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1. INTRODUCTION

Recently Landau and Diffie gave in a series of articles in the Notices of
the American Mathematical Society [DL02, Lan01, Lan00a, Lan00b] and in
the American Mathematical Monthly [Lan04] excellent expositions on how
the theory of multivariable polynomials are used in cryptography. However
they covered only half of the story. They covered only the theory of poly-
nomials in symmetric or secret cryptography. There is another half of the
story, namely the story about the theory of multivariable polynomials in
asymmetric or public key cryptosystems. The importance of the theory of
multivariable cryptosystems is manifested in the recent selection of Sflash
by the Information Society Technologies (IST) Programme of the European
Commission for the New European Schemes for Signatures, Integrity, and
Encryption project (NESSIE) [NES] as one of the security standards for
low-cost smart card. Sflash belongs to one of the families of public key
cryptosystems, which have been developed in the last ten years.

2. MOTIVATION

As we all know, the revolutionary idea of a public key cryptosystem has
fundamentally changed our modern communication system. It was initiated
by Diffie and Hellman [DH76] when they provided a protocol for a public
key exchange. The first practical realization of a public cryptosystem is the
famous RSA cryptosystem by Rivest, Shamir and Adleman [RSA82, RSA78].

In a public key cryptosystem the key consists of two different parts, a
public key and a secret key. The public key is accessible to anyone, and it is
used either to encrypt a message or to verify the authenticity of an electronic
signature. The secret key is used either to decrypt an encrypted message
or to produce an electronic signature. This asymmetric design allows one
to communicate securely over an open communication channel without any
prior exchange of a secret key. For the symmetric key cryptosystem the two
parties who want to communicate securely with each other must have the
same (symmetric) key and the two parties must have agreed on this key
somehow earlier, or they may have used a public key exchange protocol.
RSA and other public key cryptosystems avoid this need to exchange keys
and they have become a great success to serve the needs of the Internet and
our society in terms of providing security and privacy.
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However the RSA system also has its weakness. The RSA cryptosystem
requires an integer N = pq as a product of two large prime numbers p and
q. The security of the system relies on the fact that we do not have a fast
algorithm for factoring large integers. Due to the fast development in the
field of integer factorization, /N should have at least 1024 bits or roughly 340
decimal digits in order to be considered secure today. This requires that in
the encryption process one must perform about 1024 times multiplications
modular N of two integers with 1024 bits. This is a huge amount of calcula-
tion. It makes the communication process slow and inefficient. In practical
communication systems, public key systems never stand alone. They are
often used for sending keys for another symmetric cryptosystem.

Recently an unexpected threat to the RSA system appeared. Shor [Sho99]
developed an algorithm that could factor the integer N on a quantum com-
puter, where the time for factoring increases in a polynomial form with the
number of digits of N. This means that if a quantum computer can be built,
then the RSA systems are no longer secure. There is a tremendous amount
of effort devoted to develop quantum computers. Though, we still do not
have a suitable quantum computer for this job, it implies that there exists a
strong motivation to search for other more efficient and secure (if there are
any) cryptosystems.

3. MULTIVARIABLE PUBLIC KEY CRYPTOSYSTEMS

The search for public key cryptosystems has gone into many different
directions, for example, elliptic curve cryptosystem, where the structure of
elliptic curve is used, lattice cryptosystem, where the structure of lattices
is used and many others. Multivariable public key cryptosystem is one
of these direction. The building blocks of such systems are multivariable
polynomials, in particular, quadratic polynomials. The method relies on
the proven theorem that solving a set of multivariable polynomial equations
over a finite field is in general an NP-hard problem.

Roughly speaking, the security of the RSA type of cryptosystems relies
on the complexity of integer factorization and is based on mathematics de-
veloped in the 17th and 18th centuries, namely number theory. Elliptic
curve cryptosystems uses the mathematics of the 19th century. Multivari-
able cryptosystems tries to go one step further, by applying the mathematics
of the 20th century, that is, algebraic geometry.

The existing multivariable cryptosystems can roughly be divided into ex-
plicit cryptosystems and implicit cryptosystems. Both can be used for one
of two purposes: 1) encryption or 2) electronic signature. For encryption
schemes all maps must be invertible, so that given an encrypted message we
can find uniquely the original message. For signature schemes this require-
ment can be relaxed as it suffices to see if the signature matches one of a
few possible preimages.
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We will use X = (z1, ..., z,,) to denote the standard coordinate system in
k™ and Y = (y1, ..., ym) to denote the standard coordinate system in k™,
where k is a suitable finite field.

