,
the tree parameters A are encoded in the final node (e.g., as frame bits before the last one).
For a node at height h, its index α = α0|| . . . ||αh−1 is in (Z+ ∪ {0}) ×Zh−1

D for the first
mode, or in Zh

D for the second mode.
In the first mode, the degree of the final node grows as a function of the message

length, while the leaves have a fixed number of message pointer bits (i.e., α0 ∈ Z+ ∪ {0}).
The final node is connected to

⌈
|M|

BDH−1

⌉
balanced trees, each of height H− 1 and degree D.

The leaf nodes Zα consist of B message pointer bits covering the B positions (or less if not
enough bits in the message) starting from B ∑H−1

i=0 αiDH−1−i. The (non-leaf) inner nodes
have D chaining blocks of length n.

In the second mode, the tree has a fixed size but the leaves input a variable number of
message pointer bits (i.e., α0 ∈ ZD). The tree is a balanced tree of height H and all (non-
leaf) nodes have degree D. The leaf nodes Zα consist of sequences of B-bit message blocks
where the j-th block covers the B positions (or less if not enough bits in themessage) start-
ing from B(jDH +∑H−1

i=0 αiDH−1−i). The (non-leaf) nodes have D chaining blocks of length
n. This mode is easy to use when an upper bound on the number of parallel processes is
known in advance. The inner hashes of each of the DH leaves can be fetched with B-bit
blocks in parallel (Exploiting the available parallelism on a platform capable of less than
DH independent computations still yields efficient modes in the case of long messages).
In practice, restricting to H = 1 gives a simple tree that still allows to choose the number
of leaves D that can be computed in parallel.

It is clear that both modes are message-complete. Moreover, they implement final-
node domain separation. Additionally, they are tree-decodable as the tree structure can
be fully determined from A encoded in the final node and from the length of the node
instances.

7.3 Taking the union of tree hashing modes

We can create a new tree hashing mode Tunion by taking the union of n tree hashing
modes Ti in the followingway. Aunion is given by a choice parameter indicating themode
i composed with the tree parameters Ai for the particular mode. For instance, taking the
union of the two modes presented in Section 7.2 simply just requires adding a binary
choice parameter.

Taking the union ofmodes that use different codingmay lead to loss of tree-decodability
if no special precautions are taken. For instance, this problem can be fixed by coding in
the final node for each of the modes the choice parameter i such that it can be uniquely
decoded (domain separation). A coding-oriented approach is given in the next section.

Conversely, restricting the range of tree parameters of a given tree hashingmode does
not impact its soundness. In particular, when fixing the value of the tree parameters of a
sound tree hashing mode to a single value, the tree template Z is fully determined by the
message length |M|.
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7.4 Coding for tree hash modes satisfying the conditions

One can specify a tree hash coding that allows many different tree hashing modes and
that satisfies our three conditions. Such a coding can in principle be seen as a super tree
hash mode that is the union of all possible tree hash modes that can be realized by this
tree hash coding. If the coding satisfies the three conditions, this super tree hash mode is
sound, and hence, so are all tree hash modes supported by it. An example of such a tree
hash coding is the SюјѢџю coding that we published in [9]. In that paper, we prove that
any SюјѢџю-compatible mode is sound.

7.5 Checking of some real-world tree hash modes

Bitcoin [19] is a peer-to-peer electronic cash system that make use of tree hashing based
onMerkle trees [18] and is specified at [21]. Remarkably, the employed tree hashingmode
satisfies none of the three conditions, and it is easy to generate collisions or perform
length-extension aĴacks. However, abusing these properties seems to be made infeasi-
ble by the higher-level layers of the protocol.

The Tree Hash Exchange (THEX) format is proposed for assisting in checking the in-
tegrity of exchanged files, allowing arbitrary subranges of bytes to be verified before the
entire file has been received [12]. It satisfies tree-decodability bymeans of domain separa-
tion between leaf nodes and inner nodes and message-completeness. It is not final-node
separable, so it is vulnerable to length extension. This may, however, not be a requirement
for the typical use cases.

