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Abstract. We propose the first polynomial time algorithm for the braid Diffie-
Hellman conjugacy problem (DHCP) on which the braid key exchange scheme and
the braid encryption scheme are based [10]. We show the proposed method solves the
DHCP for the image of braids under the Lawrence-Krammer representation and the
solutions play the equivalent role of the original key for the DHCP of braids. Given a
braid index n and a canonical length `, the complexity is about 2−2`3n4τ+2 log n bit
operations, where τ = log2 7 ≈ 2.8 (Theoretically, it can be reduced to O(`3n8.3 log n)
using τ = 2.376). Further, we show that the generalization into the decomposition
problem causes only 8 times of the complexity.
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1 Introduction

In 2000, a key agreement and an encryption scheme based on braid groups were
proposed by Ko et. al [10]. The schemes are analogous to the Diffie-Hellman key
agreement scheme and the ElGamal encryption scheme on abelian groups. Their
basic mathematical problem is the Conjugacy Problem (CP) on braids: For a braid
group Bn, we are asked to find a braid a from u, b ∈ Bn satisfying b = aua−1 ∈ Bn.
The security is based on the Diffie-Hellman Conjugacy Problem (DHCP) to find
baua−1b−1 ∈ Bn for given u, aua−1, bub−1 ∈ Bn for a and b in two commuting
subgroups of Bn respectively. There are only brute-force attack and super-submit
set attack as the analysis. Both yields a complexity of exponential time [10, 5].
Recently, several heuristic algorithms were proposed using Burau representation.
Though they may be implemented in quite efficient way, they do not solve the
whole problem (their methods do not work for some parameters), so no theoretical
bounds have been written yet [7, 15].

One may approach the CP using a representation in another group whose struc-
ture we know better. As mathematicians have developed linear algebra for more
than hundred years, linear algebraic groups are possible candidates. There are two
candidates as linear representations of braid groups: Burau and Lawrence-Krammer
representations. Burau representation was used in loc. cit. to make a quite reason-
able records. Unfortunately, it is known to be unfaithful, they cannot bound the
complexity of the scheme as we expected.

Lawrence-Krammer representation is now chosen to analyze the PKC. It has
been proved faithful for arbitrary index of Braids, several times in independent
ways by several authors. In general it increases the rank of the representations, so
it is complicated to describe. Nevertheless, it is known, but not written clearly, one
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can easily recover the original braid from its matrix of the representation [14]. Under
this assumption, we describe an algorithm to solve the CP.

1. Find the images of u and v = aua−1 in GLn(n−1)/2(Z[t±1, q±1]) via the Lawrence-
Krammer representation K : Bn → GLn(n−1)/2(Z[t±1, q±1]).

2. Solve the CP for K(u) and K(v) = K(a)K(u)K(a)−1 in GLn(n−1)/2(Z[t±1, q±1]).
3. Recover the braid a in Bn from the matrix obtained above.

The above algorithm contains a couple of difficulties. Firstly, direct applications
of Gaussian elimination should deal with coefficients as large as 22n

. Secondly, a
solution of the CP in the matrix group might not be in the image of the represen-
tation. It is not easy to choose a matrix in the solution space which lies inside the
image of the representation.

To avoid these difficulties, we take the DHCP into our consideration, instead of
the CP. The algorithm is modified, roughly as follows:

1. Assume a ∈ LBn, b ∈ RBn, and u ∈ Bn where LBn and RBn are two commuting
subgroups of Bn.

2. Find the images of u, v = aua−1, and w = bub−1 in GLn(n−1)/2(Z[t±1, q±1]) via
the Lawrence-Krammer representation K : Bn → GLn(n−1)/2(Z[t±1, q±1]).

3. By estimating the entries of K(awa−1), take a prime p and irreducible polyno-
mials f(t) over Z/p and g(q) over Z[t]/(p, f(t)) satisfying

K(awa−1) = t−dN−1{tdNK(awa−1) mod (p, f(t), g(q))}

for some positive integer d and N .
4. Solve the simultaneous equations K(v)A = AK(u) and K(σi)A = AK(σi) with

n/2 < i ≤ n over a residue class field k = Z[t, q]/(p, f(t), g(q)), where σi with
n/2 < i ≤ n generates RBn.