For encryption we will always use X' = (2], ..., z},) to denote an element
in k", which we will treat as a plaintext (unencrypted secret message), and
Y’ = (yi, ..., y,,) to denote an element in k™ a ciphertext (encrypted secret
message).

In case of electronic signature we will always use Y’ = (yj,...,.,) to
denote an element in k™ as the message to be signed and X' = (af, ..., z})
to denote an element in k™, which is then the electronic signature of the
message Y.

3.1. Explicit systems. In an explicit multivariable public key cryptosys-
tem, we have a map F' from k" to k™ such that

F(zy,...,zy) = (Fi(x1,...,2p), ..., Fp(x1, oy xn)) =
Y = (ylv"'vym)v

where F(x1, ..., 2,) is a polynomial in x1, ..., Zp.
The key construction for this type of system is that we first build a map
f from k™ to k™ such that

f(:Elv ceey :En) = (fl(:Ela ceey :L'n)v SRS fm(:Elv ceey :L'n))v

where f;(x1,...,z,) is a polynomial in 1, ..., z,,, and the equation

f(':l"l? R ':Un) = (fl(':l"l? R ;L’n), R fm(l"l? R ':Un)) = (a/17 R am)?

can be solved easily. In other words we can find the pre-image of f easily.
Note that here f~! means finding the pre-image and does not have the strict
mathematical meaning of denoting the inverse of f.

Then F' is constructed as:

(1) F=LiofoLy,

where L, is a randomly chosen affine invertible linear map from k™ to k™,
Li(z1,..,xm) = X X A1 +C1, Aq is an m x m invertible matrix and Cy € k™;
and Lo is an (affine) invertible linear map from k™ to k", Lo(x1,..,z,) =
X x Ay + (C5, As is an n X n invertible matrix and Co € k™.

In this case, the public key consists of the m polynomial components of
F and the field structure of k. The secret key mainly consists of L1 and Ls.
The key idea is that L; and Lg serve the purpose of “hiding” the map f,
which otherwise could be solved easily. In some systems the function f may
be well known, whereas in others f itself might be kept secret.

In order to encrypt a message X', one calculates F(X’). To decrypt a
message Y, one solves the equation

(2) F(z1,...,my) =Y.

In the case of electronic signature, to sign a message Y’, one solves the
equation (2), whose solution we denote by X’. To verify if it is a legitimate
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signature, one just needs to check if indeed
F(zy,...,2)=Y".
Due to the design, we can see that we can find the pre-image of Y’ by

applying in order (L;)~!, f~! and (Lg)~'.

3.2. Implicit systems. In an implicit multivariable public key cryptosys-
tem, we have a set of [ equations in the form of

(3) H(va) :H($17"'7$n7y17"'7ym) -
(Hy(Z1y ooy Ty Yy ooy Ym) s ooy HI(T1y vy Ty Y1y oy Ym)) = (0, ..., 0),
where H;(x1, ..., Zn, Y1, ---, Ym) 18 & polynomial in x1, ..., pn, Y1, .-, Ym-
The key construction here is to build first an equation in the form of
h(X7 Y) = h($17 -0y Ty Y1, 7ym) =
(R1(X1y ooy Ty YLy ooy Ymn) s wees DX 1y ooy Ty Y1y ooy Ym)) = (0, ..., 0),
where h;(z1, ..., Tn, Y1, ---, Ym) IS a polynomial in x1, ..., Zp, Y1, .., Ym. There
are two requirements:

e For any given specific element X', we can easily solve the equation

(4) h(zy, oo 2 Y1y ey Ym) = (0, ..., 0),

whose solution we denote by Y’ = (v4, ..., y,,), and
e for any given specific element Y’, we can easily solve the equation

(5) R(21, ooy Ty Yy ooy Yoy) = (0, ..., 0),

whose solution we denote by X' = (2, ..., z},).

In most cases, (4) is actually a set of linear equations and (5) is a set of
specially designed nonlinear equations.
Then the equation H is constructed as

H = Ly o h(Ls(X), Li(Y)) = (0, ..., 0)

where L and Lo are defined as in the explicit case and L3 is an invertible
linear map from k' to k.

