Jump to content

Relaxor ferroelectric

From Wikipedia, the free encyclopedia
(Redirected from Relaxor)

Relaxor ferroelectrics are ferroelectric materials that exhibit high electrostriction. As of 2015, although they have been studied for over fifty years,[1] the mechanism for this effect is still not completely understood, and is the subject of continuing research.[2][3][4]

Examples of relaxor ferroelectrics include:

Applications

[edit]

Relaxor Ferroelectric materials find application in high efficiency energy storage and conversion as they have high dielectric constants, orders-of-magnitude higher than those of conventional ferroelectric materials. Like conventional ferroelectrics, Relaxor Ferroelectrics show permanent dipole moment in domains. However, these domains are on the nano-length scale, unlike conventional ferroelectrics domains that are generally on the micro-length scale, and take less energy to align. Consequently, Relaxor Ferroelectrics have very high specific capacitance and have thus generated interest in the fields of energy storage.[9] Furthermore, due to their slim hysteresis curve with high saturated polarization and low remnant polarization, Relaxor ferroelectrics have high discharge energy density and high discharge rates. BT-BZNT Multilayer Energy Storage Ceramic Capacitors (MLESCC) were experimentally determined to have very high efficiency(>80%) and stable thermal properties over a wide temperature range.[11]

References

[edit]
  1. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
  2. ^ Takenaka, H.; Grinberg, I.; Rappe, A. M. (2013). "Anisotropic Local Correlations and Dynamics in a Relaxor Ferroelectric". Physical Review Letters. 110 (14): 147602. arXiv:1212.0867. Bibcode:2013PhRvL.110n7602T. doi:10.1103/PhysRevLett.110.147602. PMID 25167037. S2CID 9758988.
  3. ^ Ganesh, P.; Cockayne, E.; Ahart, M.; Cohen, R. E.; Burton, B.; Hemley, Russell J.; Ren, Yang; Yang, Wenge; Ye, Z.-G. (2010-04-05). "Origin of diffuse scattering in relaxor ferroelectrics". Physical Review B. 81 (14): 144102. arXiv:0908.2373. Bibcode:2010PhRvB..81n4102G. doi:10.1103/PhysRevB.81.144102. S2CID 119279021.
  4. ^ Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang (2014). "Role of random electric fields in relaxors". Proceedings of the National Academy of Sciences. 111 (5): 1754–1759. arXiv:1405.2306. Bibcode:2014PNAS..111.1754P. doi:10.1073/pnas.1314780111. ISSN 0027-8424. PMC 3918832. PMID 24449912.
  5. ^ Bokov, A. A.; Ye, Z. -G. (2006). "Recent progress in relaxor ferroelectrics with perovskite structure". Journal of Materials Science. 41 (1): 31–52. Bibcode:2006JMatS..41...31B. doi:10.1007/s10853-005-5915-7. S2CID 189842194.
  6. ^ Shipman, Matt (20 February 2018). "Atomic Structure of Ultrasound Material Not What Anyone Expected". NC State News.
  7. ^ Cabral, Matthew J.; Zhang, Shujun; Dickey, Elizabeth C.; LeBeau, James M. (19 February 2018). "Gradient chemical order in the relaxor Pb(MgNb)O". Applied Physics Letters. 112 (8): 082901. Bibcode:2018ApPhL.112h2901C. doi:10.1063/1.5016561.
  8. ^ and, and (September 1988). "Lead magnesium niobate relaxor ferroelectric ceramics of low-firing for multilayer capacitors". Proceedings., Second International Conference on Properties and Applications of Dielectric Materials. pp. 125–128 vol.1. doi:10.1109/ICPADM.1988.38349. S2CID 137495812.
  9. ^ a b Brown, Emery; Ma, Chunrui; Acharya, Jagaran; Ma, Beihai; Wu, Judy; Li, Jun (2014-12-24). "Controlling Dielectric and Relaxor-Ferroelectric Properties for Energy Storage by Tuning Pb0.92La0.08Zr0.52Ti0.48O3 Film Thickness". ACS Applied Materials & Interfaces. 6 (24): 22417–22422. doi:10.1021/am506247w. ISSN 1944-8244. OSTI 1392947. PMID 25405727.
  10. ^ Drnovšek, Silvo; Casar, Goran; Uršič, Hana; Bobnar, Vid (2013-10-01). "Distinctive contributions to dielectric response of relaxor ferroelectric lead scandium niobate ceramic system". Physica Status Solidi B. 250 (10): 2232–2236. Bibcode:2013PSSBR.250.2232B. doi:10.1002/pssb.201349259. ISSN 1521-3951. S2CID 119554924.
  11. ^ a b Zhao, Peiyao; Wang, Hongxian; Wu, Longwen; Chen, Lingling; Cai, Ziming; Li, Longtu; Wang, Xiaohui (2019). "High-Performance Relaxor Ferroelectric Materials for Energy Storage Applications". Advanced Energy Materials. 9 (17): 1803048. doi:10.1002/aenm.201803048. ISSN 1614-6840. S2CID 107988812.
  12. ^ Ortega, N; Kumar, A; Scott, J F; Chrisey, Douglas B; Tomazawa, M; Kumari, Shalini; Diestra, D G B; Katiyar, R S (2012-10-10). "Relaxor-ferroelectric superlattices: high energy density capacitors". Journal of Physics: Condensed Matter. 24 (44): 445901. Bibcode:2012JPCM...24R5901O. doi:10.1088/0953-8984/24/44/445901. ISSN 0953-8984. PMID 23053172. S2CID 25298142.