Comments on a Threshold Proxy Signature Scheme
Based on the RSA Cryptosystem

Guilin Wang, Feng Bao, Jianying Zhou, and Robert H. Deng

Infocomm Security Department (ICSD)
Institute for Infocomm Research (I°R)
21 Heng Mui Keng Terrace, Singapore 119613
http://wuw.i2r.a-star.edu.sg/icsd/
{glwang,baofeng, jyzhou,deng}@i2r.a-star.edu.sg

Abstract. In a (¢,n) proxy signature scheme, the original signer can delegate his/her
signing capability to n proxy signers such that any ¢ or more proxy singers can sign
messages on behalf of the former, but ¢ — 1 or less of them cannot do the same thing.
Such schemes have been suggested for use in a number of applications, particularly
in distributed computing where delegation of rights is quite common. Based on the
RSA cryptosystem, Hwang et al. recently proposed an efficient (¢,n) threshold proxy
signature scheme. In this paper we identify several security weaknesses in their scheme
and show that their scheme is insecure.

Keywords: proxy signature, digital signature, public key cryptosystem, data security.

1. Introduction

Proxy signatures are first introduced by Mambo, Usuda, and Okamoto in [12, 13]. Such
a scheme allows one user, called original signer, to delegate his/her signing capability
to another user, called proxy signer. After that, the proxy signer can sign messages
on behalf of the original signer. Upon receiving a proxy signature on some message,
a verifier can validate its correctness by following a given verification procedure, and
then is convinced of the original signer’s agreement on the signed message if the
validation is positive. Proxy signature schemes have been suggested for use in a number
of applications, including e-cash systems, mobile agents, mobile communications, grid
computing, global distribution networks, and distributed shared object systems etc [1,
24].

Based on the ideas of secret sharing [21,15,16] and threshold cryptosystems [2],
Zhang and Kim et al. independently constructed the first threshold proxy signatures
in [25] and [8], respectively. In a (¢,n) threshold proxy signature scheme, the original
signer’s signing power is delegated to a group of n proxy singers such that ¢ or more
of them can generate proxy signatures cooperatively, but ¢ — 1 or less of them cannot
do the same thing. This technology not only allows the original signer to delegate the
proxy signing power to a group of proxy signers instead of one single proxy signer, but
also lets the original signer to set the threshold value t freely (1 < ¢ < n). Therefore,
the threshold proxy signature approach is more practical, flexible and secure than
standard proxy signature schemes.

A practical and secure (t,n) threshold proxy signature scheme should satisfy the
following six requirements [7]:

— Secrecy. The original singer’s private key cannot be derived from any information,
such as the shares of the proxy signing key, proxy signatures etc. Particularly, even
all proxy signers collude together, they cannot derive the original signer’s private
key.

— Proxy Protection. Only the delegated proxy signer can generate valid partial proxy
signatures. Even the original signer cannot masquerade as a proxy signer to create
partial signatures.

— Unforgeability. A valid proxy signature can only be cooperatively generated by ¢
or more proxy signers. This means that valid proxy signatures cannot be created
by (¢t — 1) or less proxy signers, or any third parties who are not designated as
proxy signers.

— Nonrepudiation. Any valid proxy signature must be generated by ¢ or more proxy
signers. Therefore, proxy signers cannot deny that they have signed the message.
In addition, the original signer cannot deny having delegated the power of signing
messages to the proxy signers.

— Time Constraint. The proxy signing keys can be used only during the delegated pe-
riod. Once they expire, the proxy signatures generated by using those keys become
invalid.

— Known signers. For internal auditing purposes, the system is able to identify the
actual signers of a given threshold proxy signature.