In order to encrypt a message X', one plugs X’ into the equation (3).
Then one solves the equation:

H(X/7 Y) = H(:Elv coy Ty Y1, 7ym) = (07 seey 0)7

and the solution will be denoted by Y”, which is the encrypted message, the
ciphertext.

In order to decrypt the message Y”, one first calculates first Y/ = Ly *(Y”),
then plugs Y into the equation (5). Then one solves the equation:

h(X7 Y/) = h(':L'l? A ;Un? gi? A g;’n) = (07 A 0)7
The solution will be denoted by 7. The plaintext is given by Y’ = (L)1 (7).
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For an electronic signature, in order to sign a message Y’/, one goes
through the decryption process above to find an element X’ in k™. To
verify if it is a legitimate signature, one just needs to check if indeed

H(':L{L? R ':L';N yi? R y;’n) = (07 R 0)'

In this case, the public key consists of the [ polynomial components of H
and the field structure of k. The secret key mainly consists of L1, Lo and
L3. Depending on the case the equation h(X,Y) = (0, ...,0) is either known
or can be made a part of the secret key.

Again the key idea is that L1, La, L3 serve the purpose to “hide” the
equation h(X,Y) = 0, which otherwise could be easily solved for a given
value of Y.

3.3. Basic Security and Efficiency Assumptions. The most important
concerns for multivariable cryptosystems are their security and efficiency.
We will discuss the basic aspects of these issues in the context of encryption
systems as the case of signature schemes is very similar.

Any encryption process basically applies a map from k" to k™ to an el-
ement in k™ and the decryption process is to find its “inverse”, that is, to
solve the equation (2). This means that the equation (2) must be hard to
solve, which is basically ensured by the well-known fact that the Groebner
Basis method in general is of exponential complexity and therefore not very
efficient. If indeed the encryption has an inverse, which can be expressed
itself as a polynomial map, then we must ensure that this inverse map must
have a very high degree, otherwise one can use the public key to generate
enough pairs of plaintext and ciphertext to find the inverse easily [Dic92].
From the construction itself we must also ensure that it is hard to factorize
the encryption map in the specific form of (1). This is in general difficult
because factorization of multivariable maps is an extremely hard topic, par-
tially due to the famous Jacobian conjecture about invertible maps.

Surely any public key cryptosystems is intended for practical applica-
tions. This requires that the whole encryption and decryption process must
be performed efficiently. The public key is a set of multivariable polynomi-
als, which first has to be transmitted and stored and then values of these
polynomials have to be calculated. Thus, these polynomial components F;
must be of a small degree (but not linear, otherwise the system will be un-
usable.) This means the best choices are quadratic polynomials. Would a
system with higher degree polynomials be more secure? The answer is es-
sentially no. The reason is the well-known mathematical trick that we can
transform any set of multivariable polynomial equations into another set of
quadratic multivariable polynomial equations but with more variables and
equations.
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4. MULTIVARIABLE CRYPTOSYSTEMS

4.1. The first examples. The first construction of multivariable signature
cryptosystem was given in [OSS84]. This system is based on a quadratic
equation

(6) z% + kx? = m mod n,

where n is a large composite integer that is difficult to factorize. To sign
any message m, one needs to find one of the many (about n) solution pairs
(21, z2), which is easy if one knows the factorization of n. The public key is
essentially the integer n and the equation (6). Because the security relies on
the factorization of n, in some sense, this system is still in the shadow of the
RSA cryptosystem, though it initiated the idea of multivariable cryptosys-
tem. Unfortunately shortly afterwards, Pollard and Schnorr [PS87] broke
this cryptosystem. They found an algorithm to solve the equation (6) for
any given m without the use of the factorization of n. In particular when k&
and m are relatively prime to n, a solution can be found easily; and with the
assumption of the generalized Riemann hypothesis, a solution can be found
by a probabilistic algorithm with a complexity of O{(logn)?|loglog|k||} of
O(logn)-bit integer operations.

4.2. Triangular cryptosystems. Another early attempt to build a multi-
variable cryptosystem was by Diffie and Fell [FD86]. Their idea is to build
a cryptosystem using the composition of many invertible linear maps and
simple triangular maps in the form of

(7) T(x1, .oy xpn) = (1 + g(x2, oy Tp), T2, ovy Tny),

where g; is a polynomial. Clearly T is invertible and therefore the decryp-
tion process can be done. However due to consideration of efficiency, in
particular, the key size, the authors themselves concluded that “there seems
no way to build such a system that is both secure and has a public key of
practical size”.