MD6 [23] was a SHA-3 candidate that applies a hash treemode to a compression func-
tion based on a permutation. Its tree hash mode satisfies all three conditions. This is done
at the cost of 73 frame bits per node call: 64-bit word U for the location of the node in
the tree, and 9 bits in metadata word V: the z-bit indicating whether it is the final node
and the maximum tree height coded on 8 bits. For soundness, just 2 frame bits per node
would have been sufficient.

8 Implications for sequential hashing

Sequential hash functionmodes can be seen as a special case of tree hashingmodes, where
the tree reduces to a single linear sequence, the inner hash function has fixed input-length
(i.e., is a compression function) and the parameters are empty. Therefore, the conditions for
tree hashing modes introduced in Section 4 can be applied to sequential hash functions.

In this section, we present the techniques for satisfying the three conditions and dis-
cuss a number of published modes in this context.

Clearly, a sequential mode has a single leaf node and the size of all nodes is equal
to the input-length of the compression function. We limit ourselves to modes in which
all nodes but the leaf and final nodes (and possibly the one before the final one, called
pre-final) contain a chaining value, a message block and some frame bits in a fixed layout.
Clearly, the leaf node has no chaining value and the message block in the final node (or
the pre-final one) may be shorter.

Most techniques we discuss introduce frame bits, which cause an overhead as they
either require a larger compression function or take the place of message or chaining bits.
In the following, we measure the overhead by the number of frame bits added.
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Note that in all these cases our conditions are sufficient ifF behaves as a (FIL) random
oracle. The case of F being an ideal cipher in Davies-Meyer mode is not covered as it can
trivially be differentiated from a FIL random oracle. In [23,15] a construction is provided
to construct a FIL random oracle from a random permutation.

Our analysis in Sections 8.4 and 8.5 is closely related to the notion of free-IV hashing
and its indifferentiability analysis in [2].

8.1 Satisfying tree-decodability

Tree-decodability is satisfied if any given node instance can be identified as the leaf node,
the final node, the pre-final node or another inner node. This is trivial for the final and
pre-final nodes thanks to their position in the tree. For the leaf node, this is, however, not
the case. We distinguish three techniques:

Domain separation We include in each node a frame bit that codes whether it is the leaf
node or not. The overhead is a single bit per node and is proportional to the message
length.

Length coding We use frame bits in the final node to code the height of the leaf node.
A variant, coding of the message length, is oĞen calledMerkle-Damgård strengthening,
and allows computing the height of the leaf node. Length coding implies the adoption
of a coding convention for integers. Typically, this integer is coded in a fixed-length
field imposing an upper limit to themessage length that may be supported by amode.
The overhead is independent of the message length and is log2(X/m) bits with X the
maximum message length and m the length of message blocks.

Initial Value (IV) In bit positions where other nodes have a chaining value, we put in the
leaf node a block of frame bits with a value specified in the mode. When T -decoding
a node, one can now check for the presence of the IV to determine whether it is the
leaf node or not. This resolves tree-decodability in all cases except a non-leaf node in
which a chaining value occurs with value IV. To cover this case, we need to slightly
modify our simulator and this results in a marginally different bound.We discuss this
in Section 8.4. The overhead is independent of the message length: n bits.

In the basic mode of [14], non-leaf nodes consist of the concatenation of a chaining value,
a single frame bit with value 1 and a message block Xi. In the leaf node, an all-zero IV
takes the place of the chaining value and the single frame bit. Hence, tree-decodability
is guaranteed by domain separation between leaf node and the other nodes. Addition-
ally, [14] proposes a variant where the single frame bit equal to 1 is not present and tree-
decodability fully relies on the presence of the IV in the leaf node.

