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Abstract. We consider symmetric key predistribution in grid-based wire-
less sensor networks. Networks consisting of wireless sensor nodes ar-
ranged in a grid pattern have many useful applications, including envi-
ronmental monitoring and agribusiness. The structured physical distri-
bution of nodes in such networks facilitates efficient distribution of keys
to the nodes prior to deployment. It has been shown that combinato-
rial objects known as distinct-difference configurations (DDCs) can be
used to construct effective key predistribution schemes (KPSs) for grid-
based networks. In this paper we observe that the regular topology of
a grid-based network enables an efficient trade-off between the connec-
tivity, resilience and storage requirements of a KPS, and we discuss the
balancing of these properties to suit application requirements. We then
show how recent results on the construction of DDCs can be used to
produce KPSs that achieve the desired balance, and we provide explicit
algorithms for the instantiation of these schemes.
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1 Introduction

A wireless sensor network (WSN) is an ad hoc network formed from a large
collection of low-powered sensor nodes that gather data and use wireless com-
munication to transmit the information they collect. Due to the wireless nature
of the communication and the potential commercial sensitivity of the data they
measure, there is a requirement for cryptographic techniques to provide authen-
tication, data integrity and/or confidentiality. The limited processing power and
memory of the sensors means that in many circumstances the use of symmetric
cryptographic primitives may be preferred to more computationally intensive
public-key operations. This creates a requirement for the sensors to share keys.
One effective method of distributing keys to the sensors is a key predistribution
scheme (KPS), which allocates keys to be stored in the sensors’ memories prior



to deployment. The design of a KPS involves a trade-off between the number of
keys each node must store (storage), the number of secure links between nodes
in the resulting network (connectivity), and the vulnerability of the scheme to
adversaries that capture nodes and extract the keys they contain (resilience).
Many KPSs have been proposed in the literature, but most of them have been
designed for networks in which the location of the sensors is not known before
deployment (see [9,14, 18] for surveys of this field). However, in many instances
the demands of the application lead directly to networks in which there is prior
knowledge of sensor locations [14,17]. When this occurs, this location knowledge
may be exploited for the development of KPSs that provide a more efficient
trade-off between storage, connectivity and resilience.

One natural scenario in which there is complete knowledge of the sensors’
locations is that in which the sensors are located in a grid formation. The use
of a grid-based network is generally motivated by applications that require mea-
surements to be taken at regularly-spaced intervals. In some cases, the use of a
hexagonal grid (as opposed to a square grid) may be desirable, as it permits a
particularly efficient packing of sensors into a target region. Grid-based networks
can arise in many applications, with recent instantiations including soil moisture
sensing [2], monitoring conditions in a nectarine orchard [1], and measuring the
efficiency of water use during irrigation [15]).

Blackburn et al. showed that effective KPSs for networks based on square
grids can be achieved through the use of combinatorial objects known as distinct-
difference configurations (DDCs): sets of points in a square grid such that the
vectors joining any two pairs of points differ in either length or direction [4]. This
scheme makes use of the knowledge of the nodes’ locations to ensure that keys
are only shared by nodes that are within communication range. For a network
with a given communication range and distance between neighbouring nodes,
this permits the total number of nodes in the network to be made arbitrarily
large without affecting either connectivity or resilience. This is not the case
for KPSs such as [10] that do not exploit location knowledge: in such schemes,
the storage/connectivity/resilience trade-off becomes worse as the number of
nodes is increased, as maintaining connectivity with a given amount of storage
inevitably leads to decreased resilience as the network size increases. The trade-
off provided by the scheme of [4] is particularly efficient, as it ensures that any
two nodes share at most one key, thus maximising the number of communication
links secured by a given number of shared keys. Additionally, the fact that this
scheme is deterministic implies that no communication is required for pairs of
nodes to determine which keys they share (the shared-key discovery process
represents a substantial overhead for networks in which the keys are allocated
randomly).