5. This solution may not be K(a), but it plays an equivalent role of the key for the
DHCP in braid groups. That is, any solution A of the above system of equations
satisfies AK(w)A−1 = K(b)K(v)K(b)−1 = K(awa−1) since K(b)A = AK(b) for
b ∈ RBn. The inverse of A can be computed in a similar way to the above
method.

6. Recover the braid awa−1 in Bn by inverting the representation.

To reduce the complexity of this algorithm, we use 1/2 instead of q (it is also faithful),
reduce the bound of Krammer matrices, and remove several trivial variables and
equations in the simultaneous equations. When ` is the Charney length of a, b, and
u in Bn, the complexity of this algorithm analyzed in this article reaches about
2−2`3n4τ+2 log n for τ = log2 7 ≈ 2.8. This is not a feasible complexity for the
parameters recommended in [10, 5]. For example, for n = 90 and ` = 12 as in [5] it
is about 297 bit operations. But even for n = 105 and ` = 104, the complexity is just
2261. Hence the braid encryption scheme can not be used in the future in this style.

The generalization into the decomposition problem [5] causes only 8 times of
the complexity. We would suggest that the protocol should be revised to use the
full difficulty of the CP to overcome the attack. In the near future, there may be
modifications of this kind of attacks, since the chosen bounds of coefficients of the
Krammer matrices are rather rough whereas an image of an Artin generator is almost
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sparse matrix with small coefficients. We also remark that the proposed algorithm
does not give an answer to the CP. Thus the CP is still hard and unsolved.

The rest of the paper is composed as follows: In Section 2, we briefly review braid
groups and braid cryptography. In Section 3, we introduce the Lawrence-Krammer
representation and develop its properties. Also inverting algorithm is given in more
concrete way with the complexity. In Section 4, we introduce an equivalent key
which plays an equivalent role as the original braid and analyze the cryptosystem
using this. Also the generalization into the decomposition problem will be analyzed.
Section 5 gives the conclusion of this paper.

2 An Overview of Braid Group Cryptography

2.1 Braid Groups

A braid is obtained by laying down a number of parallel strands and intertwining
them so that they run in the same direction. The number of strands is called the
braid index. The set Bn of isotopy classes of braids of index n is naturally equipped
with a group structure, called the n-braid group, where the product of two braids x
and y is nothing more than laying down the two braids in a row and then matching
the end of x to the beginning of y.

Any braid can be decomposed as a product of simple braids. One type of simple
braids is the Artin generator σi that have a single crossing between i-th and (i+1)-
th strand. Bn is presented with the Artin generators σ1, . . . , σn−1 and relations
σiσj = σjσi for |i − j| > 1 and σiσjσi = σjσiσj for |i − j| = 1. When a braid a is
expressed as a product of Artin generators, the minimum number of terms in the
product is called the word length of a.

We have still other other presentations. Let Sn be the symmetric group of an
n-element set In = {1, 2, . . . , n}. Let Ref be the set of reflections (that interchange
two elements and fix the other elements of In) in Sn = {(i, j)|1 ≤ i < j ≤ n} and S
the subset {(i, i + 1)|1 ≤ i < n} of Ref. We define `(s) the length of a permutation
s in Sn as

`(s) := min{k|s = s1 · · · sk for si ∈ S}.

Bn admits another presentation with generators {rs|s ∈ Sn} with relations r(st) =
(rs)(rt) if `(st) = `(s) + `(t). In this presentation, the longest permutation w0 with
w0(i) = n + 1 − i yields a braid ∆, which is called the fundamental braid or the
half-twist depending on authors. Let B+

n denote the submonoid of Bn generated by
Sn. A braid in B+

n is said to be positive. A braid x is written uniquely, x = ∆kx′

where x′ is in B+
n −∆B+

n . This is called the normal form of x.
There is a partial order on B+

n : x ≤ y ⇔ y ∈ xB+
n . The ordering is inherited to Sn

(We identify a permutation σ with the corresponding braid rσ in B+
n .). We denote

rSn by Ω for simplicity reason. For a braid x ∈ B+
n , the greatest element of the set

{y ∈ Ω|y ≤ x} is called the left most factor of x and denoted by LF(x). A sequence
of braids (x1, . . . , xk) in Ω − {1} is called the greedy form of x if x1 · · ·xk = x,
LF(xixi+1) = xi for all i. The above k in the greedy form is called the Charney
length of x. This length function is easily extended to general braids using Thurston
normal form, but we don’t need it so general for our purpose and we will omit the
general definition.
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2.2 Braid Cryptography

