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ABSTRACT. Let n = pg be an RSA modulus with unknown prime factors and F' any function
for which there exists an integer v # 0 satisfying F(u) = n and pu or qu is computable
from F(u) and n. We show that choosing a public key exponent e for which there exist
positive integers X, Y such that |eY — X F(u)| and Y are suitably small, then the system
is insecure.

1 Introduction

Let n = pg be an RSA modulus, i.e the product of two large primes p, g of the same
size. Let e and d be the public and secret keys satisfying ed = 1 (mod ¢(n)) where ¢(n) =
(p—1)(g—1) is the Euler totient function related to n. Since its publication in 1977 [8],
the RSA cryptosystem has been analyzed for vulnerability by many researchers (see [2]).
Since RSA is computationally expensive, one might be tempted to use short secret keys d
in ordre to speed up the decryption process. Unfortunately, in 1990, Wiener [11] showed
that RSA is insecure if d < %n%. In 1999, Boneh and Durfee [3] (heuristically) improved
the bound to d < n%2%2. While Wiener’s attack uses continued fractions, the Boneh
and Durfee attack is based on Coppersmith’s method for finding small roots of modular
polynomial equations [4]. In 2002, de Weger [10] improved these bounds for the RSA
modulus n = pg with small prime difference |[p — ¢|. Recently, Blomer and May [1]
extended both Wiener and de Weger attacks for the RSA cryptosystems with secret keys
having the modular factorization d = —zy~! (mod ¢(n)) where z and y are suitably
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2 RSA WITH CONSTRAINED KEYS

small. Morever, they showed that the number of such weak keys is at least O (n3/ 4_6)
where € is a positive constant.

All the known non-factoring attacks on RSA exploit the weakness of the public key e
relatively to ¢(n) focusing on the information encoded in e and ¢(n). The starting point
is the equation

ed — kp(n) =1,

or, as considered in [1], the more general equation
ez +y = ké(n),

where x, y, k are suitably small relatively prime integers.

In this paper, we present an attack on RSA by exploiting additional information that
may be encoded in the public key e relatively to special functions of the primes p and gq.
Let F' be a function satisfying the conditions

There exists an integer u # 0 such that F(u) =~ n. (1)

There exists a transformation relating F(u) to a multiple of p or q. (2)

We now introduce the concept of F-constrained public keys. Let us formalize this notion.

Definition 1.1. Let n be an RSA modulus and F a function satisfying the condi-
tions (1), (2). A public key e is F-constrained if there exists an integer u and two
coprime positive integers X andY such that both' Y and |eY — F(u)X | are suitably small.

The integers X, Y will be formally defined in Theorem 3.1. We list below typical
examples of functions satisfying the conditions (1), (2). Let ug # 0 be a fixed rational
and F' a function defined by one of the following expressions

Fi(u) = p(q — u), 1< |ul <q.
Fi(u) = (p — u)g, 1< |ul <p.

u
Fs(u) = n+ up — pu, 1§|u\<q+;0.

Fy(u) = n+ ug — qu, 1§|u\<p—}—%.

Bw=(-w(p-7"). 1<lu<q
Fé(ﬂ)=(p—U)(q—%), 1< |u| <p.

Observe that when ug = 1, we have F3(1) = (p — 1)(¢ — 1) = ¢(n). This indicates that
our method is a natural extension of the attack of Blomer and May [1]. In this paper,
we mainly study the cryptanalysis of RSA with Fi-constrained keys. More precisely, we
show that if e satisfies the equation

eY —Fi (W)X =2 (3)
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with unknown integers u, X, Y, Z such that

1 3
1 F 2 2n"1 (n — Y
1<Y < 5 (q |1(I‘u)> and 1< ‘Z‘ < no 4 (n p|u|)€
elu

then n can be factored in polynomial time. In a radically new way, we will show that the
number of Fj-constrained keys is at least O (n3/ 4_5).

Our new method works as follows. Assume that e is F'(u)-constrained for some integer
u where F is a function satisfying (1), (2). We use the continued fraction algorithm to
find X and Y in (3) by replacing ﬁ by £. For every convergent % of the expansion, we

compute the approximation F'(u) & % and by (2), an approximation P of a multiple of

p or q. We then apply May’s extension (Theorem 10 of [7]) of Coppersmith’s method [4]
to find the factorization of n.