A suitable choice of DDC in the scheme of Blackburn et al. leads to KPSs that
perform favourably compared with other schemes in the literature, as demon-
strated in [4]. However, in [4] a computer search was required in order to find
DDCs with good properties for use in key predistribution, which can be time-
consuming if large DDCs are required. The mathematical theory relating to



DDCs has recently been explored in [3,5], where bounds on certain parameters
of DDCs as well as some methods for constructing DDCs are provided. In order
to design explicit KPSs using these techniques for a given network environment,
two further questions must be addressed:

1. What is the best way to choose a DDC on which to base a grid-based KPS?
2. How should the chosen DDC be instantiated by an explicit construction?

We extend the previous research by providing answers to these questions.

1.1 Owur Contributions

After preliminaries in Section 2, we provide an algorithmic description of the
KPS proposed in [4] in Section 3, extending this KPS to suit networks based on
hexagonal grids, as well as square grids. In Section 4 we observe that connectivity
provides a good criterion for choosing a DDC for use in a KPS, and in Section 5
we discuss connectivity properties that can be used for this purpose, namely
the one-hop coverage and two-hop coverage. Efficient constructions for DDCs
with good one-hop coverage in both the square and hexagonal grids are given in
Section 5.1. Finally, in Section 5.2 we provide an algorithm for the construction
of a DDC that gives complete 2-hop coverage over specified regions in the square
or hexagonal grid.

2 Grid-Based Networks and Key Predistribution

2.1 Assumptions

In this paper we consider sensor networks in which the nodes are located at
the centres of the squares in a square grid, or the hexagons in a hexagonal grid.
Individual nodes in the network may be identified through the use of coordinates,
which we assign as shown in Fig. 1.

(0,3)](1,3)1(2,3)](3,3) | (4,3)

(0,3)[(1,3)(2,3)[(3,3)|(4,3)
(0,2)](1,2)](2,2)](3,2)|(4,2)

(0,1)[(1,1)((2,1)(3,1)|(4,1)

(0,0)](1,0)[(2,0)|(3,0)|(4,0) 0, 0] 006 0o

Fig. 1. Coordinates for nodes in the square and hexagonal grids

We suppose that any node is able to communicate with all nodes that lie
within distance r of it, and we refer to r as the communication range of the



nodes. Two nodes are considered to be able to communicate securely if they are
within range of each other and share a key; we refer to this as a one-hop path
between the nodes. Nodes that do not share a key may be able to communicate
with the aid of an intermediate node with which they can both form one-hop
paths: this is referred to as a two-hop path.

The goal of a KPS is to facilitate secure communication between neighbour-
ing nodes. As communication between nodes is costly in terms of the energy
expenditure that is required, it is desirable for nearby nodes to be able to com-
municate as directly as possible. Useful parameters for measuring the perfor-
mance of a KPS are the one-hop coverage, which we define to be the expected
number of neighbours that share keys with a node, and the two-hop coverage,
which we define to be the expected number of neighbours with which a node can
communicate securely via either a one-hop or a two-hop path.

Finally, we assume there is an upper bound m on the number of keys each
node can feasibly store.

2.2 Adversary Model

We assume the presence of an adversary that can eavesdrop on all unencrypted
traffic in the network. In addition, we suppose the adversary has the ability to
physically compromise nodes and extract any keys that they store.

2.3 Design Requirements

Ideally we would like a KPS to provide good connectivity with strong resilience,
without requiring nodes to store too many keys. As these properties are in oppo-
sition to each other, the design of a KPS involves finding an appropriate trade-off
between them. Certain trivial schemes may seem obvious candidates for KPSs
in grid based networks. However, they have inherent limitations that affect their
applicability:

single key scheme Perhaps the simplest KPS is that in which a single key
is stored by all nodes in the nextwork. This provides perfect connectivity
with extremely low storage overheads. Unfortunately, it has very poor re-
silience, since the capture of even a single node by the adversary leads to the
compromise of all communication links within the network.