Let G be a non-abelian group and u, a, b, c ∈ G. In order to perform the Diffie-
Hellman key agreement on G we need to choose a, b in G satisfying ab = ba in the
DHCP. Hence we introduce two commuting subgroups G1, G2 ⊂ G satisfying ab = ba
for any a ∈ G1 and b ∈ G2. More precisely, the problems the braid cryptography
are based on are as follows:

– Input: A non-abelian group G, two commuting subgroups G1, G2 ⊂ G
– Conjugacy Problem (CP): Given (u, aua−1) with u, a ∈ G, compute a. (Note

that if we denote aua−1 by ua, it looks like the DLP.)
– Diffie-Hellman Conjugacy Problem (DHCP): Given (u, aua−1, bub−1) with u ∈

G, a ∈ G1 and b ∈ G2, compute baua−1b−1.
– Decisional Diffie-Hellman Conjugacy Problem (DDHCP): Given (u, aua−1, bub−1,

cuc−1) with u, c ∈ G, a ∈ G1 and b ∈ G2, decide whether c = ba.

In braids, we can easily take two commuting subgroups G1 and G2 of Bn (For
simplicity, we only consider a braid group with an even braid index. But it is easy
to extend this to an odd braid index.). For example, G1 = LBn (resp. G2 = RBn)
is the subgroup of Bn consisting of braids made by braiding left n/2 strands(resp.
right n/2 strands) among n strands. Thus LBn is generated by σ1, . . . , σn/2−1 and
RBn is generated by σn/2+1, . . . , σn−1. Then we have the commutative property that
for any a ∈ G1 and b ∈ G2, ab = ba.

[Key agreement] This is the braid group version of the Diffie-Hellman key agree-
ment.

1. Initial setup: (a) Choose system parameters n and ` from positive integers.
(b) Select a sufficiently complicated positive braid u ∈ Bn with ` canonical
factors.

2. Key agreement: Perform the following steps each time a shared key is required.
(a) A chooses a random secret positive braid a ∈ LBn with ` canonical factors
and sends v1 = aua−1 to B.
(b) B chooses a random secret braid b ∈ RBn with ` canonical factors and sends
v2 = bub−1 to A.
(c) A receives v2 and computes the shared key K = av2a−1.
(d) B receives v1 and computes the shared key K = bv1b−1.

Since a ∈ LBn and b ∈ RBn, ab = ba. It follows

av2a−1 = a(bub−1)a−1 = b(aua−1)b−1 = bv1b−1.

Thus Alice and Bob obtain the same braid.

[Public-key cryptosystem] Let H : Bn → {0, 1}k be a cryptographically secure
hash function from the braid group to the message space.
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1. Initial setup: (a) Choose system parameters n and ` from positive integers.
(b) Select a sufficiently complicated positive braid u ∈ Bn with ` canonical
factors.

2. Key generation:
(a) Choose a sufficiently complicated positive braid u ∈ Bn with ` canonical
factors.
(b) Choose a positive braid a ∈ LBn with ` canonical factors.
(c) Public key is (u, v), where v = aua−1; Private key is a.

3. Encryption: Given a message m ∈ {0, 1}k and the public key (u, v),
(a) Choose a positive braid b ∈ RBn with ` canonical factors.
(b) Ciphertext is (c, d), where c = bub−1 and d = H(bvb−1)⊕m.

4. Decryption: Given a ciphertext (c, d) and private key a, compute m = H(aca−1)⊕
d.

Since a and b commute, aca−1 = abub−1a−1 = baua−1b−1 = bvb−1. So H(aca−1)⊕
d = H(bvb−1) ⊕H(bvb−1) ⊕m = m and the decryption recovers the original braid
m.

We may take a non-positive braid for a system braid or secret braids. But since
the problem in that case is reduced to the positive braid cases, positive braids are
enough for the random braids in this cryptosystem.