Following the first threshold proxy signatures in [8, 25|, a number of improvements
and new schemes have been proposed [18,19, 6, 5, 23]. However, most of them do not
meet all the above security requirements. At the same time, all these schemes are based
on the discrete logarithm crytosystems [4,20]. The main reason is that it is difficult
to share the private key of the RSA cryptosystem [17] among multiple parties. The
RSA cryptosystem is now the de facto industrial standard and is widely used in many
applications; therefore, it is highly desirable to construct threshold proxy signature
schemes based on the RSA cryptosystem. Hwang et al. recently proposed an RSA
based (t,n) threshold proxy signature scheme in [7]. This scheme is dramatically more
efficient than previous schemes in both computation and communication by not using
the distributed random number generation protocol in [15,16]. For example, after a
detailed performance analysis, Hwang et al. concluded that their scheme only requires
5 percent computation overheads and 8 percent communication overheads of Kim et
al.’s scheme [8]. Unfortunately, as we will show shortly, the scheme is not secure.
Though Hwang et al. claimed that their scheme satisfies all the security requirements
listed above, our analysis indicates that the scheme fails to satisfy all the requirements
except the one on time constraint. For simplicity, we call their scheme the HLL scheme
hereafter. The rest of this paper is organized as follows. We review the HLL scheme
in Section 2 and present our analysis in Section 3. We conclude the paper in Section
4.

2. Review of the HLL Scheme

In the HLL scheme [7], the following notations are used. The original signer is denoted
by Py and the n proxy signers are denoted by P; (i =1,2,---,n). For i =0,1,---,n,

N; denotes P;’s RSA modulus, and (e;,d;) represents P;’s public/private key pair,
where Nj; is the product of two large primes p; and ¢;, die; = 1 mod ¢(N;), and
d(N;) = (pi — 1)(¢; — 1). In addition, the message m,, stands for a warrant, which
specifies the validity period of the proxy key, the identities of the original signer and
proxy signers, and the kind of messages being delegated etc.

2.1 The Proxy Sharing Phase

(1) Proxy Generation. The original signer Py generates the group proxy signing key D
and the corresponding proxy verification key E as follows:

D = d" mod ¢(No), (1)
E = e{™ mod ¢(Np). (2)
Then, Py publishes {m.,, E, [m.,||E]%° mod Ny}.
(2) Proxy Sharing. Py selects a random secret polynomial f(X) of degree (¢t — 1) in
the form
f(X)=D+arX +++a_1X"" mod ¢(No), (3)
where a1, a2, --,a;—1 are random numbers. Then, Py computes P;’s partial proxy
signing key k; = f(i), and sends [[k;]% mod Np||k;]* mod N; to the proxy signer
P;, where i represents P;’s identity.
(3) Proxy Share Generation. When each proxy signer P; receives [[k;]% mod Ny||k;]® mod N;,
he decrypts the ciphertext to obtain {[k;]® mod Ny, k;}. Then, the proxy signer
P; confirms the validity of k; and keeps it secret.

2.2 The Proxy Signature Issuing Phase

Let T denote a subset of ¢ or more proxy signers who want to cooperatively generate
a proxy signature on a message M on behalf of Py. For this sake, they perform the
following operations.

(1) With the partial proxy signing key k;, each P;, i € T, generates his partial proxy
signature s; on message M as

S; = Mlel mod NO, (4)

where the Lagrange interpolating coefficient L; is given by

—J
L= Il =5 ®)
1,J€T,j#1
Then, each P; (i € T) sends {[s;]% mod Nj,s;} to the combiner.
(2) The combiner verifies s; using the public key of P; and stores [s;]% mod N;. If all
the partial proxy signatures are valid, the combiner generates the proxy signature
S on message M using the following equation:

S =1licrsi mod Ny
= M2ier Li-f(D) mod Ny
= M7 mod N,
= MP mod Ny.

(6)

2.3 The Proxy Signature Verification Phase

Using the publicly known parameters INV;,e;, m,, and E, any receiver can validate a
proxy signature S by the following the verification procedure below.

(1) The verifier first computes m,, and F with the original signer’s public key. Then,
the stipulated delegation period is checked. If the period has expired, the proxy
verification key is invalid.

(2) The verifier then checks the validity of proxy signature S by the following equation:

SE mod Ny = (MP)E mod Ny
= M% "% mod Ny (7)
= M mod Ny.

(3) For internal auditing purpose, the original signer can differentiate the actual signers
from the signatures [s;]% mod N; on message s;, where i € T.

3. Our Comments on the HLL Scheme

In [7], Hwang et al. provided a detailed security discussion on the scheme and claimed
that their scheme meet all the security requirements listed in Section 1. However, we
discover that the claim is not true. In this section, we present some security weaknesses
and flaws in the HLL scheme.