immediate neighbours scheme A second possibility would be for a node in
a square (hexagonal) grid to share keys with its four (six) closest neighbours.
This leads to very low storage and ensures the network is connected. How-
ever, the one-hop coverage is just four (six), and the two-hop coverage is
only twelve (eighteen), which can lead to communication bottlenecks in the
network, and would result in nodes becoming isolated from the rest of the
network if their immediate neighbours were to fail or be compromised.

locally-complete pairwise scheme The fragility of the previous scheme could
be overcome by allowing each pair of nodes that are within communication
range to store a distinct key. This scheme has excellent one-hop coverage



(since any pair of nodes that is within range can communicate securely) and
resilience (since the compromise of a node does not affect the security of any
keys shared by uncompromised nodes). However, the number of nodes within
range of any given node grows quadratically with the communication range,
which quickly results in nodes being required to devote unfeasible amounts
of memory to the storage of keys.

The inflexibility of these schemes makes it impossible to vary the trade-off be-
tween storage, connectivity and resilience to suit application requirements. In
Section 3 we describe an example of a scheme designed specifically for a grid-
based environment that can provide a flexible and efficient trade-off between
these three properties.

3 A Practical KPS for Grid-Based Networks

In [4], Blackburn et al. describe a KPS for a grid-based network in which any pair
of nodes shares at most one key, and only nodes that are within communication
range share keys. This first property leads to schemes with high connectivity
given a particular amount of storage: since there is no duplication of shared keys,
each shared key secures a new link. The second property ensures that no shared
key is wasted on a pair of nodes who are too far apart to be able to communicate,
and also has the advantage that if an adversary extracts keys from a node then
the only links affected will be local, with the rest of the network remaining
unaffected. These properties are achieved by basing the scheme on a distinct-
difference configuration DD(m, r): a set of points in the square grid such that the
difference between any two points is at most r, and the vectors connecting any
two pairs of points differ either in length or direction. It is demonstrated in [4]
that for networks based on square grids, this scheme outperforms other schemes
from the literature [10, 11, 13], achieving good two-hop coverage and resilience
with comparatively low storage requirements.

Algorithm 1 is a description of the scheme of [4], which works by selecting a
DD(m,r), then allocating the keys so that the pattern of nodes in the grid that
share any given key coincides with the pattern of points in the DD(m,r). We
assume the nodes of the network lie in a rectangle of size I3 x lo (if this is not the
case, [; and l2 can be taken to be the dimensions of a rectangle in the square grid
that contains all the nodes of the network). Each node is identified by the pair
of integers (4, j), representing the column and row of the rectangle in which it is
located (see Fig. 1). The distinct-difference configuration is represented by a set
DDC = {P', P2 ..., P™}, where P' = (P}, P}) represents the coordinates of
the i*" dot in the configuration, and we assume 0 < Pi < rand 0 < P} < rfori =
1,2,...,m. The keyrings of the nodes are represented as sets of key identifiers,
integers that each represent a specific key that is drawn pseudorandomly from
a larger keypool. Note that while the distribution of key identifiers is entirely
deterministic, the correspondence between the identifiers and specific keys is
necessarily probabilistic.



Algorithm 1: Grid-based KPS

Input: a distinct-difference configuration
DDC := {P',P? ...,P™} C [0,7] x [0,r], positive integers I1, 2
representing the dimensions of the target rectangle
Output: an l; X Iz array S whose entries are sets S[i][j] of m key identifiers
keycounter:=0;
for i from —r tol1 — 1 do
for j from —r to lo — 1 do
for P € DDC do
if0<i+Po<li,0<j+ P <lz then
S[i + Po][j + P1] := S[i + Po][j + P1] U {keycounter};
end

end
keycounter := keycounter + 1;
end
end
return S;

Ezxample 1. We now illustrate the behaviour of Algorithm 1 by considering some
small parameters. Suppose I; = 8, I = 6, r = 2 and we wish to distribute
keys using the DD(3, 2) whose points are {(0,0), (1,1),(2,0)}. This DDC can be
depicted as follows:

The following table illustrates the key identifiers allocated to each node in the
grid by Algorithm 1.