3 The Lawrence-Krammer Representation

3.1 Definitions and Properties

Most definitions and facts in this section are taken from two papers [11] [12] of
Krammer. Let us recall the Lawrence-Krammer representation of braid groups. This
is a representation of Bn in GLm(Z[t±1, q±1]) = Aut(V0), where m = n(n−1)/2 and
V0 is the free module of rank m over Z[t±1, q±1]. We shall denote the representation
by K. With respect to {xij}1≤i<j≤n the free basis of V0 the image of each Artin
generator under K is written as

K(σk)(xij) =



















































tq2xk,k+1, i = k, j = k + 1;
(1− q)xi,k + qxi,k+1, j = k, i < k;
xik + tqk−i+1(q − 1)xk,k+1, j = k + 1, i < k;
tq(q − 1)xk,k+1 + qxk+1,j , i = k, k + 1 < j;
xkj + (1− q)xk+1,j , i = k + 1, k + 1 < j;
xij , i < j < k or k + 1 < i < j;
xij + tqk−i(q − 1)2xk,k+1, i < k < k + 1 < j.

(1)

The matrix K(σk) with respect to the basis xij will be called by the Krammer matrix
of a braid σk.

To estimate the complexity of the algorithm proposed here, we need to estimate
bounds for the entries of a Krammer matrix.

Two useful results in [12] follow below:
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Fact 1 [12] ∆xn+1−j,n+1−i = tqi+j−1xij for 1 ≤ i < j ≤ n.

Fact 2 [12] Let x ∈ Bn. Consider the Laurent series of K(x) with respect to t,

K(x) =
∑̀

i=k

Ai(q)ti, Ai ∈ Mm(Z[q±1]), Ak 6= 0, A` 6= 0. (2)

Then `Ω(x) = max(`− k,−k, `).

If we consider a different generator Q = {s(i, j)| the permutation braid of the
reflection (i, j) ∈ Sn}, we can define another length function `Q with respect to Q.
This length is the canonical length in the band generator presentation. Remark that
`Q(x) is bounded by (n−1)-times of the canonical length in the Artin presentation,
because a band generator is written with upto (n− 1) Artin generators.

Define the anti-automorphism of Bn, written x 7→ x̄, by giving [ij] 7→ [n +
1 − i, n + 1 − j]. This preserves B+

n as well as the canonical length. Then the dual
representation is defined as K∗ : Bn → GL(V0) by K∗(x) = K(x̄)T , where T denotes
the transpose. Consider another basis {vij |1 ≤ i < j ≤ n} of V0. It is related to
{xij} by

vij = xij + (1− q)
∑

i<k<j

xkj , xij = vij + (q − 1)
∑

i<k<j

qk−1−ivkj . (3)

Fact 3 [11] Let x ∈ Bn. Consider the Laurent series of K∗(x) with respect to q,

K∗(x) =
∑̀

i=k

Ai(t)qi, Ai ∈ Mm(Z[t±1]), Ak 6= 0, A` 6= 0. (4)

Then `Q(x) = 1
2 max(`− k,−k, `).

From the above three facts, we get the following theorem.

Theorem 1. Let x be a braid with the canonical form ∆kx1x2 · · ·x` where xi is a
permutation braid which is not the fundamental braid. Let δ be the minimal number
of Artin generators in x. Then we have the following bounds for the coefficients of
K(x):

(a) The degree in t is bounded below by k and above by k + `.
(b) The degree in q is bounded below by 2(n − 1)min(0, k) + (n − 2) and above by

2(n− 1)max(k + `, k) + (n− 2).
(c) The coefficients of each entry inside the Krammer matrix are bounded by 2δ when

we consider the entries as a polynomial in t, q, and 1− q.

Proof. (a) It is clear from Fact 2.
(b) Since x̄ has the same canonical length with x and the band canonical length is

bounded by (n− 1) times the Artin canonical length, the degree in q is bounded
below by 2(n − 1)min(0, k) and above by 2(n − 1) max(k + `, k) in the {vij}
basis. While taking the basis change from {vij} to {xij}, we have at most (n−2)
increase in the degree of q. Hence we get (b).
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(c) If we consider entries of a Krammer matrix as a polynomial in t, q, and 1 − q,
every entry of any Artin generator is a monomial with coefficients in {0,±1}.
For any Artin generator σ, each column of K(σ) has at most two nonzero terms
(See the equation (1)). Hence a multiplication by a Krammer matrix of an Artin
generator results in the increase of the coefficients by at most 2 times for each
entries. Note that it happens when the same monomial occurs twice at an entry
in the result matrix. Hence the coefficients of entries is bounded by 2δ for the
number of Artin generator in x.