3.1 Security

(1) Secrecy. Hwang et al. claimed that their scheme meet secrecy, i.e., even ¢ or all
proxy signers collude together, they cannot recover the original signer’s private key.
They argued that though ¢ or more proxy signers can get the proxy signing key D, they
cannot derived the original signer’s private key dy from the equation D = dg" mod Np,
since the values of dy and ¢(Ny) are not known to them. However, this is not the fact.
We explain the details as follows. Firstly, for any subset 7' C {1,2,---,n} satisfying
|T'| > t, Eq. (6) implies that the following equation holds:

D=> Lixk. (8)
€T

In other words, any ¢ or more colluding proxy signers can get the proxy signing key
D by Eq. (8). Secondly, since E = ;" mod ¢(No) and egdp = 1 mod ¢(Np), we have
ED =1 mod ¢(Np). This means that ED—1 is a non-zero multiple of ¢(Ny). However,
it is well known that knowing such multiple of ¢(NVy) is equivalent to factoring Ny (e.g.,
page 91 of [9]). Finally, with the factors of Ny, the proxy singers can compute the value
of ¢(Np), and then get the value of dy easily from the equation dpeyp = 1 mod ¢(Np)
by using the extended Euclidean algorithm. Therefore, the result is that the original
signer’s private key is revealed to proxy signers'. Note that the well known fact that
an RSA modulus cannot be shared among different users is also due to this algorithm.

! Note that in [3], a similar attack is mounted by Dodis et al. to break an RSA-based optimistic fair
exchange protocol proposed in [14].

(2) Proxy Protection. Since the original signer Py knows all the partial proxy
signing keys, i.e, k;’s, Py can generate partial proxy signatures on any message M
by computing s; = ML** mod Ny. However, Py cannot generate the corresponding
signature for s; on behalf of P;, since Py does not know P;’s private key d;. Therefore,
the authors of [7] concluded that in the HLL scheme even the original signer cannot
generate valid proxy signatures to frame the proxy signers. We note that the combiner
in the system is just a role for enhancing efficiency and internal audit. Furthermore,
each proxy signer’s signature s?i mod N; is not included in the proxy signature. Hence
a verifier accepts a threshold proxy signature S just by checking whether it satisfies
Eq. (7). This means that with the knowledge of the group proxy private key D, the
original signer Py can generate valid threshold proxy signature on any message M of
its choice by directly computing S = M mod Np.

Moreover, we remark that the protocol of proxy sharing in the HLL scheme is
different from the standard ones [12,8, 10, 11]. In general, the following two properties
should be satisfied by the proxy signing key generation protocol of (threshold) proxy
signatures: (a) A valid proxy signing key can ONLY be generated JOINTLY by the
proxy signer and proxy signers; and (b) Each proxy signer knows the (partial) signing
key but the original singer does not know it. Based on these two properties, a proxy
signature scheme can be guaranteed to meet the security requirement of proxy pro-
tection, unforgeability, and non-repudiation. In the HLL scheme, however, the partial
proxy signing key k; is just a share of D created by the original signer alone and not
bound to the private key d; of the proxy signer P; . Therefore, the original signer can
forge a new warrant m,, without the agreements of all the proxy signers, and then
calculate the corresponding group proxy signing key D and verification key E. Then,
as we mentioned above, using the value of D the original proxy signer can generate
valid threshold proxy signatures in the names of proxy signers. Upon receiving such
a proxy signature, a verifier will accept it and be convinced that it is signed by some
proxy signers.

(3) Non-Repudiation. In fact, to generate a proxy signature any proxy signer
can play the role of the combiner. This implies that if ¢ proxy singers collude, they can
generate a proxy signature in the same way but without the help of the designated
combiner. At the same time, as we mentioned above, the original signer can also
generate valid threshold proxy signatures directly by using the group proxy signing
key D. Therefore, the combiner can be surpassed by the original signer and the proxy
signers. The resulting problem is that when such valid threshold proxy signatures are
presented in future disputes, who should take responsibility for them? Since in the
database of the combiner there are no records of proxy signers’ partital and individual
signatures corresponding to them, either the original singer or the proxy signers can
deny having signed them. So we conclude that the HLL scheme does not meet the
security requirement of non-repudiation.