Here one should notice that the simple triangular map above belongs to
the family of de Jonquieres maps defined as

J(x1,oxn) = (v14+ g1(x2, ... xm), T2+ g2(x3, .. ., Ty),
(8) ey Tp1 t+ gn—l(:En)a :En)a

where g; are polynomial functions. Clearly J can be easily inverted. All
invertible affine linear maps over k™ and the de Jonquieres maps are called
tame transformations in algebraic geometry. They also include all transfor-
mations which are formed by composition of tame transformations. Tame
transformation are elements of the group of automorphism of the polynomial
ring k[xq, ..., x,]. Elements, which are in this group and are not tame, are
called wild. This topic is closely related to the famous Jacobian conjecture
in algebraic geometry, which essentially asks, if the Jacobian of a multivari-
able map, which is a nonzero constant, also implies that the map is indeed
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invertible. This is a long standing difficult question in mathematics. Even
to find if a map is tame is a very difficult problem [Nag72].

One can see that de Jonquiéres maps have two types, one is upper trian-
gular as the one above and similarly we can also define the lower triangular
type. Triangular construction was not pursued again until 10 years later
when Moh [Moh99] suggested a construction where the quadratic map f is
given by

(9) f:JuOJlOI(:Elv"'v:En)'

Here J, is a k™ upper triangular de Jonquieres map and J; is a k™ lower
triangular de Jonquieres map and the linear map I is the embedding of
k™ into k™: I(x1,...,2y) = (21, ..., 2y, 0,0, ...,0). The main achievement of
such a construction is that f is a quadratic function and that any linear
combination of the components of f can not produce a linear function. The
trick of this construction is actually the use of the map I. One can see that

JyoI(xy,..,xn) = (x1,22+ 91(21), o0y T+ gn—-1(x1, ..., Tp—1),
gn(;Ul? b ;Un)? b} gm—l(':Ul? b} ;Un))’

which gives us the freedom to choose any g;, i = n,..,m — 1. This method
is named the tame transformation method (TTM). A few examples of such
constructions were given and a family of challenges with monetary award
was set up in a web (www.usdsi.com). Despite the inventor’s claim that
TTM systems are very secure from all standard attacks, shortly afterwards
Courtois and Goubin [GC00] used the method of Minrank to attack this sys-
tem. This method searches for the matrix of the minimum rank among the
space of linear span of a few given matrices. What they did first is associate
a quadratic polynomial with a bilinear form and therefore its corresponding
matrices, then they used the Minrank method to work on these matrices.
They easily broke one of the challenges and claimed that the TTM systems
could not work due to the Minrank attack method. However the inventor of
TTM refuted this claim and together with Chen gave a new implementation
of his scheme in [CMO01].

In [DH] another method was found to defeat the first TTM implemen-
tation scheme of [Moh99]. This attack method can also be applied to
other TTM implementation schemes [CGJ02]. Later, Ding and Schmidt
[DS03a, DS03b] found out that actually all currently existing implementa-
tion schemes for the TTM cryptosystem have a common defect that could
make them insecure. The conclusion comes from observing that we can ex-
tend the linearization method by Patarin [Pat95] to attack all current TTM
implementation schemes. The problem lies in the fact that although the
TTM constructions is a very original idea, the existing constructions of the
TTM cryptosystem are not done in a systematic way and no explanation is
given why and how they work. From what we can see at the moment simple
TTM systems do not work. More sophisticated constructions are needed
and they may require deep insight from algebraic geometry.
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Attempts were made to use a similar but simpler idea for signature
schemes, which was called a TTS (tamed transformation signature.) This
system is essentially the result of an application of the Minus method in
[Sha98] for a tame transformation. A few of them were suggested mainly by
Chen and his collaborators [YC03, CYP02]. One sees fairly easily that these
systems can also be defeated by the method using the descending chain of
the ranks of quadratic forms by Coppersmith, Stern, and Vaudenay [CSV97].

4.3. Matsumoto-Imai systems. Another idea to design a multivariable
cryptosystem was started by Matsumoto and Imai [MI88], where the key idea
is that one should use a map f over a large field K, a degree n extension of
a finite field k (with characteristic 2). Through a map ¢ which identifies K
as k™ first, one would identify this map as a multivariable polynomial map
f from k™ to k™

(10) f=dofoe.