For any positive integer n, the Krammer representation is faithful even if q is a
real number with 0 < q < 1 [12]. Also the inverting algorithm does not change even
if q is replaced by a real number with 0 < q < 1. From now on, we will consider
the modified Krammer representation K′(x) = K(x)q=1/2. In that case, q is equal to
1− q.

Corollary 1. Let x be a braid with the canonical form ∆kx1x2 · · ·x` where xi is a
permutation braid which is not the fundamental braid. Let δ be the number of Artin
generators in x. Then we have the following bounds for K′(x):

(a) The degree in t is bounded below by k and above by max(k + `, k).
(b) The coefficients of each entry inside K′(x) is given by a ratio of two integers.

The absolute values of numerators and denominators are bounded by 2δ−2(n−1)k

and 22(n−1) max(k+`,k), respectively.

3.2 Inverting the Lawrence-Krammer representation

Here we develop a way to recover a braid from its image matrix under the Lawrence-
Krammer representation. As mentioned earlier, the faithfulness of the Lawrence-
Krammer representation of Bn in a linear group has been proven in several ways
by different authors. Moreover, it has been known to be so easy that it takes a
polynomial time of low degree in braid length and the index but we haven’t found
any reference with an explicit complexitiy available at hand.

The proof of faithfulness was due to Krammer [12], which enables us to construct
an algorithmic way to recover the original braid from a matrix of the representation.

From Fact 1 we can easily obtain the matrix of ∆ as tA, for a matrix A whose
entries are from Z[q±1]. Together with Fact 2, it suffices to recover the original braid
x′ of the matrix (tA)−d0K(x). Note that x′ lies in B+

n −∆B+
n , which corresponds to

the nontrivial part in the normal form of x. x′ has obviously smaller Charney length
than x.

Suppose now x is a positive braid. Let us take {vij} as the basis of V0. The
Lawrence-Krammer representation K yields a natural action of the monoid B+

n over
V0. Let A be the subset of Ref, {(i, j) ∈ Ref|(x(1, . . . , 1))(i,j),t=0 6= 0}. This A corre-
sponds to a permutation y in Sn which corresponds to the braid ry in Ω. It makes
the left most factor of x, so one has x = yx′. Applying the same steps to K(x′) re-
cursively, we obtain the greedy form of x after all, as it decreases the Charney length.

In this way, given K(x) =
∑`

i=dt
Ai(q)ti, we can recover x ∈ Bn in polynomial

time. We shall describe the algorithm roughly as follows:



8

Algorithm 1 Invert the Lawrence-Krammer representation.
Input: A matrix K(x) ∈ GLm(t±1, q±1) where m = n(n− 1)/2
Output: A braid x ∈ Bn.

1. Compute K(x′) = K(∆)−dtK(x)
2. Perform the basis change from (vij)ij to (xij)ij.
3. For k = 1 to ` do

2.1 Take a nonzero element y ∈ Dφ and compute

A = {cij |K(x′)y has a nonzero coefficient at the ij coordinate}

(For the definition of the set Dφ one can refer to [12].)
2.2 Compute the maximal element τk ∈ Sn such that L(τk) ⊂ A as follows.

– Find the set I ⊂ {1, 2, · · · , n − 1} such that i ∈ I implies L(si) ⊂ A for
si = (i, i + 1) with 1 ≤ i < n

– Write I as a disjoint union of Ij where Ij consists of consecutive integers.
– Take a half-twist on each Ij.
– Take τk to be the product of all the above half-twists.
– For i = 1 to n, if L(τksi) ⊂ A then replace τk by τksi.
– Repeat the above procedure until L(τksi) 6⊂ A for all i

2.3 Compute the positive braid xk corresponding to τk
– Let xk be an identity.
– For i = 1 to n, if τk(i) > τk(i+1) then replace xk by σixk and τk by siτk.
– Repeat the above procedure until xk is trivial.

2.4 Replace K(x′) by K(xk)−1K(x′)
4. Output x = ∆dtx1x2 · · ·xk

Note that Step 2.2 has only n2 steps. Thus the complexity of this algorithm
is dominated by the dt power of an m × m matrix, which is at most 2m log dt
multiplications of the m ×m matrix. Since the matrix multiplication takes O(m2)
multiplications of entries, we have the followings:

Theorem 2. Given K(x) =
∑`

i=dt
Ai(q)ti, we can recover x ∈ Bn in O(2m3 log dt)

multiplications of entries.