(4) Known Signer. Even for internal auditing, the combiner should be trusted by
all proxy singers and the original signer; otherwise, a proxy singer’s standard signature
s?i mod N; on s; can be altered, replaced, or deleted by the combiner. The point is
that we cannot assume that the combiner is a trusted party because of the following

two reasons. On the one hand, maintaining such a trusted party is very costly in real
word. On the other hand, such assumption is in contrary to the original motivation
to reduce the original signer’s trust on individual proxy signers. If the combiner is
a trusted party, why not just treat the combiner as a single proxy signer instead
of exploiting threshold scheme? Therefore, the combiner has only limited merit for
supporting the security of the HLL scheme.

(5) Unforgeability. Moreover, using similar strategy as mentioned above, it is
even possible for an outsider to mount a universal forgery attack. The reason is that
E, ey, my, are publicly known values, so e can be computed in the integer ring Z
by anyone. Eq. (2) implies that e — E is also a multiple of ¢(Np). So, an outsider
can also factor the original signer’s RSA modulus Ny. However, we have to note that
this attack may be significantly time consuming than that by proxy signers because

My

the integer e, is much larger than ED.

3.2 Correctness

We now point out some design errors in the HLL scheme. First of all, we notice that a
proxy signer P; cannot compute the coefficient L; using Eq. (5). There are two reasons
for this: (a) Since 4 is a factor of ¢(Np), the inverse of (i — j) modulo ¢(Ny) may not
exist; and (b) Even if (i —5)~! mod ¢(Np) exists, P; cannot carry out its value because
he does not know ¢(Np), which is a secret of the original signer. Therefore, the HLL
scheme essentially does not work. We note that using the technology introduced by
Shoup in [22], the HLL scheme can be adapted to satisfy the correctness. However,
we do not provide details about this improvement since the above mentioned security
weaknesses still remain.

In addition, when a verifier validates a threshold proxy signature, he does not need
to compute m,, and E since they are public parameters. What he needs to do is to
check whether (m,,, F') is a valid pair of warrant and proxy public key certified by the
original signer. To this end, he checks whether m.,||E = ([m.,||E]% mod Np)® mod Nj.
If this equality holds, the verifier accepts E as a valid proxy public key, and uses it to
check the validity of a proxy signature according to Eq. (7).

4. Conclusion

In this paper, we presented a security analysis of the threshold proxy signature scheme
proposed recently in [7]. Our results show that this scheme is insecure, which is con-
trary to the original authors’ conclusion. We remark that it is still an open problem
to construct efficient and secure RSA-based threshold proxy signature schemes.

References

1. A. Boldyreva, A. Palacio, and B. Warinschi, “Secure Proxy Signature Schemes for Delegation of
Signing Rights,” Available at http://eprint.iacr.org/2003/096/.

2. Y. Desmedt and Y. Frankel, “Threshold Cryptosystems,” Proc. Advance in Cryptology -
CRYPTO’89, LNCS 435, Springer-Verlag, pp. 307-315, 1989.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Y. Dodis and L. Reyzin, “Breaking and Repairing Optimistic Fair Exchange from PODC 2003,”
Proc. ACM Workshop on Digital Rights Management (DRM’03), ACM press, pp. 47-54, 2003.

. T. ElGamal, “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-

rithms,” IEEE Trans. Information Theory, vol. 31, no. 4, pp. 469-472, July 1985.
C.-L. Hsu, T.-S. Wu, and T.-C. Wu, “New Nonrepudiable Threshold Proxy Signature Scheme
With Known Signers,” The Journal of Systems and Software, vol. 58, no. 5, 119-124, 2001.

. M.-S. Hwang, I.-C. Lin, and E. J.-L. Lu, “A Secure Nonrepudiable Threshold Proxy Signature

Scheme with Known Signers”, Intl J. Informatica, vol. 11, no. 2, pp. 1-8, 2000.