14 22 30 38 46 54 | 62 80
23 7131 15[39 23|47 31|55 39|63 47|71 55|79 63

13 21 29 37 | 45 53 61 69
22 6130 14[38 22|46 30|54 38|62 46|70 54|78 62

12 20 28 36 44 52 60 68
21 5129 13|37 21|45 29|53 37|61 45|69 53|77 61

11 19 27 35 43 51 59 67
20 4|28 12|36 20|44 28|52 36|60 44|68 52|76 60

10 18 26 34 42 50 58 66
19 3 (27 11|35 19|43 27|51 35|59 43|67 51|75 59

9 17 | 25 33 41 49 57 | 65
18 226 10|34 18]42 26|50 34|58 42|66 50|74 58

We see that each square contains three integers, corresponding to the three keys
stored by each node. Similarly, each of these integers occurs in precisely three
squares (except for those occurring too close to the edge of the network). Two
squares that contain the same integer correspond to two nodes that share a key;



any two nodes in the grid share at most one key, and any two nodes that share
a key occur at a distance of at most 2 (where the width of each grid square is
taken to be 1).

The scheme in [4] was designed for a network based on a square grid, but can
also be adapted for the hexagonal grid, through the use of the coordinates shown
in Fig. 1. We denote by DD*(m, r) a set of points in the hexagonal grid such that
the difference between any two points is at most r, and the vectors connecting
any two pairs of points differ either in length or direction. Algorithm 1 can then
be used directly for key predistribution on the hexagonal grid by replacing the
DD(m,r) by a DD*(m, r). Rather than considering a network of nodes that lie in
a rectangle, in this case we consider nodes lying in a parallelogram of sidelengths
Iy and [y, with angles of 7/3 and 27/3 between the sides (Fig. 1 shows such a
parallelogram with {; = 5 and lo = 4.)

4 Finding an Appropriate Trade-Off Between Storage,
Connectivity and Resilience

The behaviour of the KPS described by Algorithm 1 is determined by the choice
of distinct-difference configuration used to construct the scheme. Therefore, in
order to adapt this scheme for a particular application, it is necessary to ap-
preciate how the properties of the distinct-difference configuration influence the
properties of the scheme. Perhaps the most well-defined constraint on the selec-
tion of parameters for a KPS is the amount of memory available for storing keys.
In a scheme based on a DD(m,r) or DD*(m,r) each node is required to store
m keys, thus the appropriate number of dots in the DDC chosen to instantiate
the scheme is determined directly by available storage.

The connectivity of the scheme is directly related to m, since each node shares
keys with m(m — 1) other nodes [4]. However, the number of nodes sharing each
key is m [4], so the number of one-hop paths between nodes that are compromised
when an adversary learns the keys of a single node increases with m. Thus the
resilience decreases as m increases. A higher degree of resilience may be achieved
at the cost of higher storage by replacing each single key by an instance of Blom’s
KPS [6,7] (see [12], for example.)

One appropriate method for choosing a DD(m,r) or DD*(m,r) as an input
to Algorithm 1 is therefore to pick a DDC with the smallest value of m that
still gives the desired level of connectivity, as this minimises the storage and
increases the resilience. In Section 5 we discuss useful measures for quantifying
the connectivity of a DDC, and provide efficient algorithms for the construction
of DDCs that have good connectivity with respect to these measures.