Then, one would “hide” this map f by composing from both sides by two
invertible affine linear maps Li and Lo on k™. The map f suggested by
Matsumoto and Imai is the map

(11) FiX o X1

where ¢ is the number of elements in k, X is an element in K, k is of
characteristic 2, and such that ged(1 + ¢%,¢" — 1) = 1. The last condition
ensures that the map f can be easily inverted. The inverse of the map f is
given by

(12) X)) =x",

where t(1 4+ ¢*) = 1 mod (¢" —1). This ensures that we can decrypt any
secret message easily by the inverse. One more important thing is that
the map f is actually quadratic due to the property of the Frobenius map
X — X7,

However Patarin [Pat95] found out that for this family of cryptosystem,
due to the properties of the map f, the cipher satisfies a large number of
linearly independent equations of the following form:

(13) D agfi(wr, e )z + > aifi(@r, o xn) + Y bjay 4 e =
= Zaijyiznj + Zaiyi + ijznj +c=0,

which are called the linearization equations. In this case, if we are given
values of the secret message, the values of y; = f;, they will produce linear
equations satisfied by the secret message component x;, which therefore
allows us to find z; easily.

Though the original idea of Matsumoto-Imai failed, it has inspired many
new designs most of them coming from Patarin and his collaborators.
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4.4. Minus-Plus generalizations of the Matsumoto-Imai system. It
is a simple idea, as one takes out a few of the quadratic polynomial compo-
nents of ' (Minus method), and/or one adds (Plus method) a few randomly
chosen quadratic polynomials [PGC98]. The Minus method was first sug-
gested in [Sha98]. The main reason to take the “Minus” action is to improve
the security. Shamir [Sha98] realized that even if a set of equations is easy to
solve, if the number of equations is reduced (Minus), the new set of equations
could be much harder or impossible to solve. The Minus (only) method is
very suitable for signature schemes, because it does not require that a doc-
ument has a unique signature unlike the case of decryption process. Sflash
[ACDGO03, PCGO01la] is a Matsumoto-Imai-Minus cryptosystem. Although
the original submission of Sflash to the NESSIE project had a minor de-
sign flaw it made it to the final selection. The design flaw was pointed out
in [GMO02] where a property of difference equations related to permutation
polynomials was used to search for the missing polynomials. The author of
Sflash recently improved the system and suggested a new version [CGP03].

4.5. Hidden Field Equation Method. (HFE) This method is suggested
by Patarin to be the strongest [Pat95, CDF03]. In this case, the difference
from the original Matsumoto-Imai system is that f is replaced by the more
general map

A A
(14) f X — Z ainql—i—q] + Z binl + ¢,

ij i
where the coefficients are chosen at random. The decryption process involves
solving the equation f = Y’ for X. This can be done for example with the
algorithm of Berlekamp, whose time complexity is proportional to the cube
of the degree of f. If the degree of f is large then the system is too slow due
to the process of solving the polynomial equation in the decryption process,
but Kipnis and Shamir [KS99] show that the degree can not be too small
either. The key of their attack [KS99] is that they realize that one can lift
any k" to k™ map to be a map K to K map. Then they treat the quadratic
part of f as a bilinear from and use the Minrank method to attack the
system. These findings have been confirmed by [Cou01, FJ03].

4.6. Vinegar-0Oil method. The Oil and Vinegar schemes [Pat97] and the
unbalance Oil and Vinegar schemes [KPG99] are suitable for signature.
Let 0 and v be two constant integers. Let x1, ..., x, be o variables, which
we call oil variables and 1, ...,2, be v variables, which we call vinegar
variables.
Let f be a map from k°*? to k° and

f(:L'l, vy Loy :i'l, ceey :AL'U) = (fl(:El, vy Loy :i'l, ceey :AL'U), ceey fo(lEl, vy Loy :i'l..., :AL'U)),

0,v v o v
fi(x1, oy Toy T1,y ooy Ty) = E ag;j T+ E blij:ﬁi:ﬁj—l— E CliTi+ E dlj:ﬁj +ey,
ij=1 ij=1 i=1 j=1
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where all coefficients are randomly chosen from the field k. Here we notice
that there are no quadratic terms of oil variables, which means the oil vari-
ables and vinegar variables are not fully mixed (like oil and vinegar) and
this explains the name of this scheme.

