
Statistical Multiparty Computation Based on
Random Walks on Graphs

Liangliang Xiao1, Mulan Liu2, and Zhifang Zhang2

1 Institute of Software, Chinese Academy of Sciences, Beijing, 100080, China
2 Academy of Mathematics and System Sciences, Key Laboratory of Mathematics

Mechanization, Chinese Academy of Sciences, Beijing, 100080, China
{mlliu, zfz}@amss.ac.cn

Abstract. With respect to a special class of access structures based
on connectivity of graphs, we start from a linear secret sharing scheme
and turn it into a secret sharing scheme with perfect security and ex-
ponentially small error probability by randomizing the reconstruction
algorithm through random walks on graphs. It reduces the polynomial
work space to logarithmic. Then we build the corresponding statistical
multiparty computation protocol by using the secret sharing scheme.
The results of this paper also imply the inherent connections and influ-
ences among secret sharing, randomized algorithms, and secure multi-
party computation.

Keywords: statistical multiparty computation, random walks on graphs, linear
secret sharing scheme, monotone span program

1 Introduction

The problem of secure multiparty computation (MPC for short) is fundamental
in cryptography and distributed computation. A solution of the multiparty com-
putation problem implies in principle a solution to any cryptographic protocol
problem. After it was proposed by Yao [3] for two party case and Goldreich, Mi-
cali, Wigderson [8] for multiparty case, it has become an active and developing
field of information security. Although the study and construction of statistical
multiparty computation is relatively less than that of the perfect and compu-
tational cases, it is a natural idea to convert a perfect multiparty computation
protocol to a statistical one by the technique of randomizing the corresponding
algorithm. As the advantage of randomized algorithms, it will raise efficiency
and make the multiparty computation protocol more applicable, although in-
creasing error probability as well as losing perfect security sometimes from the
perfect situation to the statistical situation. By this idea we do design a sta-
tistical multiparty computation protocol based on random walks on graphs. In
detail, we start from a linear secret sharing scheme and turn it into a secret
sharing scheme with perfect security and exponentially small error probability
by randomizing the reconstruction algorithm through random walks on graphs.

It reduces the polynomial work space to logarithmic. Then we discuss how to
build the corresponding statistical multiparty computation protocol by using the
secret sharing scheme. The results of this paper also imply the inherent connec-
tions and influences among secret sharing, randomized algorithms, and secure
multiparty computation.

The paper is organized as follows. In Section 2 we review some related con-
cepts, such as secret sharing schemes, random walks on graphs and multiparty
computation. Section 3 defines a special class of access structures based on con-
nectivity of graphs and devises a secret sharing scheme to realize it through
random walks on graphs. Section 4 discusses how to build a statistical multi-
party computation protocol by using the secret sharing scheme constructed in
Section 3. The last section is a conclusion.

2 Preliminaries

In this section, we recall some basic concepts and results about secret sharing,
random walks on graphs, and secure multiparty computation. Throughout this
paper let K denote a finite field and P = {P1, · · · , Pn} be the set of n partici-
pants.

2.1 Secret Sharing Schemes

Secret sharing schemes were first independently proposed by Blakley [4] and
Shamir [2] for the purpose of key manegement in 1979. Henceforth, it develops
quickly and gets wide applications in the field of information security.

Informally, a secret sharing scheme is a protocol to share a secret among a set
of participants P such that only participants in an authorized set can recover
the secret together from their shares. We call the collection of all authorized
sets the access structure over P , denoted by AS, and it satisfies the monotone
ascending property: for any A′ ∈ AS and A ⊂ P , A′ ⊂ A implies A ∈ AS.
Because of the monotone ascending property, for any access structure AS it is
enough to consider the corresponding minimum access structure ASm, defined
as ASm = {A ∈ AS|∀B & A ⇒ B 6∈ AS}.

Suppose that S is the secret-domain, R is the set of random inputs, and Si

is the share-domain of Pi where 1 ≤ i ≤ n. A secret sharing scheme with respect
to an access structure AS is composed of the distribution function Π : S×R →
S1 × · · · × Sn, Π(s, r) = (Π1(s, r), · · · ,Π(s, r)) and the reconstruction function
Re: for any A ∈ AS, Re|A : (S1 × · · · × Sn)|A → S, such that the following two
requirements are satisfied.