8.2 Satisfying message-completeness

In a sequential mode, the message bits are mapped sequentially to the message blocks of
the individual nodes. Satisfying message-completeness thus comes down to determining
the message length. If it does not have an IV, the leaf node may have a larger message
block than the other nodes. As any message length shall be supported, the final (or pre-
final) node may have a shorter message block and the remaining bit positions are filled
with frame bits (padding). To uniquely determine themessage length, we distinguish two
techniques:
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Reversible padding We perform padding to the message to result in a multiple of the
message block length. Typically a single frame bit with value 1 is appended and a
minimum number of frame bits with value 0 to have a multiple of the message block
length. The overhead is in the range [1, m] bits and does not scale with the message
length.

Length coding We code the length of the message in the final node, or append it to the
message. To fit the node lengths, some additional padding must be performed. The
overhead does not scale with the message length and is in the following range:

[log2(X/m), log2(X/m) + m− 1].

8.3 Satisfying final-node domain separation

For final-node domain separation we distinguish the following techniques:

Frame bit We include in the nodes a single frame bit that codes whether the node is the
final one or not. The overhead is 1 bit per message block. This method was proposed
in [13] as a method to implement input prefix-free coding.

IV In the bit positions where other nodes have a chaining value, we put in the final node
a block of frame bits with a value specified in the mode. This implies that the chaining
valuemust be put elsewhere in the node and this goes at the cost of themessage block.
We discuss this case in Section 8.4. The overhead is independent of themessage length:
n bits.

8.4 Relying on IV values for indifferentiability

For tree-decodability let us assume that recognizing the leaf node relies on the presence of
an IV. Then, our simulator may generate an inner collision without a collision in the com-
pression function. We give a simple example. Assume that the simulator upon receipt of
a query with a node with message block µ and containing the IV has by chance generated
the IV as response. The distinguisher can then query G[RO] with two messages: a mes-
sage M and a message µ|M and if it returns different responses, she knows it is G[RO]
and not T . The probability that the responses are different is 1− 2−ℓ, with ℓ the number
of requested bits, and hence, the mode of use is differentiated. Actually Lemmas 2 and 3
do not hold due to the fact that they rely on tree-decodability via Lemma 1.

However, it is easy to fix it by slightly adapting the simulator. It suffices to initialize
the set Pn to {IV} rather than the empty set. Then the simulator avoids {IV} as a chaining
value and tree-decodability is repaired.

Similarly, if final-node recognition is based on the presence of a value IV2, the simula-
tor can in principle erroneously recognize an inner node as a final nodewhen the chaining
value it contains happens to be IV2. This can be avoided by including IV2 in Pn from the
start. This guarantees that the simulator will never return IV2 as a chaining value.

So, the initialization of Pn to the set of IV values fixes Lemma 2 and Lemma 3 and
has no impact on Lemma 4. However, it does have an impact on the bound in Lemma 5.
So Theorem 1 remains valid but with a different bound. Let us denote the number of IV
values defined in the mode by z and denote the bound by ϵn(q, z). Note that we define
ϵn(q) = ϵn(q, 0).
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If the set Pn is initialized with z IV instances, the response to the i-th query is chosen
from at least 2n − i + z + 1 values rather than 2n − i + 1 values. This yields the following
expression for the bound:

ϵn(q, z) = 1−∏
q+z−1
i=z

(
1− i

2n

)
< 1− exp

(
(q+z)(q+z−1)

2n+1

)
≈ (q+z)2

2n+1 .

Typically z is small (1 or 2) and, for large values of q, it holds that ϵn(q, z)/ϵn(q) is very
close to 1. We conclude that the price paid for counting on IV values for satisfying tree-
decodability and final-node domain separation is a negligible deterioration of the bound.

Mind that relying on a particular IV for tree-decodability introduces the possibility to
have inner collisions without a collision in the inner function and hence collision resis-
tance is no longer preserved.

