Talk:40 Eridani
This article is rated C-class on Wikipedia's content assessment scale. It is of interest to the following WikiProjects: | ||||||||||||||
|
Infobox
Unless the browser fills a display, that wide infobox is going to crowd out the text from the lead section. The resulting appearance is less than aesthetically pleasing. Can the width be reduced in some manner? Thank you. — RJH (talk) 21:46, 15 June 2007 (UTC)
Star Trek connection
The first hint that Vulcan orbited 40 Eridani was in the James Blish novelization of the 1967 episode "Amok Time", but it would be 37 years before it was "canonized" on-screen. In the meantime, no clear indication was given of Vulcan's location - it was certainly in Earth's "stellar neighbourhood" and easily reached in a few days or hours depending on the warp speed limit of a ship. Spock indicated that his world's sun was extremely bright, which muddies the issue since a K-type star would not be as bright as a G-type star, and a star such as Fomalhaut or Sirius would be indicated.
The issue was finally settled in 2004 when Trip Tucker mentioned about traveling 16 light years to get to Vulcan, attaching to the assorted other references in Star Trek lore that consistently mention Eridanus as the location. 40 Eridani is the right distance, and harkens back to James Blish's novel. James Blish, in turn, used earlier drafts of scripts for his novelizations, so it is possible that in an earlier draft, Kirk does indeed tell USAF Capt. Christopher that Vulcan orbits 40 Eridani, but for whatever reason, that dialogue was removed before the final shooting script. GBC (talk) 04:41, 21 February 2008 (UTC)
- The Star Trek banter belong under "In Popular Culture". Make it so. 63.82.23.2 (talk) 00:14, 30 August 2013 (UTC)
habitable zone
According to the third kepler law, i found that the year of the hypothetical planet is 190 days and not 203 as said.--Efemero (talk) 12:46, 26 March 2009 (UTC)
I read the source (cumming et al 1999) an find no reference to the 203 days. I made all the calculs and find that 203 days correspond to a 0,63 UA orbit. the definition of habitable zone give a result of 0,63 UA for 40 Eridani A, thus the source (a website without math) is wrong. 0,61UA -> 190 days and 0,63 UA -> 203 days but not 0,61 -> 203...—Preceding unsigned comment added by Efemero (talk • contribs) 20:12, 18 May 2009
- The 0.613 AU only works for a 203-day year if you take Roger Wilcox's Internet Stellar Database's estimate for the mass of 40 Eridani as 0.75 the mass of our sun, which must be outdated. But, what confuses me is that Roger Wilcox only described 0.613 AU as the 'Visual' Comfort Zone equivalent. 40 Eridani gives off a greater percentage of its energy output in the infrared, than our sun does. So, its 'bolometric', its real habitable zone, is probably even further out than 0.63 AU, nearer 0.70 AU or even beyond that. I do not know the physics formula you would need to calculate how much further out the real habitable zone would lie. I think 0.61 AU sounded like a very rough and ready estimate, from the start, for the habitable zone around 40 Eridani. —Preceding unsigned comment added by 94.193.61.125 (talk) 09:08, 14 April 2010 (UTC)
- It depends which measurements you choose to use (for example from this article) and how accurately, to how many decimal points, your calculations were made. Using Microsoft Excel 2007 for my calculations I get 199.624 days for 0.63 AU and 0.64 AU for the 203 days. But, if I were to calculate the luminosity, from the radius and effective temperature, given in this article (Temperature effective 5300 Kelvin and Radius 0.81), then the luminosity is 0.4640, 46.40 percent, that of the our Sun, and the habitable zone (the distance from 40 Eridani A where the temperature would equal that averaged on Earth simplistically using just the bolometric luminosity to calculate it), is at 0.681 AU instead of 0.63 AU. The orbit would then take 223.45 days. However, if I use just the Apparent Magnitude to calculate the bolometric luminosity habitable zone in the same way, then my calculation agrees with yours, in at least with the distance from the star, at 0.6303 AU. 0.613 AU fits perfectly well, if you take the Mass for 40 Eridani A as 0.75 that of the sun, the mass Roger Wilcox gives (he does use math) for 40 Eridani A, instead of the 0.84 this Wikipedia article just happens to have sourced.— Preceding unsigned comment added by 86.148.147.223 (talk • contribs)