Note that it works even when a (nonzero) constant multiple of K′(x) is given
since we only check whether the coefficient is zero in each stage. Hence we may deal
with integer coefficients instead of rational coefficients.

4 Cryptanalysis of Braid Cryptosystems

4.1 An equivalent Key

The security of the key exchange scheme and the encryption scheme in braids are
based on the DHCP. The DHCP asks to find baua−1b−1 from u, v = aua−1, w =
bub−1 given two commuting subgroups LBn and RBn of Bn, a ∈ LBn, b ∈ RBn
and u ∈ Bn. In this section, firstly, we will show that we don’t need the original
key a but a “fake” key A to solve the DHCP. The DHCP on a linear group is
equivalent to a system of linear equations, whose solutions roles the fake key. Note
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that it breaks the encryption scheme and key agreement scheme, but does not solve
the original conjugacy problem to the bottom. The conjugacy problem in a general
non-commutative group is, nevertheless, still difficult.

Without solving the problem in Bn, we try to solve it in GLm(Z[t±1, q±1]) for
q = 1/2 and m = n(n − 1)/2 via the modified Lawrence-Krammer representation.
Denote by A,B,U, V , and W the image of a, b, u, v, and w under this representation
K′, respectively. We will compute a matrix A from GLm(Z[t]) satisfying the following
equations:

UA = AV (5)

AK′(σi) = K′(σi)A, n/2 < i < n. (6)

The solutions in Z[t]m
2

make a nontrivial vector space N over Z[t], since we
have already a nontrivial solution K(a). As the set of invertible matrices in N is
dense under Zariski topology, we can take an invertible matrix over Q(t) from N
with overwhelming probability. Let A′ be an invertible matrix solution. Using A′,
one can compute K′(baua−1b−1) in the matrix ring as follows:

A′WA′−1 = A′BUB−1A′−1 = BA′UA′−1B−1 = BV B−1 = K′(baua−1b−1). (7)

That is, the matrix A′ plays the same role that the key a does. Thus we call such
A′ a pseudo-key.

4.2 A System of Linear Equations

We are able to change the above into an overdetermined system of linear equations
of A. That is, we obtain the system of equations of the following form:

T0N =











K
Ln/2+1

...
Ln−1











X = 0, (8)

where X is the column vector [a11, . . . , a1m; a21, . . . , a2m; . . . ; am1 . . . , amm]t made
from A = [aij ] and K,Li’s are the m2×m2 matrix of the linear relations in Equation
(5) and (6), respectively.

The system has (8) has m2 variables and (n/2)m2 equations. However, by precise
analysis of Krammer matrices, we can reduce the number of variables and equations
as follows:

Theorem 3. Equation (8) has at most 1
7n4 nontrivial variables and 1

8n4 nontrivial
equations.

Proof. Define Vk to be a subspace of V0 generated by {xij |(i, j) /∈ Ik} where I =
{(i, j)|1 ≤ i < j < k or k + 1 < i < j ≤ n}. From Equation (1), we see that the
Krammer matrix K(σk) transforms Vk to itself and acts as the identity on the basis

element xij when (i, j) ∈ Ik. Thus it can be written as
[

Mk 0
0 I

]

by reordering of the

basis, where Mk is a square matrix of size k(n− k) + n (=
(n
2

)

−
(k−1

2

)

−
(n−k−1

2

)

).
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Since ∩1≤k<n/2Ik = {(i, j)|n/2 ≤ i < j ≤ n}, a Krammer matrix of any left-braid

a ∈ LBn can be written as
[

M 0
0 I

]

where M is a square matrix of size 1
8(3n2−2n−8)

(=
(n
2

)

−
(n/2+1

2

)

). Therefore only 1
82 (3n2− 2n− 8)2 entries of A in Equation (5) are

unknown.
This property of A reduces the number of equation in Equation (5) into

(n
2

)2 −
(n/2

2

)2
≈ 15

64n4. Also each equation in Equation (6) has only k(n− k) + n non-trivial
equations, whose sum for n/2 ≤ k < n is about 1

12n3. Hence the total number of
non-trivial equations are at most 1

8n4.