1. Correctness requirement: for any A ∈ AS, s ∈ S and r ∈ R, it holds that
Re|A(Π(s, r)|A) = s.

2. Security requirement: for any B 6∈ AS, H(S|Π(S,R)|B) ≤ H(S), where
H(·) is the entropy function.

In the security requirement, if H(S|Π(S,R)|B) = H(S), then we call it a
perfect secret sharing scheme which we are interested in. Furthermore, a perfect

secret sharing scheme is linear (LSSS for short), if it also satisfies the following
two conditions:

3. Suppose S = K, then the share-domain Si for 1 ≤ i ≤ n and the set of
random inputs R are finite dimensional linear subspaces over K, that is, there
exist positive integers di for 1 ≤ i ≤ n and l such that Si = Kdi and R = Kl.

4. The reconstruction function is linear. Precisely, for any set A ∈ AS, there
exists a set of constants {αkj ∈ K|Pk ∈ A, 1 ≤ j ≤ dk} such that for any
s ∈ K and r ∈ R = Kl, s =

∑
pk∈A

∑dk

j=1 αkjΠkj(s, r), where Πk(s, r) =
(Πk1(s, r), · · · ,Πkdk

(s, r)) ∈ Kdk .

Karchmer and Wigderson [7] introduced monotone span programs (MSP for
short) as linear models computing monotone Boolean functions. Usually we de-
note a MSP byM(K,M, ψ), where M is a d×l matrix over K and ψ : {1, ..., d} →
{P1, ..., Pn} is a surjective labelling map which actually distributes to each par-
ticipant some rows of M . We call d the size of the MSP. For any subset A ⊆ P ,
there is a corresponding characteristic vector

−→
δA = (δ1, ..., δn) ∈ {0, 1}n such

that for 1 ≤ i ≤ n, δi = 1 if and only if Pi ∈ A. On the other hand, for any−→
δ ∈ {0, 1}n, there is a subset A ⊂ P such that

−→
δA =

−→
δ . Because of the corre-

sponding relation between vectors in {0, 1}n and subsets of P , in the following
we denote the vector in {0, 1}n in terms of a characteristic vector of some subset
in P . Consider a monotone Boolean function f : {0, 1}n → {0, 1} which satisfies
that f(

−→
δB) = 1 implies f(

−→
δA) = 1 for any A ⊆ P and B ⊆ A. We say that a

MSP M(K,M, ψ) computes the monotone Boolean function f with respect to
a target vector −→v ∈ Kl \ {(0, ..., 0)}, if it holds that −→v ∈ span{MA} if and only
if f(

−→
δA) = 1, where MA denotes M restricted to those rows i with ψ(i) ∈ A and−→v ∈ span{MA} means that there exists a vector −→w such that −→v = −→wMA.

Beimel [1] proved the equivalence of devising a LSSS with respect to an
access structure AS and constructing a MSP computing the monotone Boolean
function fAS which satisfies fAS(

−→
δA) = 1 if and only if A ∈ AS. Particularly, we

will show how to build a LSSS from a MSP in detail in Section 3.2.

2.2 Random Walks on Graphs for Undirected s − t Connectivity
Problem

Let G(V, E) be an undirected graph where V is the set of vertices and E is the
set of edges. First we introduce the undirected s − t connectivity (USTCON)
problem in G(V, E): given two vertices s and t in V , decide whether s and t
are in a connected component. It is easy to see that a standard graph search
algorithm such as depth-first search solves the problem in O(|E|) steps using
workspace O(|V |). But by using random walks on graphs we can devise a ran-
domized algorithm A to solve the problem [9]: starting from the vertex s, then
we randomly choose a neighbor of s, say v1, and walk into v1. At the next step,
we randomly choose a neighbor of v1, say v2, walk into v2, and so on. Taking at
most 2|V |3 steps, if the random walk meets the vertex t, the algorithm returns

“YES”; otherwise it returns “NO”. It is well known that the probability

Pr[A returns “YES”] =
{≥ 1

2 , if s and t are connected,
0, if s and t are not connected,

that is, the algorithm has a error probability at most 1
2 . Furthermore, the al-

gorithm takes O(|V |3) steps and uses O(log |V |) space which is much less than
the standard graph search algorithms. Repeating the algorithm k times inde-
pendently, we can reduce the error probability to 1

2k .