5 Construction of DDCs with Good Connectivity

We saw in Section 4 that the connectivity of a DD(m,r) or DD*(m,r) is a good
basis for deciding whether to use it in the KPS of [4]. In this section, we consider



measures of the connectivity of a DDC, and provide efficient constructions of
DDCs that have good connectivity with respect to these measures.

one-hop coverage The one-hop coverage of a scheme based on a DD(m, r) is
m(m — 1) [4], and is thus limited by the storage constraints. Additionally, it
is shown in [5] that if a DD(m, ) exists, then m < 0.88623r + O(r?/?) and
if a DD*(m, r) exists then m < 0.95231r 4+ O(r%/3). That is, the value of the
communication range r places additional constraints on the one-hop coverage
that is possible. In Section 5.1 we give algorithms that efficiently generate
DD(m, r) with m = 0.80795r—o(r) and DD*(m, r) with m = 0.86819r—o(r),
based on constructions from [5]. The resulting DDCs thus have one-hop cov-
erage that is (asymptotically) close to optimal relative to the communication
range, and therefore represent a good choice for applications in which the
one-hop coverage of the KPS is of paramount importance. In other words,
these DDCs can be regarded as having ‘close’ to the maximum number of
dots possible for the given value of r; if configurations with fewer dots are
desired, they can be obtained by simply deleting dots from these configura-
tions.

complete two-hop coverage In order to permit efficient communication within
a wireless sensor network, it is desirable for the average length of the shortest
secure path between two nodes that are within communication range to be
minimised. One way of achieving this is to ensure that as many pairs of nodes
that are within range as possible can communicate via a secure one-hop or
two-hop path. A construction is given in [3] for a DD(p+ 2, /2p2 + 2p + 1),
where p > 5 is prime, which leads to a KPS in which each node can com-
municate securely via a one-hop or two-hop path with all the nodes in a
surrounding (2p — 1) x (2p — 3) rectangle. We refer to this as complete two-
hop connectivity within such a rectangle. This is a useful property, as it
ensures nodes can communicate securely with their nearest neighbours. We
describe this construction in Section 5.2, and extend it to give a construc-
tion for a DD*(p + 2, /3p? — 3p + 1) with complete two-hop coverage on a
parallelogram.

5.1 KPSs with Good One-Hop Coverage

In this section we give an explicit description of how to instantiate construc-
tions from [5] of distinct-difference configurations with large numbers of dots for
both the square and hexagonal grid. These constructions each make use of a
Bs-sequence in Zy: a set D = {dy,ds,...,d;} C Z, with the property that the
differences between any two pairs of numbers in the set are distinct (mod n).
In (8], Bose describes a construction of a By-sequence in Zg2_; containing ¢ el-
ements. Algorithm 2 describes and explicit method of generating the elements
of a Bose Bs-sequence. This algorithm requires the use of a quadratic primitive
polynomial over the finite field GF(q); information on generating such polyno-
mials can be found in [16]. We use the notation Mﬂl to denote the top left entry
of the *" power of the matrix M.



Algorithm 2: Construction of a Bose Bs-sequence

Input: elements a,b € GF(q) such that 2? — ax — b € GF(q)[z] is a primitive
polynomial
Output: a Ba-sequence D = {d1,dz,...,dq} C Zp2_,

al
M= (b O),
D := {0}
for i from 1 to ¢> — 2 do
if M{, =1 (mod ¢°> — 1) then
D :=Du{i};
end
end
return D;

Ezxample 2. Suppose we wish to construct a Bose By sequence in Zs4. The poly-
nomial 22 + 4x + 2 is a primitive polynomial over GF(5); we use it to construct

the matrix M = <:;l (1)

left entries of M, M*', M4, M'6 and M?" are 1, hence the desired By-sequence
consists of the set {0,1,14,16,21}. It is easy to check that no two of the 20 pos-
sible differences between distinct pairs of elements of this set coincide (mod 24).

>. Taking successive powers of M, we find that the top

We now describe the conversion of a Bose Bs-sequence into a DD(m,r) or
DD*(m, r).

DD(m,r) with Good One-Hop Coverage Algorithm 3 is based on the
techniques of [5] and can be used to construct a DD(m,r) with m = 0.80795r —
o(r) from a Bose Ba-sequence.