The cipher F' is constructed as usual:

F:LlofoL27

where L; and Lo are invertible affine linear maps on the corresponding
spaces. In some way, here the change of basis is a process to “mix” fully oil
and vinegar, so one can not see what is oil and what is vinegar.

The case 0o = v is the original Oil and Vinegar signature scheme, and
when o < v, it is the unbalance Oil and Vinegar signature scheme. The
public key are the polynomial components of F, namely F' is itself, not
the composition components, and the field structure of k. The secret key
consists of the linear maps L; and the map f.

Given a message Y/ = (y],...,y)), to sign it, we need to try to find a
vector X' = (2, ...,2,,) such that F(X’) =Y.

With the secret key it can be done easily. Since L; and Lo can be inverted,
we only need to find a way to “invert” f, namely to find a pre-image. To
invert f one first guesses all the values of Z;, namely all the vinegar variables.
Thus, one obtains a set of o linear equations with o variables. With a very
high probability it has a solution. If it does not have a solution, one tries
another set of values of the vinegar variables until one finds a pre-image of
a given element in £°. This process can be done easily.

To check if X’ is indeed a legitimate signature for Y/, we only need to get
the public map f and check if indeed F(X') =Y.

To make a forgery of a signature, one needs to solve the equation F(X') =
Y’. It turns out that it can be done easily if ¢*~° is small due to attack
by Kipnis and Shamir and later [KPG99]. The basic idea here is that we
treat each f; as a bilinear form. The corresponding matrix is in the form

of (S

bilinear forms. This construction is inspired by the Minus method of Shamir
[Sha98] and the idea of linearization equation.

:) This reduces the problem to finding a basis change for a set of

4.7. HFEV. It is also a possible to combine different constructions like the
HFE and VO schemes. In the same paper [KPG99] where the unbalance
Oil and Vinegar scheme was presented a new scheme called HFEV was
suggested. The basic idea is to add on top of the HFE method a few new
variables to make the system more complicated. This method essentially
replaces F' with an even more complicated function:

(15) F:(X,X)—

A7A . . A7B . . B7B . . A . B .
E ainql—l—q] + E biJ’quXq] + E ainql—l—q] + E binl + E ﬁqul + ¢,
,J ,J .J i i
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where the new vinegar variables given by X are of a small dimension when
viewed in k", that is, ¢~ (X) = (1, ..., Ty, 0, ..., 0) with v a small number.

These new variables are also mixed in a special way with the original
variables. When the new variables are given specific values, equation (15)
reverts back to form (14) but with different coefficients. The decryption
process requires an exhaustive search on the added small number of (vinegar)
variable. For the signature case the search becomes a random selection,
which has a good probability to succeed each time, and it continues until
a correct answer is found. We [DS05] recently observed that the attack in
[KS99] can also be applied here to actually eliminate the small number of
added variables and attack the system. The basic idea is to use the algebraic
method to find a way to purge out the vinegar variables. We also [DS05]
apply the internal perturbation to the HFE cryptosystem, which works even
better than the Matsumoto-Imai cryptosystem.

A signature scheme Quartz was proposed as a HFE-Minus scheme. It
has a very short signature of 128 bits [PCGO1b]. It still stands against all
existing attacks.

4.8. Perturbation. From a very general point of view, the methods above
(the HFEV and Oil-Vinegar method) can also be interpreted as an extension
of a commonly used idea in mathematics and physics, namely perturbation.
A good way to deal with a continuous system often is to “perturb” the
system at a minimum scale. The HFEV can be viewed as a perturbation of
the HFE method by the newly added vinegar variables. However, because of
the “Oil-Vinegar” idea it is in some sense more of an “external” perturbation,
as a few new (external) variables (Vinegar) are introduced.

This inspired a new idea of internal perturbation [Din04]. The idea was
applied to the Matsumoto-Imai system. The new multivariable cryptosys-
tem is called the Perturbed Matsumoto-Imai (PMI) system. A practical
scheme was suggested as an implementation of this idea and resulted in a
136 bits open-key cryptosystem.

The theoretical idea of “internal” perturbation is very general and can be
applied to all existing multivariable cryptosystems. It appears to be better
to perturb the HFE method “internally” rather than by the “external” Oil-
Vinegar scheme, as the vector X in (15) is replaced by variables from a
subspace inside the original £ and one does not have to introduce any new
variables. The security is improved because it is impossible to purge out the
perturbation. The reason for this is exactly due to the fact that it is internal
and fully mixed into the system unlike in the case of Oil-Vinegar mixing.
This idea can also be combined with the Minus method for the construction
of signature schemes.