The remainder of this paper is organized as follows. In Section 2 we review former
continued fraction attacks on RSA with short secret exponents. In Section 3, we discuss
the possiblity of determining the first convergents of the continued fraction expansion of
ﬁ using £ if e is F'(u)-constrained. Recall that the attacker does not know F' but he
does know e and n. In Section 4 we show how to factor the RSA modulus n when e is Fi-
constrained and give an estimation of the number of such keys. We will use techniques
from the continued fraction expansion combined with Coppersmith’s Theorem [4] and
May’s extension [7]. In Section 5, we give a numerical example to illustrate our attack.
Exploiting the symmetry on the primes p and ¢ in F; and FY, the vulnerablity of an RSA
cryptosystem with a modulus n and an F|-constrained public key e follows.

A key role in our attack is played by the following extension of the well-known theorem
of Coppersmith [4].

Theorem 1.2. (May, Theorem 10 of [7]). Let n = pq be an RSA modulus with
q < p. Let u be an (unknown) integer that is not multiple of q. Suppose we know an
approximation p of pu with

lpu — P| < 27,

Then n can be factorized in time polynomial in logn.

2 Former continued fraction attacks on RSA with weak keys

In this section, we present three former attacks on RSA based on the continued frac-
tions. All the attacks exploits the weakness of the public key e relatively to ¢(n).

2.1 The Wiener attack.
The public and private keys are related by the equation ed — k¢(n) = 1 rewriting as
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Wiener exploits the fact that -—*s ~ £ and n = pq for primes p, g of the same bit-size.
#(n) T n

Combining the arithmetical properties of ¢(n) with the assumption d < %n%, this leads
to

e k < 1
n d|  2d?

By Legendre’s theorem (see Corollary 2, [1, § 2] in [6]), § is a convergent of the continued
fraction expansion of £.

2.2 The de Weger attack.

The continued fraction part of the de Weger attack [10] applies to an RSA modulus
with small difference between its primes. It exploits the approximation ¢(n) ~ n+1—2/n
and the weakness of e relatively to ¢(n) and works as follows. Using ed — k¢(n) = 1 and
assuming that ¢(n) > 3n, n > 84 with

de Weger showed that

ntl-2yn  d| " 2d

k - . . . e
Hence  is a convergent of the continued fraction expansion of —<— Tiavn

2.3 The Blomer-May attack.

The attack of Blomer and May [1] combines the continued fraction expansion of =
and Coppersmith’s lattice-based technique for finding small roots of univariate modular
polynomial equations [4]. The attack applies when the public key e is weak relatively to
¢(n) and is based on the existence of coprime integers z, y, k satisfying ex + y = ko(n)
with

1 3
0<z< -nt and ly| < en”tex,

Lo =

where ¢ < 1. Combining with the properties of ¢(n), they showed that

e k 1
n 212
Hence g is a convergent of the continued fraction expansion of =. Next, they applied

Coppermith’s method [4] to find the factorization of the modulus n as follows. Using
er+y=k(n+1—p-—q), we have
er Yy

= 1— 2 2
P+qg=n-+ A A

ex
k

term |lk| < %cn% (see [1] for more details). Let t = v/s2 — 4n. Then ¢ is an approximation

Since k and z are known, then s = n+1— €& is an approximation of p+ ¢ up to an error
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of p — q up to an error term bounded by 9n1. This shows that STH is an approximation

s+t

of p that can be bounded by 6n. Applying Coppersmith’s algorithm with *5

factorization of n.

The extension of the continued fraction attacks by Verheul and van Tilborg [9] and
its modification by Dujella [5] applies to d < nits provided exhaustive search on
O(7ylogy(n)) bits. These extensions are also based on the weakness of e relatively to

¢(n).

gives the

3 The continued fraction expansion of _c
F(u)

Let F' be a function satisfying (1), (2). Our goal in this section is to guess a part of the
continued fraction expansion of ﬁ Recall that the attacker does not know the exact
expression of F' but he does know that F(u) could be close to n for some unknown u.
Morever, we suppose that 0 < F(u) < 2n so that there exists a with —% <a< % such
that