2.3 Secure Multiparty Computation

The problem of secure MPC for one function has been studied by many people
and it can be stated as follows: n players P1, ..., Pn are to securely compute
an agreed function f(x1, ..., xn) = (y1, ..., yn) against an adversary, where Pi

holds private input xi and is to get the output yi. The security means that
the correctness of the outputs and the privacy of players’ inputs are guaranteed
even when the adversary corrupts some subset of the players. The collection of all
subsets that the adversary can corrupt is called the adversary structure, denoted
by A, and it satisfies the monotone descending property: for any A′ ∈ A and
A ⊂ P , A ⊂ A′ implies A ∈ A. The adversary is called an A-adversary. Similar
to the access structure, for any adversary structure A, it is enough to consider
the maximum adversary structure Am, defined as {A ∈ A|∀A & B ⇒ B 6∈ A}.
Obviously, if A is an adversary structure over P , then AS = 2P −A is an access
structure over P , vice versa. Furthermore, an adversary structure is called Q2,
resp. Q3, if no two, resp. no three of the sets in the structure cover the full player
set P . According to the corrupting way, an adversary may be passive or active,
i.e., he may just monitor corrupted players or take full control. Meanwhile he
may be static or adaptive, i.e., all corruptions take place before the protocol
starts, or happen dynamically during the protocol.

We assume that throughout this paper the communication is synchronous
and a broadcast channel is given. Then in the information theoretic model, i.e.,
the players can communicate over pairwise secure channels and the adversary
has unbounded computing power, every function can be securely computed with
exponentially small error probability against an adaptiveA-adversary if and only
if A is Q2 [6]. We call MPC with information theoretic security and exponentially
small error probability as statistical MPC. Some papers [10],[12] studied this
problem mainly in the threshold case, and their protocols can be generalized
easily to provide security against general Q2 adversaries.

3 Secret Sharing Schemes Based on Random Walks on
Graphs

In this section, we first define an access structure based on connectivity of graphs,
then by the algorithm of random walks on graphs we give a secret sharing scheme
to realize the access structure where the reconstruction algorithm runs in poly-
nomial time and uses logarithmic space.

3.1 Access Structures Based on Connectivity of Graphs

Let m be a positive integer, n =
(

m
2

)
, and P = {P1, · · · , Pn} be the set

of participants. Let G(V, E) be a undirected complete graph with the vertex
set V = {v0, v1 · · · , vm−1} and edge set E = {vivj | 0 ≤ i < j ≤ m − 1}.
Suppose f : P → E is a bijection corresponding each participant with an edge.
For any subset A ⊂ P , G(V, EA) is a spanning subgraph of G(V, E) where
EA = {vivj ∈ E|vivj ∈ f(A)}. Define the access structure

AS = {A ⊂ P |G(V, EA) is a connected graph}. (1)

Obviously AS satisfies the monotone ascending property.

Proposition 1. Suppose AS is given by (1) and A = 2P −AS is the adversary
structure. Then A is Q2.

Proof. Let G(V, E′) be an disconnected graph with E′ ⊂ E. In order to prove A
is Q2, it suffices to prove that G(V, E−E′) is a connected graph, that is, for every
pair of vertices v and v′, they are connected in the graph G(V, E−E′). Suppose
the graph G(V, E′) has k connected components, k ≥ 2. If the vertices v and v′

are in different connected components of G(V, E′), then the edge vv′ 6∈ G(V, E′).
So the edge vv′ ∈ G(V, E−E′) and it implies v and v′ are connected in the graph
G(V, E − E′). If the vertices v and v′ are in the same connected component of
G(V, E′), then we consider the vertex v′′ in another connected component. We
have v and v′′ are connected, v′ and v′′ are connected in the graph G(V, E−E′).
Hence v and v′ are connected in the graph G(V, E − E′).