- In the past I've found some errors at the SolStation site being used here as a source, so I tend to view it as somewhat dubious (although it can be a good starting point). My preference would be to use a more authoritative reference. Regards, RJH (talk) 16:36, 6 September 2011 (UTC)
The semimajor axis for the planet in the table is .224 AU. How could that be in the habitable zone? 72.49.111.86 (talk) 17:20, 24 September 2018 (UTC)
- You're talking about two different things. One is a real planet, discovered in 2018. The other is a publicity stunt from 2009 that probably doesn't exist and certainly hasn't been observed. Might be time to ditch the whole Vulcan thing as completely out of date and confusing. Lithopsian (talk) 19:40, 24 September 2018 (UTC)
- Yes, I'm confused. The article says, "The habitable zone of 40 Eridani A, where a planet could exist with liquid water, is near 0.68 AU from A." And the table says the planet discovered in 2018 has a semimajor axis of 0.224 AU. What am I missing? 72.49.111.86 (talk) 01:15, 27 September 2018 (UTC)
Assertion that flares would be lethal to life
I've tagged the assertion that the flares on 40 Eridani C would be lethal to life as dubious. There are studies out there that suggest that flares would not preclude biospheres on orbiting planets and may in fact be necessary to drive biomolecule production in the habitable zones of red dwarf stars. E.g. this paper which appeared in Icarus: [1] Icalanise (talk) 10:02, 13 May 2010 (UTC)
Apparent Width of 40 Eridani A
I changed the width of how 40 Eridani A would appear from a planet in its habitable zone, at 0.68 Au, relative to the size of how the Sun appears from Earth's surface. From the dubious 30 percent, given in the article, to what I calculated, 20 percent. I calculated it as follows, using some simple algebra. (I am sure there must the same formula and better described, somewhere else in wikipedia, but I can't find it):- At 0.68 AU from 40 Eridani A, a hypothetical planet would be receiving the same wattage or power from the star, upon its surface, as Earth does from the sun. The bolometric luminosity received at the surface would be the same for both planets. The cooler a star the larger the star appears in the sky for it to be equally luminous, to give the same power. So, the size of the star seen from a planet at the habitable zone is solely determined by its temperature. For example, if our Sun was much smaller, like a white dwarf, the habitable zone would be closer to the white dwarf but the white dwarf would still appear the same size, as we presently see the sun from Earth, so long as the temperature of the white dwarf was exactly the same as our sun's. In a similar manner, imagine 40 Eridani A was much larger, than it is, and the habitable zone was out at 1.00 AU from the star. 40 Eridani A would have to be to provide the planet with the same bolometric luminosity, as the sun does for Earth, for the habitable zone to be at 1.0 AU. But this larger 40 Eridani A, would appear the same size from a planet in its habitable zone as 40 Eridani A does presently from 0.68 AU, if it were still the same temperature, 5300 Kelvin. So, using that example, L=4π(Rsun^2)σ(Teffsun^4)=4π(R40EridaniA^2)σ(Teff40EridaniA^4)=1. Divide all sides of the equation by known constants, 4π and σ also by the bolometric luminosity which is 1 and the radius squared of the sun. Gives, R40EridaniA^2/Rsun^2=Teffsun^4/Teff40EridaniA^4. So, the relative radius size (R40EridaniA^2/Rsun^2) of 40 Eridani A as seen from a hypothetical planet in the habitable zone, compared to how the sun appears from Earth is, RelativeRadius=squareroot(Teffsun^4/Teff40EridaniA^4). And of course, the relative radius size difference is the same as the relative diameter size difference. So, RelativeDiameter=squareroot(Teffsun^4/Teff40EridaniA^4)=1.1885, or 19 percent wider. — Preceding unsigned comment added by 86.179.25.209 (talk) 20:51, 17 September 2011 (UTC)
Proper motion
The article doesn't mention the proper motion, which is quite high (in the "1/3 of Barnard's" ballpark). The distance is somewhere around 3 times that of Barnard's, too, so the relative velocities (vs. the Sun, in km/s) should be within 20% of each other. I suggest at least a mention of the proper motion; 40 Eri might even be on some short-list of objects with remarkably high PM, thus showing some notability.