[F(u) —n| = n¥e. (4)

Theorem 3.1. Let F be a function satisfying (1), (2) and n = pq an RSA modulus with
p < q. Let u be an integer such that |F(u) —n| = n3te with —% <a< % Let X, Y, Z
be coprime integers satisfying eY — F(u)X = Z. If

1 1 o (F(w))?
Y<yﬁ7< fﬁ | (5)
and )
|Z] < n“"2¢€Y, (6)

then % is a convergent among the continued fraction expansion of £.
n

Proof. Using €Y — F(u)X = Z, we get

e X e e e X
n Y|~ |n F(u) ‘F(u)_?
_ e|lF(u) —n| |eY — F(u)X|
en®2 |Z|

Fw) T F@Y
Since |Z| < n® zeY, then

a— a—

(M
N
N[

en en 2en
Fu) ~ F(u) — F(u)
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By assumption, we have

e
Hence N
2en®” 2 1
F(u) 2Y?2
which gives
e X < 1
n Y 272"

By Legendre’s theorem (Corollary 2, [1, § 2] in [6]), 3 is a convergent of the continued
fraction expansion of Z.
|

Theorem 3.1 relates the unknowns Y, Z in the equation (3). Let us find a lower bound
for the quantity X.

Corollary 3.2. With the hypothesis of Theorem 3.1, we have

Nl

eY
X > (1-noh) = 7
Proof. Since by assumption —% <a< %, then —1 < o — % < 0. Hence 1 —n®"3 > 0.
Combining Z = eY — F(u)X and |Z| < n®"2eY, we get

Y -7 _ev-|z_ e 21\, e
X =Fr 2 T w0 er) 2 7 (),

which terminates the proof.

4. Vulnerability of RSA using F = F;

In this section, we will show that using an RSA modulus n = pg with ¢ < p and
an Fj-constrained public key e is insecure. Recall that F;(u) = p(¢ — u). We will also
give an estimation of the number of F}(u)-constrained keys for a fixed u and derive an
estimation of the number of Fi-constrained keys.

4.1 Cryptanalysis of RSA with Fj-constrained keys.

Theorem 3.1 relates the unknowns Y, Z of the equation (3) and shows that the first
convergents of ﬁ(u) are among the convergents of £. In the following theorem, we give
a condition relating X and Y and leading to the factorization of n.
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Theorem 4.1. Let X, Y be coprime positive integers. If there exists an integer u with
1< |u| < q—1 such that |¢Y — Fy(u)X| < 2ni X, then n can be factored in polynomial
time.

Proof. Put Z =eY — Fy(u)X. Using Fy(u) = p(q — u), we get

_ eY+Z
pu=mn e -
Letf’:n—%. We have
. Z|  2niX
P—pu‘:uS%ZQn%

Hence P is an approximation of pu with an error term less than 2ni. We conclude the

proof by applying Theorem 1.2.
[ |

Let us consider the « term as defined in (4). Since ¢ < /n < p and Fy(u) = p(g—u) =
n—pu with 1 < |u| < g —1 we get |Fy(u) —n| = plu| =n2T® with 0 < e < 3.
We now state our result concerning the vulnerability of RSA using F' = Fj.

Theorem 4.2. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1< |ul <qg-1 and plu| = nzte. Let X, Y be coprime positive integers. If X and Y

satisfy eY — Fy(u)X = Z, with
1
1 o [ F 2
v < gat=s (B02)7 ®)

2 e
and
oIt (1 — n"‘_%) eY
Z| < , 9
21« — 4 ©)
then % is a convergent of = and n can be factored in polynomial time.

Proof. Let us first show that % is a convergent of =. Observe that Y satisfies the

inequality (5) of Theorem 3.1 with F' = F;. Let Z = eY — Fy(u)X. Assume that Z
satisfies (9). Since Fy(u) > n —nzte, we get
(1—n°‘_%)eY 2n (1—na_%) eY
<
F1 (u)
This shows that (6) is also satisfied. Hence, by Theorem 3.1, % is a convergent of =. On
the other hand, combining (7) with F = F; and (9), we get
Z]| |Z|Fy (u)

— < < 2ni.
X (l—na_%>eY

Hence, by Theorem 4.1, n can be factored in polynomial time.