Example 1. Let m = 4, n = 6, and V = {v0, v1, v2, v3}. Let P = {P1, · · · , P6},
f(P1) = v0v1, f(P2) = v1v2, f(P3) = v2v3, f(P4) = v0v3, f(P5) = v1v3, f(P6) =
v0v2. See the figure.

v0

v1 v2

v3

P1

P2

P3

P4

P5

P6

It’s easy to have ASm = {{P1, P2, P3}, {P2, P3, P4}, {P3, P4, P1}, {P4, P1, P2},
{P1, P2, P5}, {P2, P3, P6}, {P3, P4, P5}, {P4, P1, P6}, {P1, P5, P3}, {P1, P6, P3},
{P2, P6, P4}, {P2, P5, P4}, {P1, P5, P6}, {P3, P5, P6}, {P2, P5, P6}, {P4, P5, P6}}.

Let A = 2P −AS, then Am = {{P1, P3}, {P2, P4}, {P5, P6}, {P1, P2, P6},
{P2, P3, P5}, {P3, P4, P6}, {P4, P1, P5}}. It’s easy to verify that A is Q2.

3.2 The Secret Sharing Scheme Realizing The Access Structure

First we set S = K = F2. As to a larger secret-domain, we can put it into F2k

for a proper positive integer k and share the secret bit by bit independently. It is
obvious that the correctness and security requirements are still satisfied by doing

so. We associate the vertex vi with the vector −→ei = (0, ..., 0,
i
1, 0, ..., 0) ∈ Fm−1

2 ,
where 0 ≤ i ≤ m − 1 and −→e0 =

−→
0 . For 1 ≤ i ≤ n, if f(Pi) = vi1vi2 , then let−→rPi

= −→ei1 +−→ei2 where 0 ≤ i1 < i2 ≤ m− 1.

Example 2. (following Example 1) Associate vertex v0 with (0, 0, 0), vertex v1

with (1, 0, 0), vertex v2 with (0, 1, 0), vertex v3 with (0, 0, 1).

v0

v1 v2

v3

P1

P2

P3

P4

P5

P6

(0, 0, 0)

(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

Then −→rP1 = (1, 0, 0), −→rP2 = (1, 1, 0), −→rP3 = (0, 1, 1), −→rP4 = (0, 0, 1), −→rP5 =
(1, 0, 1), −→rP6 = (0, 1, 0).

Construct a MSP M(F2,M, ψ) as follows: M consists of all the row vectors−→rPi
for 1 ≤ i ≤ n and ψ maps the row −→rPi

to the player Pi. Obviously, M is
a n × (m − 1) matrix over F2. In order to devise a scheme to realize AS, we
introduce the access structure

ASv0vi
= {A ⊂ P | the vertex v0 and the vertex vi are connected in G(V, EA)},

and claim that M(F2,M, ψ) can compute the Boolean function fASv0vi
with

respect to the target vector −→ei where 1 ≤ i ≤ m− 1. Before giving the proof, we
see the example below.

Example 3. (following Example 2) So M =




1 0 0
1 1 0
0 1 1
0 0 1
1 0 1
0 1 0




, and ψ(i) = Pi for 1 ≤

i ≤ 6. The three corresponding access structures are the following: (ASv0v1)m =
{{P1}, {P2, P6}, {P4, P5}, {P2, P3, P4}, {P3, P5, P6}}, (ASv0v2)m = {{P6}, {P3, P4},
{P1, P2}, {P1, P3, P5}, {P2, P4, P5}}, and (ASv0v3)m = {{P4}, {P3, P6}, {P1, P5},
{P1, P2, P3}, {P2, P5, P6}}. It can be easily verified that M(F2,M, ψ) computes
fASv0vi

with respect to the target vector −→ei where 1 ≤ i ≤ 3.

Proposition 2. The MSPM(F2,M, ψ) constructed above can compute the mono-
tone Boolean function fASv0vi

with respect to the target vector −→ei where 1 ≤ i ≤
m− 1.