4.9. Implicit and other systems. The implicit systems are not as well
developed, as most of the research has been devoted to explicit systems.
There are two existing families of implicit systems and they are called Little
Dragon and Dragon [Pat96, Kob98]. Little Dragon is a simplified version
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of Dragon. These constructions are very much inspired by the linearization
equations and the Matsumoto-Imai cryptosystems and they are essentially
a combination of these two ideas. The little Dragon is defeated by Copper-
smith and the Dragon can be defeated by the same method as in [KS99].

5. ILLUSTRATIVE EXAMPLE

All crypto system require extensive computations. Therefore, it is diffi-
cult to give a simple and at the same time meaningful example in order to
illustrate a method. This is true in particular for multivariate cryptosystems
where many lines of text are needed to display the quadratic equations.

The following toy example for a Matsumoto—Imai system will use the
finite field k = GF[2]/(2® 4+ = + 1), with 22 elements, which we will denote
by the set {0, 1, 2, 3} to simplify the notation. Here 0 represent the 0 in k,
1 forl, 2 forx, 8 for1+x. Inthiscase, I+ 3 =2and 2x38 = 1.

For the larger field we use K = k[y]/(y®> +y + 1). With n = 3 the only
option for 6 is 8 = 2. The Matsumoto-Imai map and its inverse is thus

Fx) = X1+ FH) = X7

The mappings L; and Ly in (1) represent the secret keys and we select for
Ly

[ yo | (3 2 20 [z ] [0]

w|=12 10 x|+ | 1],

_yg_ _1 01__:172_ _2_
and for Lo

[ yo | (1 0 20 [x] [ 2]

Y1 = 0o 1 2 xr1 + 3

_yg_ _120__:172_ _3_

In constructing the public key we also denote by (zg, 21, z2) € k3 the mes-
sage. The map ¢ o Lo is given by

u=2+x0+ 222+ (8 + z1 + 232)y + (3 + 20 + 221)y°.
Next compute u4*, which is easily done, since (u(y))'6 = u(y'®) in the finite

field k. Now compute the product

v=ulu=1+ Sxo 4+ 2x1 + x9 + o1 + 22072 + 3T122

+(2 + 220 + o1 + 322 + :173 + 8x0x1 + 3 + T112)Y
+(3 + 3z + 231 + 29 + 22 + x0Ty + 2x070 + 37F + 22120 + 323) Y7

Finally compose it with L; to obtain

yo = fo(z1, 22, 23) = 14 22+ 22022 + 3:17% + Sx122 + :1:%,
y1 = fi(z1,22,23) = 1+ 829+ 221 + 22 -I-:Eg—l-:vo:m—l-fw’:no:ng +JE%,
Y2 = fo(x1, 22, 73) = 3:132-1-:173—1-3:17%—1—:131:132—1—3:13%.

This is the public key together with the field structure of k.
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For example, given the plaintext g = 1, x1 = 2, x2 = 3, we plug them
into f1, fo, f3, and it produces the ciphertext yo = 0, y1 = 0, yo = 1.

In order to recover the plaintext, we evaluate it with the inverse function
Ly Lo 1o Ll_l. Since the private key can be used directly, the function is
evaluated in three stages. The exponentiation required by f~! can be done
by the ‘square and multiply (binary) method’. This method is not always
optimal and it can be time consuming when the exponent is very large.
Fortunately it is possible to find faster ways to carry out the exponentiation
by exploiting the form of the exponent. A practical system has to use values
of n and 0 where this can be done.

In order to illustrate the Minus method, as it is used for example in Sflash,
the linear map L is combined with a projection. Here we select a projection
onto the first two coordinates so that the public key is now

Yo = fo(r1,22,03) = 1+ 22+ 2w022 + 3:13% + 3179 + :13%,
y1 = fi(x1,xe,23) = 1+ 3x0+ 221 + 22 +:c3 + zox1 + SToT2 + :L"%,

together with the field structure of k. The system can no longer be used for
encryption, but it is very useful for signing a message. In our case a message
would have to be compressed or hashed onto the first two components of the
vector y = (yo, Y1, y2), that is into 4 bits. The third component y, can be
selected at random at each signing and can be treated as a personal secret
key. Signing the message y means computing first

X = L2_1 oflo Ll_l(y).