PN
N

2n

|Z| < =2~ ey < n* Y.

1
n—n2te

W=
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4.2 The number of F)(u)-constrained keys.

Let u be a fixed integer satisfying 1 < |u| < ¢ — 1. We indicate below how the crypto
designer could build public keys which are F} (u)-constrained using only very short values
of X, Y. We begin by the following useful lemma. We use the usual notation |z| for the
integral part of z.

Lemma 4.3. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1< |ul <q—1 and plu| = nzte. Let X, Y be coprime integers with

—_a
2

NI

1

Ife=|Fi(u)Z], then e > nz—e.
Proof. Let Z = eY — Fy(u)X. By the definition of e, we have

X
0§F1(u)?—e< 1.

Combininig with the inequalities 1 < X <Y < %n%_%, this gives us

_1
4-

etr1> Fl(u)§ > (n —p\u|)% > 2(n — plu))n?
To show that e > n%_a, it suffices to show that
2(n—plu))n?~1 >n3 %41, (10)
Note that plu| = n2+®. Then n® = plu/n~7 and consequently

s <|u|)%
4:p2|u|2n in 1= —— .
q

Similarly,

= n%p_1|u\_1n% = 2.
|ul

Hence (10) is equivalent with

u|

2 (n — plul) <?> > |%|-|—1.
Let N
) =2 =i (1) L,

|ul
with 1 < |u| < ¢ — 1. An arithmetical study of the derivatives of f shows that for any
such u we have

F(w) > min(F(1), f(g— 1)) = flg—1) = 2p (%) t s

This confirms (10) and completes the proof.
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Corollarly 4.4. Let n = pg be an RSA modulus with ¢ < p and u an integer satisfying
1< |ul|<q—1 and plu|=n2+*. Let X, Y be coprime integers with

&
2

PN

1

Ife = |Fi(u)%|, then 3 is a convergent of both Fi(ay ond 7 and e is F1(u)-constrained.
Proof. Let Z =¢eY — F1(u)X. Since 1 < |u| <g—-1,p>ynand 1 <X <Y < %n%_%,

then .
Fi(u)=n—pu>n—plul >n—p(g—1)=p>n2 >2Y>

On the other hand, by the definition of e, we have

X
0<F(u)=—e<1. (11)
Y
Hence
F1 (U) Y F1 (U) 2Y2 )

This shows that % is a convergent of ﬁ(u) Let us show that % is a convergent of .
By (11) and Lemma 4.3 we have

|Z| = |eY — Fi(u)X| <Y < n® 2eY,

and the inequality (6) of Theorem 3.1 is satisfied where F' = F;. Morever, by (11), we

have
Fy(u)

e

> - =1

| =<

Combining with ¥ < 1ni~$%, this gives

1
Y < %n%_% <F1(u))2 5

e

and (5) is also satisfied with F' = F;. Hence, by Theorem 3.1, % is a convergent of £.
Finally, using (11), we have

Z] _ leY —F(wX| _Y
X X X

Thus, by Theorem 4.1, e is F;(u)-constrained which terminates the proof.

NI
n|R
NI

< 2n1,

1
<Y < -
= 2”

Corollary 4.4 indicates that every couple (X,Y) of coprime positive integers with
1<X<Y< %n%_% and every integer u with 1 < |u| < g — 1 yield a candidate public
key e for which the RSA cryptosystem is insecure. We show below that different couples
produce different candidate public keys.
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Lemma 4.5. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1 < |ul <q—1 and plu| = nite, Let X, X', Y and Y' be positive integers with
ged(X,Y) = ged(X',Y') =1 and

ol

1
and 1§X'<Y’<§n%_7.

PN
wlR

1

Lete = |Fi(u)3| and e’ = {Fl(u)%J Ife=¢, then (X,Y) = (X', Y').

Proof. Without loss of generality, suppose that % > §—,’ By definition, e satisfies (11).

Similarly, we have
X' ,

Combining (11) and (12), we get

X X X X
(?—F)Fl(u)—1<e—e'< (?_F> Fi(u) + 1.

From this, we derive

0<L

X X
<?—F>F]_(u)<e_el+].