Proof. It is equivalent to prove that for 1 ≤ i ≤ m − 1, −→ei ∈ span{MA} if and
only if A ∈ ASv0vi

, i.e., the vertex v0 and vi are connected in G(V, EA).
Suppose that A ∈ ASv0vi

, then there is a path from the vertex v0 to vi in
the subgraph G(V, EA), denoted by vi0 −vi1 −· · ·−vik

, where vi0 = v0, vik
= vi

and 0 < i1, ..., ik ≤ m − 1. Assume that f−1(vij vij+1) = Pij for 0 ≤ j ≤ k − 1,
then Pij

∈ A and −−→rPij
= −→eij

+−−→eij+1 . So

−→ei = −→ei0+
−→eik

= (−→ei0+
−→ei1)+(−→ei1+

−→ei2)+· · ·+(−−−→eik−1+
−→eik

) = −−→rPi0
+−−→rPi1

+· · ·+−−−→rPik−1
,

(2)
that is, −→ei ∈ span{MA}.

On the other hand, suppose that −→ei ∈ span{MA}. Without loss of generality,
assume that −→ei = −−→rPi0

+ · · ·+−−−→rPik−1
, where 0 ≤ i0, ..., ik−1 ≤ m− 1 and Pij

∈ A

for 0 ≤ j ≤ k − 1. Denote f(Pij) = vhj vtj , then

−→ei = (−→eh0 +−→et0) + · · ·+ (−−−→ehk−1 +−−−→etk−1), (3)

where −→ehj ,
−→etj ∈ {−→e0 ,−→e1 , ...,−−−→em−1} for 0 ≤ j ≤ k − 1. Because −→e1 , ...,−−−→em−1 are

linearly independent, −→ei and −→e0 must appear in the right of (3) for odd times,
respectively, and −→ej appears even times where 0 < j ≤ m−1 and j 6= i. Thus the
expression of (3) actually determines a walk from v0 to vi in G(V, EA). Hence
A ∈ ASv0vi .

For 1 ≤ i ≤ m − 1, we build a LSSS, denoted by LSSSi, realizing the
access structure ASv0vi

from the MSP M(F2,M, ψ): for a given secret si, the
dealer randomly selects ρ1, · · · , ρm−1 in F2 and secretly transmits to Pj the
share MPj

(ρ1, · · · , ρi−1, s
i, ρi+1, · · · , ρm−1)τ for 1 ≤ j ≤ n, where “τ” denotes

the transpose, MPj denotes M restricted to those rows k with ψ(k) = Pj and in
our construction MPi = −→rPi

. For any A ∈ ASv0vi , from the proof above and the
equality (2) we have that

si = −→ei ·




ρ1

...
ρi−1

si

ρi+1

...
ρm−1




= −−→rPi0
·




ρ1

...
ρi−1

si

ρi+1

...
ρm−1




+ · · ·+−−−→rPik−1
·




ρ1

...
ρi−1

si

ρi+1

...
ρm−1




. (4)

Since −−→rPij
(ρ1, · · · , ρi−1, s

i, ρi+1, · · · , ρm−1)τ is actually Pij ’s share, the equality
(4) implies that the secret can be recovered by finding a path from v0 to vi

and adding up the shares of the participants associated to the edges of the
path. In implementation, we can use the algorithm of random walks on graphs

described in Section 2.2 to find the path, thus we uses only logarithmic space.
But the usual deterministic reconstruction algorithm is to obtain a vector −→w
by solving the linear equations −→ei = −→wMA and then the secret is recovered by
si = −→w (MA(ρ1, · · · , ρi−1, s

i, ρi+1, · · · , ρm−1)τ). This algorithm uses polynomial
space.

Example 4. (following Example 3) We build the secret sharing scheme LSSS1

to realize ASv0v1 from the MSP M(F2,M, ψ): for a given secret s1, the dealer
randomly selects ρ2, ρ3 ∈ F2 computes M(s1, ρ2, ρ3)τ and transmits the share
s1 = s1 to P1, s2 = s1 +ρ2 to P2, s3 = ρ2 +ρ3 to P3, s4 = ρ3 to P4, s5 = s1 +ρ3

to P5 and s6 = ρ2 to P6.
when reconstructing the secret, we first find a path from v0 to v1, say v0 −

v2− v1 which passes P6, P2 in order. Then adding up P2 and P6’s shares, we get
s2 + s6 = (s1 + ρ2) + ρ2 = s1. Note that all operations are done over F2.