Verifying a signature means that when the cipher x = (g, z1, z2) is substi-
tuted into the public key the original message 1y and y; is recovered.

In our toy example let the message be yo = 1 and y; = &. The personal
key y2 = 0 produces the cipher x = (2,0, 2), the key yo = 1 produces
x = (1,0,0), the key yo = 2 gives x = (0,1,1), and yo = & gives x =
(2,0,0). In all four cases, when these values are plugged into the public
key, the message 19 = 1 and y; = & is recovered and with it the signature
is verified.

6. COMPUTATIONAL COMPLEXITY

Surely one of the main purposes of cryptography is to develop systems that
can be used in real life. In general, the key size of multivariable cryptosystem
are much larger than the key size for RSA cryptosystems. A public key of
1024 bits is recommended today for RSA and it requires only a storage of 128
bytes. But with it one also needs a computer program to do the extensive
computations efficiently. Sflash”® is a Matsumoto—Imai—Minus system. It
uses the finite field k = Z; [2] /(2" + = 4+ 1) and is defined as the mapping
F~ : k5 — k5. The notation F~ indicates that 11 equations have been
removed from the function F', which is constructed as usual by

F:LlofoLg.
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Here L and Lo are two invertible affine linear transformation and f as
defined in (10) and (11) is given by

(16) JF(X) — X1+12833.

The public key consists therefore of 56 quadratic polynomials in 67 variables
with coefficients in k. Each quadratic polynomial will have 67 x 34 + 67 + 1
coefficients. This requires 128.3 KB of storage if each coefficient is stored
in a single byte, and it can be reduced to 112.3 KB if only 7 bits are used
for each coefficient. This is a fair amount of storage, but it should not be a
problem for PC’s or smart cards.

For the secret key it suffices to store the 9144 coefficients of the two linear
transformations and to have a way to evaluate the function (12). Since ¢t =
768146788955706749847833964023909031926328283136065735939753188884
195798396896924678452624605588574118228052288763643673842596138395
343249344 it appears to be lot of work, but looking at this number in hexa-
decimal ¢t = (102040810204081020408102040810204081020408102040810204
08101 fbfTefdfofTefdfbfTefdfofTefdfbfTefdfbfTefdfbfTefdfbfTefdfc0)1q
one sees that there are repeated patterns and that the function (12) can be
evaluated much more efficiently than by the standard square and multiply
method.

The computational complexity for multivariable cryptosystems are typ-
ically much less than for the RSA system. For example in Sflash¥® the
evaluation of the quadratic polynomials is done in the field k. Multiplica-
tions can be done either with the help of a table with 128 x 128 entries
or with the help of logarithms for which an array with only 127 entries is
needed. Addition of elements in k is even simpler as it is the exclusive or of
the two numbers in binary.

7. THE FUTURE

Though indeed many of the multivariable cryptosystem are broken, many
still stand and the new designs are getting stronger and stronger. Since
the theory behind multivariable cryptosystems matured quickly in the last
decade, there exists a great potential for the practical applications of these
ideas. Since so many different schemes have been proposed in recent years
our bibliography is not comprehensive, and we apologize to those whose
method we have not mentioned. Also interesting schemes like [PL97, YDLO1]
have not been mentioned here, although they are related to multivariable
cryptosystems they use different ideas.

From the mathematical point of view, one can see that the developments
in the area of multivariable cryptosystem, also brought a lot of progress in
the related mathematical fields. Just by looking at the attack methods alone,
we see many new and old ideas: linearization equations [KS99, DS03b],
relinearization equations [KS99|, use of ideals in the XL method [CP03],
Minrank method [Kob98|, new Groebner basis [FJ03], quadratic forms on
finite fields [Pat95, CKPS00], theory of permutation polynomials [GMO02].
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The development of the research in multivariable cryptosystems, we believe,
will continue to be a strong drive to develop further the theory of functions
over finite fields, especially in terms of computational complexity. In the
field of multivariable cryptosystem, there are many unsolved problems (see
www.minrank.org). There also exist many ideas that today can only be
verified by computations and not by a mathematical argument. We believe,
new mathematical insights especially insight from algebraic geometry will
be fundamental to deal with these problems.
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