By assumption e = ¢’. Then 0 < (% - if—:) Fi(u) < 1 or equivalently,
0< (XY —YX')Fi(u) <YY"

Combining the inequalities 1 <Y < %n%_%, 1<Y' < %n%_% and Fy(u) > n — plu| >
n—p(q—l):p>n%, we get

YY'  iniT%
0< (XY —X'Y) < < 4
_( ) Fl(u) n%

Hence XY’ — X'Y = 0 and since ged(X,Y) = ged(X',Y') = 1, we get X = X' and
Yy =Y.
|

For a fixed integer u satisfying 1 < |u| < ¢ — 1, we state below a lower bound for the
number of F}(u)-constrained public keys.
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Theorem 4.6. Let n = pq be an RSA modulus with ¢ < p and u an integer satisfying
1< |u| < q—1 and plu| = n2®. The number of Fy(u)-constrained public keys is at least

O (n%_a_s) .

Proof. Let € be a positive constant and u a fixed integer with 1 < |u| < ¢—1. Let X and
Y be coprime positive integers satisfying 1 < X <Y < %n%_%_s. Define e = | Fy (u) 3|
and Z = eY — Fy(u)X. Using similar arguments as in the proof of Corllarly 4.4, we get
lxﬂ < 2ni—e If ged(e, ¢(n)) # 1, then e is not a valid public key. Let ¢/ = e + h for some

integer h with ged(e + h, ¢(n)) =1 and

PN

<[>

1<h<n

Let Z' = €'Y — F1(u)X. Since Z < 0, then

Z'| _ |(e+h)Y —Fi(u)X| |Z+hY] < max(|Z|,hY)

1

X X x - x ="

Hence, by Theorem 4.1, ¢’ is Fj(u)-constrained. This shows that every couple (X,Y)
X

satisfying ged(X,Y) = 1 builds approximately %n%? public keys which are Fy(u)-

constrained. Hence, the number of such keys depends on the number of couples (X,Y)
satisfying ged(X,Y) = 1and 1 < X <Y < ni~%~¢, For a fixed Y, there are ¢(Y)

_a_

positive integers X such that ged(X,Y) =1land 1 < X <Y. Let m = Hn% 2 EJ.
Using the well known estimation

H(Y) > KY > KY :Yn_sl’
loglog(Y) — loglog(n)

where K is a constant related to the Euler constant, the number of the F} (u)-constrained
keys is at least

NI

emm D) _ g (geaec)

11X AN I
Z —n%—QS(Y) > Z Eni_s X=n 2

Y
1<X<Y<m X=1

Replacing 2e + €’ by ¢, this terminates the proof.
[ |

4.3 The number of Fi-constrained keys.

Theorem 4.6 gives an estimation of the number of Fj(u)-constrained keys for a fixed
u. It remains to give an estimation of the number of Fij-constrained keys. Let u and '/
be a fixed integers with 1 < |ul, |u'| < g — 1. We show below that if e is simultaneously
constrained to Fj(u) and Fy(u'), then u = u’.
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Lemma 4.7. Let n = pq be an RSA modulus with ¢ < p and let u, v’ be integers
satisfying 1 < |ul,|u/| < ¢ — 1 and plu| = n2+, plu/| = n2®. Let X, Y, X', Y’ be
positive integers satisfying ged(X,Y) = ged(X',Y') =1, and

0CI

o 1
2 and 1§X'<Y'<§n%_7.

NI

1

Let e = |Fi(u)3| and e’ = {Fl(u)%J Ife=¢ thenu=1u' and (X,Y)=(X",Y’).

o= {Fl(u)gJ —e = {Fl(u’)éllJ .

Proof. Assume that

From this, we get

X X'
Using Fi(u) =n — pu, Fi(u') = n — pu, this gives

Yy’
(g —u)XY' — (¢ —u)X'Y| < —.

al

Since by assumption 1 < X <Y < %n%_%, 1<X' <Y' < %n%_T and p > y/n. Then

Y
(g —uw)XY' — (¢g—u)X'Y| <

Since (¢—u)XY'—(¢—u')X'Y is an integer, then (¢—u) XY’ —(¢—u')X'Y = 0. Further,
ged(X,Y) = ged(X',Y’) = 1. From this, it follows that

X=(@q-u)X, Y=(@-u)Y', X' =(@-wX, Y =(q-u)Y.