4.3 Estimate the Diffie-Hellman key

Theorem 4. Let u ∈ Bn, a ∈ LBn, and b ∈ RBn with ` canonical factors. Then
abub−1a−1 can be written as a product of at most ` number of ∆−1 and at most 3`
number of canonical factors. Further each entry inside K′(abub−1a−1) is a Laurent
polynomial of t

4
∑̀

d=−`

ai

bi
td with |ai| ≤ 2δ+2n` and |bi| ≤ 28n`,

where δ is the number of Artin generators in abub−1a−1 bounded by 2`n(n− 1).

Proof. Denote by len(x) the Charney length of x. Observe that len(xy) ≤ len(x) +
len(y) for x, y ∈ Bn and len(ab) ≤ max(len(a), len(b)) for a ∈ LBn and b ∈ RBn.
Also the inverse of x for x ∈ Bn with r canonical factors is written as a product of at
most r number of ∆−1 and at most r number of canonical factors. Since ab consists
of at most ` canonical factors, we get the first assertion. The second assertion follows
from Theorem 1.

Since u, v, and σk are positive braids, the entries of corresponding Krammer
matrices are polynomial with rational coefficients. By multiplying the appropriate
scalars to the both sides of Equations (5) and (6), we can consider U, V,K′(σi), and
even A as matrices whose entries are polynomials with integer coefficients.

Let p be a prime with p > 2δ+10n`+1 and f(t) an irreducible polynomial of degree
5` over Z/p. Since each entry of K(abub−1a−1) is a polynomial of degree 5` and with
coefficient < p, we know that

K′(baua−1b−1) = t−`2−8n`{t`28n`K′(baua−1b−1) mod (p, f(t))} (9)

if we take a representative of a residue class for coefficients from the interval (−p/2, p/2).
Therefore we are enough to compute A mod (p, f(t)) in Equation (5) and (6). From
the famous Bertrand’s postulate below, it is guaranteed that p < 2δ+10n`+2.

Fact 4 (Bertrand’s postulate) [8] There exists a prime between n and 2n.
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4.4 Algorithm and Complexity

The proposed algorithm to solve the braid Diffie-Hellman problem is described
roughly as follows:

Algorithm 2 Find an equivalent key using Gaussian Elimination.
Input: u ∈ Bn, a ∈ LBn, b ∈ RBn, m = n(n − 1)/2, a prime p, and an

irreducible polynomial f(t) of the degree d satisfying Equation (9).
Output: K′(baua−1b−1).

1. Compute the images of u and v = aua−1 in GLm(k) via K′, where k is the
residue field k = Z[t]/(p, f(t)).

2. Induce a system 1
8n4 linear equations in 1

7n4 variables from the simultaneous
equations K′(v)A = AK′(u) and K′(σi)A = AK′(σi) for n/2 < i ≤ n over k

3. Apply Gaussian elimination for the system in order to compute A. We may
multiply an appropriate integer to the both side of each equation to get integer
coefficients.

4. If A is nonsingular, compute A−1. Otherwise, go back to the above step and take
another solution.

5. Compute K′(w) for w = bub−1 and output AK′(w)A−1 = K′(baua−1b−1)
6. Use Algorithm 1 to compute baua−1b−1.

To evaluate the complexity of Gaussian elimination step, we need the following
two facts:

Fact 5 [18, p.15] The Gaussian elimination of an m × m matrix takes 1
3mτ for

τ = log2 7, which can be reduced to 2.376 theoretically.

We know that a multiplication in a finite field Fpd takes d2 multiplications of
elements in Fp. When the prime p is small, one multiplication takes O(log2 p) or
O(logε p) using Karatsuba method [17]. By Schonhage and Strassen method, this
bound can be reduced to O(log p log log p log log log p), which is practical only when
p is more than several hundred digits. Since our base field is very large, we can take
this bound even practically.

Fact 6 [4, p.3] One multiplication or one inversion in a finite field with cardinality
pd takes O(d2 log p log log p log log log p) bit operations.

Using the above facts, we can estimate the complexity of our algorithm as follows:

Theorem 5. Assume LBn and RBn are two commuting subgroups of the n-braid
group Bn. Given u ∈ Bn, a−1ua, b−1ub for a ∈ LBn and b ∈ RBn, b−1a−1uab
can be computed in about 2−5`2n4τf(δ) (or 2−2`3n4τ+2 log n) bit operations where
f(x) = x log x log log x and δ is the maximum word length of abub−1a−1 bounded by
2`n2.