In [4], the enveloped Merkle-Damgård (EMD) transform was presented that makes
use of IVs and that preserves collision resistance. It has a particular IV in the leaf node
and another IV in the final node. However, it does not require the IV in the leaf node for
tree-decodability as it also appends themessage length to the paddedmessage. The upper
bound in our proof is ϵn(q, 2), which is beĴer than the one given in [4].

The EMD transform can be seen as an improved version of twomodes previously pro-
posed in [13]. These modes are called NMAC and HMAC respectively and are inspired
by the MAC function constructions with the same name published in [3]. In the NMAC
mode, tree-decodability is realized with an IV in the leaf node. Final-node domain sepa-
ration is avoided by applying a so-called independent function to the hash output of the
final node. In practice this would typically be realized with the same compression func-
tion, but having domain separation. In HMAC, leaf and final nodes can be recognized by
the presence of an IV. One can distinguish between the two by the presence of an all-zero
block in the leaf node. In the final node there is a chaining value in that place. The upper
bound in our proof is ϵn(q, 1) for NMAC and ϵn(q, 3) for HMAC.

8.5 IVs as a public resource

The value of the IVs can either be part of the definition of themode T , or a public resource
like the compression functionF . So far, we have considered the former approach, and IVs
are implemented as frame bits. In the laĴer approach, the IVs are not known in advance,
but they have to be queried, either by the mode T or by an adversary.

Concretely, we can consider the IVs as part of the definition of the compression func-
tion F . If a mode uses z IVs, we can extend the domain of the compression function with
z artificial elements {♢1, . . . ,♢z} and consider the IV values as the images through Fn of
these new elements, i.e., IVi = Fn(♢i). In the mode, puĴing IVi in a leaf node or in the
final node is then modeled as puĴing chaining bits pointing to a new node whose input
is♢i. (A node with an IV is now no longer a leaf node but rather the parent of a leaf node
containing ♢i as frame “bits”.)

The difference between the two approaches is rather philosophical, and we see this
simply as a different way to model the introduction of IVs. Choosing between the two is
rather a maĴer of taste.
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With IVs as a public resource, the original three conditions apply directly, without the
need to adapt the simulator, but at the price of an artificial extension of the domain of F .
Here, the bound is again ϵn(q, 0), as no IV has to be put in Pn, but instead the burden of
learning about the IVs goes to the adversary, who does not know them in advance and
has to make z more queries. Another difference is that a collision of a chaining value with
an IV implies a collision in the compression function, applying Lemma 1 directly, with
the extended domain of F .

8.6 Techniques for avoiding final-node domain separation

Reserving a frame bit for domain separation between final and inner nodes is sometimes
perceived as too costly. Techniques are proposed in literature to prevent length extension
aĴacks without final-node domain separation. Remarkably, the techniques we have seen
so far appear to cost more than final-node domain separation. Three proposed techniques
are:

Chopping By chopping s bits from the output, i.e., reducing the output to n − s bits,
length extension requires guessing s bits. In [11] the following differentiability bound
is proven for certain sequential modes calling a compression function and chopping
s bits:

(3(n− s) + 1) Q
2s +

Q
2n−s−1 +

q2

2n+1 ,

with q the total number of calls to the compression function and Q the number of calls
to the outer hash function. When chopping half of the bits, i.e., s = n/2, this yields:

3(n + 2)Q
2(n/2)+1

+
q2

2n+1 .

For Q < 2n/2 this differentiability bound is very close to the optimum.However, chop-
ping reduces the output-length to n− s, increasing the success probability of finding
an output collision aĞer q queries by a factor 2s and leading to an expected work-
load of 2(n−s)/2 rather than 2n/2. If a resistance level 2c/2 is desired against all generic
aĴacks including generating collisions, the best one can achieve with chopping is tak-
ing n ≈ 3c/2 and s ≈ n/3. So for the same security level 2c/2, this method results in
an overhead of about c/2 bits per node as compared to a mode that does final-node
domain separation.