Let R = L%J . We will construct a distinct-difference configuration whose dots
are contained in a circle of radius R, which implies that the distance between
any two dots is at most 7. Let n = |0.914769r] (the constant was chosen in [5]
to obtain an optimal construction), and let ¢ be the smallest prime power with
¢*>—1 > n2. Algorithm 3 converts a Bs-sequence in Zg>—1 into a distinct difference
configuration whose dots are contained in an n x n square®, then takes the
intersection of the square with a circle of radius R centred at the centre of the
square, in order to produce a DD(m, r) for some m < q.

If D={d,ds,...,dg} CZs,_; is a Bs-sequence, then so is the set D +1i :=
{di+i,da+i,...,dg+i} for any i € Z,2_y; we refer to this as a shift of D. We can
apply Algorithm 3 to each of the ¢ — 1 possible shifts of the Bose Bs-sequence
in Zg2_1 and select the resulting configuration with the greatest number of dots.
The results of [5] show that configurations with approximately 0.80795r — o(r)
dots can be obtained by this method.

3 j.e. a set of n? grid points arrange in a square



Algorithm 3: Construction of a DD(m, r) from a Bs-sequence

Input: a positive integer r, a Ba-sequence D = {di,dz,...,dq} C Z,2_; where ¢
is the smallest prime power such that ¢> — 1 > [0.914769r |
Output: a set DDC := {P* P? ... P™} of points in Z* forming a DD(m, r)
for some m < ¢

R:=3];
n = 0.914769r |;
DDC := {};

for i from 0 ton —1 do
for j from 0 ton—1 do
if ig+j (mod ¢*> — 1) € D then
if (251 —i)* + (252 — j)? < R’ then
DDC :=DDCU{(i,5)};
end
end
end
end
return DD(C'

Ezample 3. Suppose we wish to construct a DD(m, 8). Then n = 7, so we take
q = 8 in Algorithm 3. The Bose Bs sequence in Zgz generated by Algorithm 2
is {0,4,6,7,29,39,50,55}. Taking this Bs-sequence as input to Algorithm 3
yields a DD(3,8). However, if we shift the original sequence by 37 to obtain the
sequence {3,13,24,29,37,41,43,44} we obtain the DD(8,8) whose points are
{(0,3),(5,4),(3,5),(1,5),(4,5),(5,1),(5,3),(3,0)}, illustrated in Fig. 2. This is
the maximum number of points that can be obtained from any shift of this Bose
Bs-sequence.

Fig. 2. A DD(8,8) contained in a circle of radius 4

DD*(m,r) with Good One-Hop Coverage The points of the hexagonal
grid are packed more densely than those of the square grid, making it possible
to obtain DD*(m, r) with 0.86819r — o(r) dots by a similar construction to that
used in the case of the square grid [5].

Let R j L%J, n = |0.914769r |, and let ¢ be the smallest prime power with

¢?—-1> %nQ. We take a Bose Bs-sequence in Zg,_; and apply Algorithm 4,



which is essentially a variant of Algorithm 3 adapted to suit the different pattern

of grid points in the hexagonal grid. It makes use of the fact that a node of the

hexagonal grid labeled (7, 7) as in Fig. 1 has Cartesian coordinates (i — %, ¥32).

Algorithm 4: Construction of a DD*(m,r) from a Ba-sequence

Input: a positive integer 7, a Ba-sequence D = {d1,d2,...,dq} C Z,2_, where q
is the smallest prime power such that ¢ — 1 > % 10.914769r |2
Output: a set DDC := {P', P? ... P™} of points in Z? forming a DD*(m, )
R:=[3];
n = [0.914769r |;
bi= | )
DDC := {};
for j from 0 to 2b —1 do v
for i from (%] to Ln -1+ %J do
if i(2b—1) +j(b—1) (mod ¢* — 1) € D then
. =\ 2
i (25— (1= )"+ (Y5 - 41) < R then
DDC :=DDCU{(i,5)};
end
end
end

end
return DDC;

As before, the number of points in the configuration arising from this con-
struction can be potentially increased by applying Algorithm 4 to successive
shifts of the original Bose Bs-sequence, and selecting the resulting configuration
that contains the greatest number of points.