Proof. First, evaluate the complexity of Step 3. Since p < 2δ+10n`+2 and d < 5`, it
is

1
3
(
1
7
n4)τd2f(log p) ≤ 2−5n4τ `2f(δ + 10n` + 2) ≈ 2−4n4τ `2f(δ), (10)
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where f(x) = x log x log log x. The inverse of A can be computed in O(n3 log2(pd)).
From Theorem 2, we know that recovering the braid awa−1 takes O(2m3 log `) mul-
tiplications in k, which is about O(n6(`δ)2). The remainder takes very little. Hence
the complexity of this algorithm is dominated by that of Gaussian elimination.

If we take τ = 2.8, the complexity is O(`3n13.2 log n). Theoretically, we can take
τ = 2.376 so that the complexity is O(`3n8.3 log n).

In Table 1, we compare the attack complexity of braid encryption scheme, where
n is the braid index and ` is the canonical length of a, b and u. The column [10]
shows the complexity of the brute force attack with complexity (n

2 !)` (the first three
numbers were cited from [10] and the remainder was computed by 2n` roughly since it
is enough for this large number.) and the column [5] shows the super-summit attack
with complexity (n/2)`. The complexity of the proposed algorithm is evaluated by
2−2`3n4τ+2 log n for τ = log2 7. The column for ECC means the key size of elliptic
curve cryptography with corresponding complexity (which was estimated roughly
by square-root attacks such as Pollard ρ).

Note that the super-summit attack [5] is efficient for small n, but the proposed
attack is efficient for large n since it has a polynomial complexity. The table shows
that it is very hard to increase the complexity of braid encryption scheme, for
example, in order to obtain similar complexity to 522 bit elliptic curve cryptography,
the braid index should be about 105 (huge!!). Also in this case one cipher text must
be about 109 ≈ 230 bits.

n ` [10] [5] Proposed Alg. Key size of ECC
50 5 2251 213 282 164
70 7 2665 235 290 180
90 12 21863 266 297 194
200 30 26000 2199 2117 234
1000 100 2105

2900 2153 306
10000 1000 2107

212330 2207 414
100000 10000 2109

21566666 2261 522

Table 1. The performance of the attack algorithm

4.5 A Variant Using the Decomposition Problem

The conjugacy problem can be generalized to decomposition problem [5]: Given
u, v ∈ Bn, find a, a′ ∈ LBn satisfying v = aua′. The Diffie-Hellman decomposition
problem is similar: Given u, v = aua′, w = bub′ ∈ Bn for a, a′ ∈ LBn and b, b′ ∈ RBn,
find abua′b′ ∈ Bn. Our algorithm works very similar for this problem.

Denote by A,A′−1, U, V , and W the image of a, a′, u, v, and w under this rep-
resentation K′, respectively. We will compute a matrix A and A′ from GLm(Z[t])
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satisfying the following equations:

UA = A′V (11)

AK′(σi) = K′(σi)A, n/2 < i < n. (12)

A′K′(σi) = K′(σi)A′, n/2 < i < n. (13)

By the similar argument to the section 4.2, we can see that this system of linear
equations has at most 2

7n4 nontrivial variables and 1
8n4). Since the Gaussian elimi-

nation step takes at most 8 times of the original complexity and the remaining step
is unchanged, the total complexity for the Diffie-Hellman decomposition problem
increases upto at most 8 times.

5 Conclusion

In this paper we proposed a polynomial time algorithm to solve the DHCP in braid
groups. Though the complexity is too large to break the encryption scheme with the
proposed parameters in [10] in real time, the braid encryption scheme is considered
to be insecure since increasing the key size increases the attack complexity only a
little. For example, to get the same complexity with 522 bit elliptic curve cryptog-
raphy, the braid index should be about 105, which is impossible since one ciphertext
must be more than 109 bits. Furthermore, this analysis can be applied even to the
generalized scheme based the decomposition problem [5] with at most 8 times of
the original complexity since changes occur only in the number of variables in the
system of equations, which are doubled in the generalized version. We expect that
the complexity can be reduced by more precise analysis on the Lawrence-Krammer
representation.

Since this cryptanalysis is based on the faithfulness of the Krammer representa-
tion, losing the group structure would be a possible way to avoid this kind of attacks.
Currently, the key agreement scheme in [2] or the first key agreement scheme in [1]
resists against this attack since it loses the group structure through the extractor
map, so we cannot directly apply the same steps to obtain a pseudo-key [10].
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