- Update: Proper motion#Stars_with_high_proper_motion shows that item #9 on the list has just short of 5 arcseconds per year, and 40 Eri would have about 4. It's not that far from the top 10. - ¡Ouch! (hurt me / more pain) 08:51, 15 June 2017 (UTC)
Another question: why is there no radial velocity component for the white dwarf? Drowned in the grav red-shift? - ¡Ouch! (hurt me / more pain) 08:44, 15 June 2017 (UTC)
- The radial velocity of the white dwarf is well-documented. Not sure why it isn't in the starbox. Of course it is variable over the orbital period, but then so is that of the red dwarf. 40 Eri is listed at List of nearest bright stars as the ninth nearest "star", excluding brown dwarfs. Seems like that is worth a mention, or at least a link. Instead the bulk of the article is taken up with largely uncited speculation about the possibility, or lack, of habitable zone planets. Very unencyclopaedic. Lithopsian (talk) 13:09, 15 June 2017 (UTC)
External links modified
Hello fellow Wikipedians,
I have just modified one external link on 40 Eridani. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20070514055905/http://www.astro.uiuc.edu/~kaler/sow/keid.html to http://www.astro.uiuc.edu/~kaler/sow/keid.html
When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 22:14, 22 June 2017 (UTC)
External links modified
Hello fellow Wikipedians,
I have just modified one external link on 40 Eridani. Please take a moment to review my edit. If you have any questions, or need the bot to ignore the links, or the page altogether, please visit this simple FaQ for additional information. I made the following changes:
- Added archive https://web.archive.org/web/20070514055905/http://www.astro.uiuc.edu/~kaler/sow/keid.html to http://www.astro.uiuc.edu/~kaler/sow/keid.html
When you have finished reviewing my changes, you may follow the instructions on the template below to fix any issues with the URLs.
This message was posted before February 2018. After February 2018, "External links modified" talk page sections are no longer generated or monitored by InternetArchiveBot. No special action is required regarding these talk page notices, other than regular verification using the archive tool instructions below. Editors have permission to delete these "External links modified" talk page sections if they want to de-clutter talk pages, but see the RfC before doing mass systematic removals. This message is updated dynamically through the template {{source check}}
(last update: 5 June 2024).
- If you have discovered URLs which were erroneously considered dead by the bot, you can report them with this tool.
- If you found an error with any archives or the URLs themselves, you can fix them with this tool.
Cheers.—InternetArchiveBot (Report bug) 06:03, 11 December 2017 (UTC)
Star Trek affiliation
I wonder, was there any reason given for removing the mention of the Star Trek affiliation?
It seems relevant. Mentioned in NASA press releases e.g. here [2]. Apparently Gene Rodenberry confirmed it as the fictional Vulcan location in a letter published in Sky and Telescope in 1991.
Previous text:
"40 Eridani was the star system of the Vulcans in Star Trek, though not canonized until the fourth season (2004-2005) of Star Trek: Enterprise.[1]"
Robert Walker (talk) 13:00, 16 February 2018 (UTC)
- Most fictional references to stars go in Stars and planetary systems in fiction and can be linked in the see also section, or in the text if there is something relevant to say. Lithopsian (talk) 14:09, 16 February 2018 (UTC)
- I returned this text to the page. I think this is sufficiently relevant and notable that it should be included on this page, especially given recent news coverage about potentially discovering a planet there. I do think it should maybe be moved from the leed, though. Andrew Keenan Richardson (talk!) 14:48, 19 September 2018 (UTC)
- Aha-ha, talk. Good idea. Currently, all fictional references to stars and planets are held in Stars and planetary systems in fiction, with a few prolific objects having standalone pages. This has been discussed before on the project pages, although not extensively. The reasoning was that, in most cases, fictional references do not contribute factual information about the object, and they run the risk (with some real cases in the past) of there being more fiction in a star article than actual science. Hence we are here. Constellations are handled slightly differently. Either way, a change to including fictional references, except in the most extreme cases of popular memes, should be universal. Such a change should be proposed on the project pages and would be sure to attract comment. Lithopsian (talk) 18:43, 19 September 2018 (UTC)
- The case of the name Vulcan is interesting. Use of the name is not restricted to fiction, but it is inevitably unofficial since no planet has been discovered. If the name is mentioned, and it has been slipped in via an image, then obviously Star Trek needs to be mentioned, and it is. That probably suffices for now. Explanation of the name could perhaps be linked to the 40 Eridani in fiction page. Lithopsian (talk) 18:43, 19 September 2018 (UTC)
References
- ^ Vulcan system, Memory Alpha. Accessed on line March 17, 2008.
"40 Eridani A b" listed at Redirects for discussion
A discussion is taking place to address the redirect 40 Eridani A b. The discussion will occur at Wikipedia:Redirects for discussion/Log/2021 January 15#40 Eridani A b until a consensus is reached, and readers of this page are welcome to contribute to the discussion. 🪐Kepler-1229b | talk | contribs🪐 23:25, 15 January 2021 (UTC)
In fiction
Just to comment on recent edits: I added this section with some text about Vulcan because there are reliable sources that mention Vulcan as an example of 40 Eridani in fiction. There are two citations for this. Project Hail Mary has been added to this section three times now, but it's not clear to me that the same applies; the first two additions didn't cite any source, and the third (currently in the article) only cites the book itself. SevenSpheres (talk) 16:21, 16 May 2024 (UTC)