Ezample 4. Here we consider the construction of a DD*(m,8). Now n = 7, so
we take ¢ = 8, as 82 — 1 = 63 > %72 ~ 56.58. The greatest number of points
we can obtain from this method is 8, resulting from applying Algorithm 4 to
the Bose By-sequence shifted by 34. This yields the DD*(m, 8) whose points (in
hexagonal coordinates) are {(8,5), (4,6),(7,5),(8,6),(7,3),(0,0),(3,0),(5,3)},
illustrated in Fig. 3.

5.2 KPSs with Complete 2-Hop Coverage

Algorithm 5 is a construction from [3] based on the Welch construction for a
Costas array. It produces DDCs with complete two-hop connectivity on a 2p —
1% 2p—3 rectangle. If the points of the DD(p+2, v/2p? + 2p + 1) resulting from
this algorithm are interpreted in hexagonal coordinates, they yield a DD*(p +
2,4/3p? — 3p + 1) with complete two-hop coverage in a parallelogram of sides
2p — 1 and 2p — 3 (see Fig. 4b).



Fig. 3. A DD"(8, 8) contained in a circle of radius 4

Algorithm 5: Construction of a DD(p + 2, v/2p? + 2p + 1) with complete
two-hop coverage on a (2p — 1) x (2p — 3) rectangle

Input: a prime p > 5, an element a € GF(p) that is a primitive element
(mod p)
Output: a set DDC := {P* P2 ... PP™2} of points in Z* forming a
DD(p + 2,+/2p? + 2p + 1) contained in a (p+ 1) X (p + 2) rectangle
DDC = {(0,0), (p,0),(1,1),(0,p—1),(p+ 1,p) }
jshift:=0;
while ofsPift+l _ oJshift £ 1 (mod p) do
jshift := jshift + 1;
end
ishift := o/*Pift:
for i from 2 top—1 do
for j from 2 to p — 2 do
if @UHIshif) =4 1 ishift (mod p) then
DDC :=DDC U{(i,5)};
end
end
end
return DDC;

Ezample 5. When p = 5, Algorithm 5 yields the following DD(7, 8).

For each node, the pattern of nodes with which it can communicate via a one-hop
or two-hop path is that shown in Fig. 4a. The results of [3] guarantee that the
nodes within a 9 x 7 rectangle centred at the node are included in the pattern;
as Fig. 4a indicates, the coverage achieved in practice is much greater than this.

When the output of Algorithm 5 is interpreted in terms of hexagonal coor-
dinates, the following DD(p + 2, 1/3p? — 3p + 1) results.



Its two-hop coverage is illustrated in Fig. 4b.
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Fig. 4. Diagram showing nodes with which the node marked % can communicate via a
one-hop path (e) or two-hop path (o) when keys are distributed with the DD(7,8) (a)
or DD*(7,8) (b) of Example 5. The rectangle/parallelogram indicate the nodes with
which secure one-hop or two-hop communication is guaranteed by the results of [3].

6 Conclusion

The problem of achieving an advantageous trade-off between security, connec-
tivity and resilience when distributing keys is fundamentally an issue of control
over how the keys are allocated. The scheme proposed in [4] made use of the
knowledge of the nodes’ locations to give a greater degree of control than was



provided by other schemes in the literature. In this paper we have described how
a more fine-grained control of specific connectivity properties can be brought to
this scheme through an appropriate choice of the DDC with which it is imple-
mented.

We have seen that the algorithms presented in this paper give a means for effi-
ciently generating distinct-difference configurations that lead to KPSs with good
connectivity for sensor networks with square grid or hexagonal grid topologies,
with a range of possible parameters. This gives a practical means of instanti-
ating the grid-based KPS of [4] with its storage requirements and connectivity
properties adapted to suit requirements, and a favourable degree of resilience.
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