Combining X and X', we get X = (¢—u/) X' = (¢—v')(¢—u)X and (¢ —u)(¢g—u') = 1.
Hence ¢ — u = ¢ — v/ = £1 and u = v/. Finally, by Lemma 4.5, (X,Y) = (X', Y’) which
terminates the proof.

|

We now give an estimation for the number of Fj-constrained public keys.

Theorem 4.8. Let n = pq be an RSA modulus with ¢ < p < 2q. The number of
F'-constrained public keys is at least O (n%_5>.

Proof. By Theorem 4.6, for every u with 1 < |u| < ¢— 1 and plu| = n3+ the number
of the Fj(u)-constrained keys is at least O (n%_a_e). Hence, the number of the Fj-
constrained keys is at least

N(F)= Y ni o=

0<a<l1
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Since ¢ < p < 2q, then n < p? < 2n and p < 23n3, Combining this with n® = n_%p\u|,
we get

n %= n%p_l\url > 2_%\u|_1.
It follows that

g—1
N(Fy) = n%_EZn_a > 9 api—e Z u| L.
o |lul=1

The sum > 7, 1, u~tis related to the harmonic series Y02 ; u~* which diverges. Trivially,
we have

q—1
Z u > 2
lu|=1
and finally

N(Fy) > 28ni—e,
which terminates the proof.

5. A numerical example using F' = F}

Let n = pg be an RSA modulus with ¢ < p. Let e be a public exponent. In this
section, we give an algorithm to factor the modulus n if e is F}(u)-constrained for some
unknown u where Fj(u) = p(q — u).

The algorithm.

INPUT: a) The RSA modulus n = pq with unknown prime factors.

b) The public key e such that eY — F(u)X = Z for some unknown integers
u, X, Y and Z satisfying (8) and (9).

1. Compute the continued fraction expansion of =

2. For every convergent i,( such that ¥ < %n% :
i) Compute P =n — &£

Y - -
ii) Apply Coppersmith’s algorithm with P and output a value N.
iii) Compute g = ged(N, n). If g # n then stop.

OUTPUT:p:g,q:%,u: N

;.
Let us now consider the 48 digit example.

n = 941096252089784462564816358283310787682673275523,
e = 31562534055617334057122389124448605297040382267.

The first 24 partial quotients of the continued fraction expansion of £ are

0,29, 1,4,2, 5 1,71,12, 14, 2, 1, 1, 1, 1, 1, 1, 1, 5, 2, 3020, 1,1, ...].
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The 21th convergent is % = %. With P = n — %, Coppersmith’s algo-
rithm outputs N = —1684416133919688132169065675. This gives p = ged(N,n) =

1321110693270343633073777, u = % = —1271, q = % = 712352308465649934350899,
and the factorization of n is achieved.

We are now able to analyze our attack and the the Blomer-May attack. The attack
of Blomer and May gives the factorization of n if the prime factors p and ¢ satisfy
m+1- —p—gq|< n# for some convergent Eof £ or mii—37m- No such convergent
exists which explains why Blomer-May’s attack fails. Our attack succeeds since there
exist an integer u = —1271 and a convergent & = 575041 of € guch that (8) and (9)
are satisfied.

Note that the secret key is d = 565214697101365558758015289139548803045295395763

and satisfy d ~ n%99% > %n% which explains why the original attack of Wiener [11]

fails. Similarly, we have d > zsf/:, which explains why the continued fraction attack of
de Weger [10] also fails.

6. Conclusion

Using methods based on continued fractions and May’s extension of Coppersmith’s

Theorem, we showed that an RSA cryptosystem with modulus n = pg and a public key

e is insecure if there exist an integer u such that n —pu =~ n and a convergent % of = for

which both |eY — (n — pu) X | and Y are relatively small. Morever we showed that there

€

are at least O (ni- public keys making the cryptosystem insecure.

We analysed the security of RSA using the function F; where Fy(u) = p(q¢ — u). The
situation is similar with the symmetric function F| where Fj(u) = ¢(p—u). As mentioned
in the introduction, RSA could be insecure if the public key e is constrained with other
sort of functions satisfying similar conditions. Our results show that one should be very
cautious when using an RSA modulus with a constrained key.
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