Tweaking This method consists of tweaking the chaining value in the final node by a
simple function. A typical tweak is the addition of a nonzero constant X. This method
was proven indifferentiable in [16]. When looking at it from the perspective of our
proof, in this construction the simulator cannot distinguish between inner and final
nodes. However, we can adapt our simulator to avoid inner collisions and guarantee
T -consistency also for this case; upon receipt of a query s to which it returns t, it stores
in Pn both t and t⊕ X and the chaining value present in s. This adds three values to
Pn for each query and leads to a bound that is a factor 3 larger than the optimum one
(but still smaller than the one proven in [16]). Hence, this suggests that this method
is also less efficient than final-node domain separation (i.e., log2 3 > 1 extra chaining
value bits would be necessary to compensate for this extra factor 3 in the bound).
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Fig. 3. Tree template for a simple sequential mode

Pre-pending the message length By coding the length of the message in the leaf node,
length extension is prevented. Note that independently leaf node identification must
be guaranteed with a dedicated frame bit or an IV. This method is not covered by our
conditions. It was proposed in [13] as a form of prefix-free input coding and proven
indifferentiable. The overhead of this method is limited. However, this method has an
important drawback that makes it impractical for many applications: the length of the
message must be known in advance.

The simplest sequential hashing mode, that is sound, is the following. All but the leaf
and final nodes consist of an m-bit message block, an n-bit chaining value and two frame
bits (coding final/inner node and leaf/non-leaf node). The leaf node has no chaining value
but an n+m bit message block. The final node has an incomplete message block of length
in [0, m− 1] followed by a single frame bit with value 1 and up to m− 1 frame bits with
value 0 (for padding). This is illustrated in Figure 3.

9 Conclusions

In this paper, we have given a set of sufficient conditions for both tree and sequential
hashing modes to be sound. If these conditions are satisfied, the differentiability bound
is as tight as theoretically possible: it is only limited by the length of chaining values and
independent of the output-length. While the conditions were mainly aimed at tree hash-
ing, they shed a different light to most published sequential hashing modes and allowed
for improved bounds in some cases.
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A On this version of the paper

Compared to the earlier versions of this paperwe have removed one of the four conditions
for soundness, reducing them to three. This removed condition, parameter-completeness,
applied to parametrized hashing modes and was necessary for guaranteeing that a mes-
sage M, hashed with two different parameter values A and A′ would not lead systemati-
cally to the same digest. More specifically, we considered two different inputs (M, A) and
(M, A′) leading to the same digest to be a collision. For some message lengths, the tree
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template may be independent of a parameter value and hence, the digest is independent
too. Avoiding a collision for such cases requires to explicitly code this parameter value
in frame bits. In this version we no longer consider this to be a collision. This reflects the
situation in real-world applications where one speaks of a collision if two different mes-
sages lead to the same digest. Actually, the need for our fourth condition was an artefact
of the ideal hash function definition that we adopted in our security proof. In this and
the previous version of the paper we have adapted this definition, removing the need for
parameter-completeness.

In this version of the paper we have made the reasoning more formal by adding def-
initions and making the T -decoding and simulator algorithms more rigorous. However,
the general set-up and philosophy remains unchanged. Furthermore, the applicability of
the three conditions stays the same.

Additionally, in previous versions of this paper we claimed that satisfying the four
conditions implies preservation of second preimage resistance. We acknowledge Stefan
Lucks for pointing out to us this is not the case and have removed that claim.

B Illustrations

In this section, we illustrate two undesired properties of tree hashing modes explained in
Section 4 to introduce two of the three conditions for sound tree hashing. We give some
figures of templates generated by some mode of use. The way these templates have been
generated by the mode of use are out of scope of this section. Note also that these tem-
plates illustrate undesired properties, and hence, the modes of use that would produce
them are per definition not sound.