So far we have built the secret sharing scheme LSSSi with respect to ASv0vi

where 1 ≤ i ≤ m− 1. Our propose is to build a secret sharing scheme to realize
the access structure AS = {A ⊂ P |G(V, EA) is a connected graph}. It is obvious
that AS =

⋂m−1
i=1 ASv0vi

, so we can build the secret sharing scheme as follows
[5]:

Distribution Phase: For a given secret s ∈ F2, the dealer randomly selects
s1, · · · , sm−2 ∈ F2 and sets sm−1 = s−∑m−2

i=1 si. Then he shares si through the
scheme LSSSi constructed above where 1 ≤ i ≤ m− 1.

Reconstruction Phase: For any A ∈ AS, since A ∈ ASv0vi
, partici-

pants in A can recover si for 1 ≤ i ≤ m − 1. Then the secret can be recov-
ered by

∑m−1
i=1 si = s. Precisely, suppose that for 1 ≤ i ≤ n, Pi gets share

(si1, ..., si(m−1)) ∈ Fm−1
2 after the distribution phase where sij is the share of sj

from LSSSj and we call it as the j-th share of Pi, 1 ≤ j ≤ m − 1. We use the
following Process Rec i to reconstruct si where 1 ≤ i ≤ m− 1.

Process Rec i
(1)Set the counter t = 1; k is the security parameter;
(2)Set si = 0;
(3)Starting from the vertex v0, execute a random walk of 2|V |3 steps. Each

step consists of randomly and uniformly choosing an edge leaving the cur-
rent vertex and renewing si by adding to si the i-th share of the player as-
sociated to that edge through the map f .
• If the vertex vi is reached, store the current value si and stop;
• If vi is not met after the 2|V |3 steps, set the counter t ← t + 1 and return

to (2) while t ≤ k;
• If t > k, set si be a value randomly and uniformly chosen in F2 and stop.

After the m− 1 processes, we have m− 1 values s1, ..., sm−1, then the secret is
recovered by s =

∑m−1
i=1 si over F2. From the proof of Proposition 2, we know that

the randomized reconstruction algorithm above can output the correct secret
except with error probability at most m−1

2k which is negligible. Usually, set the
security parameter be the number of players, i.e., k = n. Then our reconstruction

algorithm runs in time poly(n) and uses O(log n) space with error probability
O(1

2n). The deterministic reconstruction algorithm by solving linear equations
runs in time poly(n) and uses O(n) space. So our algorithm has more advantage
in space usage with negligible error probability.

4 Devising Corresponding MPC Protocols

Since secret sharing schemes are primary tool for MPC, in this section we discuss
how to build a statistical MPC protocol by using the secret sharing scheme
constructed in Section 3.2. From Proposition 1 we know that the adversary
structure A = 2P − AS = {A ⊂ P |G(V, EA) is a disconnected graph} is Q2,
then every function can be securely computed against an adaptive A-adversary
in the information theoretic model where a broadcast channel is given [6]. Cramer
et al. [11] gave a general construction to build a MPC protocol from any LSSS.
Next, through a specific example we show how it works. For simplicity, we only
deal with passive adversaries and the adversary structure is assumed to be A′ =
2P − ASv0v1 = {A ⊂ P | v0 and v1 are disconnected in G(V, EA)} which is
obviously Q2.

Example 5. (following Example 3)
Suppose P1, ..., P6 are to jointly and securely compute an agreed function

f = x1 + x2x3 where Pi holds private input xi for 1 ≤ i ≤ 3. Based on the
MSP M(F2,M, ψ) which computes fASv0v1

with respect to −→e1 , they execute the
following steps.

Step 1. For 1 ≤ i ≤ 3, Pi shares his private input xi through




1 0 0
1 1 0
0 1 1
0 0 1
1 0 1
0 1 0







xi

αi

βi


,

where αi and βi are randomly chosen in F2 by Pi. After that, P1 gets xi, P2 gets
xi + αi, P3 gets αi + βi, P4 gets βi, P5 gets xi + βi and P6 gets αi.