M.-S. Hwang, E. J.-L. Lu, and L.-C. Lin, ” A Practical (¢,n) Threshold Proxy Signature Scheme
Based on the RSA Cryptosystem,” IEEE Trans. Knowledge and Data Engineering, vol. 15, no.
6, pp. 1552-1560, 2003.

S. Kim, S. Park, and D. Won, “Proxy Signatures, Revisited,” Proc. Information and Communi-
cations Security (ICICS’97), LNCS 1334, Springer-Verlag, pp. 223-232, 1997.

N. Koblitz, A Course in Number Theory and Cryptography, Springer- Verlag, 1994.

. B. Lee, H. Kim, and K. Kim, “Secure Mobile Agent Using Strong Non-Designated Proxy Sig-

nature,” Proc. Information Security and Privacy (ACISP’01), LNCS 2119, Springer-Verlag, pp.
474-486, 2001.

J.-Y. Lee, J. H. Cheon, and S. Kim, “An Analysis of Proxy Signatures: Is a Secure Channel
Necessary?” Proc. Topics in Cryptology (CT-RSA 2008), LNCS 2612, Springer-Verlag, pp. 68-79,
2003.

M. Mambo, K. Usuda, and E. Okamoto, “Proxy signature: Delegation of the Power to Sign
Messages,” IEICE Trans. Fundamentals, vol. E79-A, no. 9, pp. 1338-1353, Sep. 1996.

M. Mambo, K. Usuda, E. Okamoto, “Proxy Signatures for Delegating Signing Operation’,’. Proc.
3rd ACM Conference on Computer and Communications Security (CCS’96), ACM Press, pp.
48-57, 1996.

J. M. Park, E. Chong, H. Siegel, and I. Ray, “Constructing Fair Exchange Protocols for E-
Commerce via Distributed Computation of RSA Signatures,” Proc. 22th Annual ACM Symp. on
Principles of Distributed Computing (PODC’03), ACM Press, pp. 172181, 2003.

T. P. Pedersen, “Distributed Provers with Applications to Undeniable Signatures,” Proc. Advance
in Cryptology - EUROCRYPT’91, LNCS 547, Springer-Verlag, pp. 221-242, 1991.

T.P. Pedersen, “A Threshold Cryptosystem without a Trusted Party,” Proc. Advance in Cryptol-
ogy - EUROCRYPT’91, LNCS 547, Springer-Verlag, pp. 522-526, 1991.

R.L. Rivest, A. Shamir, and L.M. Adleman, “A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems,” Communications of the ACM, vol. 21, No. 2, pp. 120-126, Feb. 1978.
H.-M. Sun, “An Efficient Nonrepudiable Threshold Proxy Signature Scheme with Known Signers,”
Computer Communications, vol. 22, no. 8, pp. 717-722, 1999.

H.-M. Sun, “Threshold Proxy Signatures,” IEE Proc.-Computers € Digital Techniques, vol. 146,
no. 5, pp. 259-263, Sept. 1999.

C. Schnorr, “Efficient Signature Generation by Smart Cards,” Journal of Cryptography, vol. 4,
no. 3, pp. 161-174, 1991.

A. Shamir, “How to Share a Secret,” Communications of the ACM, vol. 22, no. 11, pp. 612-613,
1979.

V. Shoup, “Practical Threshold Signatures,” Proc. Advance in Cryptology - EUROCRYPT 2000,
LNCS 1807, Springer-Verlag, pp. 207-220, 2000.

C.-S. Tsai, S.-F. Tseng, and M.-S. Hwang, “Improved Non-Repudiable Threshold Proxy Signature
Scheme With Known Signers,” Intl J. Informatica, vol. 14, no. 3, pp. 393-402, 2003.

G. Wang, F. Bao, J. Zhou, and R. H. Deng, “Security Analysis of Some Proxy Signatures,” Proc.
Information Security and Cryptology (ICISC’03), Springer-Verlag, 2004 (to appear). Preliminary
version is available at http://eprint.iacr.org/2003/196.

K. Zhang, “Threshold Proxy Signature Schemes,” Proc. Information Security Workshop (ISW’97),
LNCS 1396, Springer-Verlag, pp. 282-290, 1997.