We use the following conventions. Instead of depicting individual bits, we depict mes-
sage/chaining/frame blocks, where a block is just a sequence of consecutive bits. Frame
blocks are depicted by white rectangles with its value indicated, message blocks by light
gray rectangles and their position in the message indicated, and chaining blocks by dark
gray rectangles with an indication of their child. An output is depicted by a rounded rect-
angle. The nodes are identified with their indices and the relation between the nodes is
additionally indicated by arrows, symbolizing the application of F during template exe-
cution for a concrete input M.

The first property is related to the existence of inner collisions in the absence of colli-
sions in the output of F and is illustrated in Figure 4. The figure depicts two templates
that are generated by a mode of use T for two different message lengths. All nodes have
as first two bits frame bits with value 01. The template on the leĞ has four nodes: three
leaf nodes of height 1 and a final node that takes an input block and the chaining val-
ues corresponding to the three leaf nodes. The template on the right has three nodes: two
leaf nodes of height 1 and a final node that takes an input block and the chaining values
corresponding to the two leaf nodes. Note that the final node of the right template has
a message block (indicated by M′0) in the place where the final node of the leĞ template
has the concatenation of a message block M0 and a chaining block CV2. We can exploit
this fact to construct an inner collision from any message M with length matching the leĞ
template. As can be seen in the figure, it suffices to form M′ by replacing in M the block
M1 by F (01|M1).

The second property, a generalization of length extension to tree hashing, is illustrated
in Figure 5. Given the output of h = T [F ](M) of some message M, length extension is
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Fig. 4. Example of an inner collision without a collision in F

the possibility to compute the output of T [F ](M′)with M a substring of M′, only know-
ing the output h and not M itself. Figure 5 depicts two templates corresponding with two
different message lengths. The templates have a binary tree structure. The template at
the leĞ has three nodes: two leaf nodes and a final node containing the chaining values
corresponding to the two leaf nodes. The template at the right has seven nodes: four leaf
nodes, two intermediate nodes each containing the chaining values corresponding to two
leaf nodes and a final node containing the chaining values of the intermediate nodes. Note
that the chaining block CV0 in the final node of the right template corresponds with the
hashing output of the leĞ template. As can be seen in the figure, given the hash output
h of a message M with length matching the leĞ template, one can compute the hash out-
put of any message M′ = M|M2|M3 with length matching the right template without
knowledge of M.

C Remarks on the cost

The cost measure introduced in Section 5.2 aims at counting on an equal footing both
queries to H and queries to I . We wish to illustrate this by comparing two examples of
distinguisher.

The first distinguisher uses only the I interface to produce a collision in Fn (or in the
simulator). Assuming a collision is produced, twomessages can be built, so as to turn this
collision into an inner collision in T but not in G. This aĴack takes about 2n/2 queries. (If
aĞer 2n/2 aĴempts no collision has been found, the distinguisher may suspect it is not
querying F but a simulator.)

The second distinguisher uses only the H interface and aĴempts to exhibit an inner
collision directly. When talking to T , such an inner collision can occur, but when talking
to G, an inner collision does not even exist (with the requested output-length sufficiently
large to detect such an inner collision with arbitrary certainty). More specifically, the dis-
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Fig. 5. Example of the generalization of length extension to tree hashing

tinguisher queries the H interface with equal tree parameters A and messages Mi that
vary only in one leaf, which is chosen to have the maximum height H in the tree. To ob-
tain an inner collision, it is sufficient to get a collision at any of the H nodes on the way
from the leaf to the final node. The distinguisher needs about 2n/2/H queries to hit an in-
ner collision. Hence, in this context a query toH appears to be a factor H more powerful
than a query to I .

The cost function that counts calls to F and discards duplicate queries as one, brings
the two distinguishers to a more equal footing. The first distinguisher succeeds at a cost
of about 2n/2. The queries of the second distinguisher could be performed at the level of
the I interface, the tree mode T being simulated by the distinguisher. In this case, each
query to H translates into fT (|M|, A) queries to I . However, the strategy of the second
distinguisher is such that only H QI queries differ for each of the 2n/2/H QH queries.
Hence, the cost of QI for the second distinguisher is also about 2n/2.
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