Step 2. P1 locally computes x2x3 and reshares the result by M(x2x3, α
′, β′)τ

where α′ and β′ are secretly and randomly chosen in F2 by P1. So P1 gets x2x3,
P2 gets x2x3 + α′, P3 gets α′ + β′, P4 gets β′, P5 gets x2x3 + β′ and P6 gets α′.
We do this way because of the speciality of the access structure, and a general
way is in [11].

Step 3. Every player locally adds up the share for x1 he gets from Step 1
and the share for x2x3 obtained from Step 2, that is P1 gets x1 + x2x3, P2

gets x1 + x2x3 + α′ + α1, P3 gets α′ + β′ + α1 + β1, P4 gets β′ + β1, P5 gets
x1 + x2x3 + β′ + β1 and P6 gets α′ + α1. Actually, by doing this every player
gets shares for x1 + x2x3 through M(x1 + x2x3, α

′ + α1, β
′ + β1)τ .

Step 4. Every player can finally get x1+x2x3 by the reconstruction algorithm
of the secret sharing scheme.

When the adversary is active, we need to replace the secret sharing scheme
used above by a corresponding verifiable secret sharing scheme where each player

can verify the validity of the shares showed by others [10]. The whole process
is complicated and so omitted here. However, we pointed out that by building
verifiability into our secret sharing scheme, every player can reconstruct the
final result from true shares through random walks on graphs, which needs only
logarithmic space much less than general schemes.

5 Conclusion

The advantage of randomized algorithms in efficiency and complexity encourages
us to convert a scheme with perfect correctness and security to a scheme with
exponentially small error probability and statistical security by randomizing the
corresponding algorithms. By this idea we do obtain a statistical multiparty com-
putation protocol based on random walks on graphs. Furthermore, the results
of this paper also imply the inherent connections and influences among secret
sharing, randomized algorithms, and secure multiparty computation.

References

1. A. Beimel, Secure Schemes for Secret Sharing and Key Distribution, PhD thesis,
Technion - Israel Institute of Techonlogy, 1996.

2. A. Shamir, How to share a secret, Communications of the ACM, 1979, 22:612-613.
3. A. Yao. Protocols for Secure Computation. Proc. of IEEE FOGS ’82, pp. 160-164,

1982.
4. Blackley G.R., Safeguarding cryptographic keys, Proc. of the 1979 AFIPS Na-

tional Computer Conference, 1979, 48:313-317.
5. L. Xiao, M. Liu, Linear secret sharing schemes and rearrangements of access

structures, Acta Mathematicae Applicatae Sinica, English Series, Vol. 20, No. 4,
2004, pp.685-694.

6. M. Hirt, U. Maurer, Player simulation and general adversary structures in perfect
multi-party computation, Journal of Cryptology, vol.13, NO. 1, pp.31-60, 2000.

7. M. Karchmer and A. Wigderson, On span programs, Proc. 8th Ann. Symp. Struc-
ture in complexity Theory, IEEE 1993, pp. 102-111.

8. O. Goldreich, S. Micali ,A. Wigderson. How to play ANY mental game. Proceed-
ings of the nineteenth annual ACM conference on Theory of computing, pp.218-
229, January 1987, New York, New York, United States.

9. Rajeev Motwani, Prabhakar Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press,1995.

10. R. Cramer, I. Damgard, S. Dziembowski, M. Hirt and T. Rabin: Efficient Multi-
party Computations with Dishonest Minority, Proceedings of EuroCrypt 99.

11. R. Cramer, I. Damgard, U. Maurer., General Secure Multi-Party Computation
from any Linear Secret-Sharing Scheme, Proc. EUROCRYPT ’00, Springer Verlag
LNCS, vol 1807, pp. 316–334. Full version available from IACR eprint archive,
2000.

12. T. Rabin, M. Ben-Or, Verifiable Secret Sharing and Multiparty Protocols with
Honest majority, Proc. ACM STOC’89, pp. 73-85

