From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.
In mathematics , the Stieltjes moment problem , named after Thomas Joannes Stieltjes , seeks necessary and sufficient conditions for a sequence (m 0 , m 1 , m 2 , ...) to be of the form
m
n
=
∫
0
∞
x
n
d
μ
(
x
)
{\displaystyle m_{n}=\int _{0}^{\infty }x^{n}\,d\mu (x)}
for some measure μ . If such a function μ exists, one asks whether it is unique.
The essential difference between this and other well-known moment problems is that this is on a half-line [0, ∞), whereas in the Hausdorff moment problem one considers a bounded interval [0, 1], and in the Hamburger moment problem one considers the whole line (−∞, ∞).
Existence
Let
Δ
n
=
[
m
0
m
1
m
2
⋯
m
n
m
1
m
2
m
3
⋯
m
n
+
1
m
2
m
3
m
4
⋯
m
n
+
2
⋮
⋮
⋮
⋱
⋮
m
n
m
n
+
1
m
n
+
2
⋯
m
2
n
]
{\displaystyle \Delta _{n}=\left[{\begin{matrix}m_{0}&m_{1}&m_{2}&\cdots &m_{n}\\m_{1}&m_{2}&m_{3}&\cdots &m_{n+1}\\m_{2}&m_{3}&m_{4}&\cdots &m_{n+2}\\\vdots &\vdots &\vdots &\ddots &\vdots \\m_{n}&m_{n+1}&m_{n+2}&\cdots &m_{2n}\end{matrix}}\right]}
be a Hankel matrix , and
Δ
n
(
1
)
=
[
m
1
m
2
m
3
⋯
m
n
+
1
m
2
m
3
m
4
⋯
m
n
+
2
m
3
m
4
m
5
⋯
m
n
+
3
⋮
⋮
⋮
⋱
⋮
m
n
+
1
m
n
+
2
m
n
+
3
⋯
m
2
n
+
1
]
.
{\displaystyle \Delta _{n}^{(1)}=\left[{\begin{matrix}m_{1}&m_{2}&m_{3}&\cdots &m_{n+1}\\m_{2}&m_{3}&m_{4}&\cdots &m_{n+2}\\m_{3}&m_{4}&m_{5}&\cdots &m_{n+3}\\\vdots &\vdots &\vdots &\ddots &\vdots \\m_{n+1}&m_{n+2}&m_{n+3}&\cdots &m_{2n+1}\end{matrix}}\right].}
Then { m n : n = 1, 2, 3, ... } is a moment sequence of some measure on
[
0
,
∞
)
{\displaystyle [0,\infty )}
with infinite support if and only if for all n , both
det
(
Δ
n
)
>
0
a
n
d
det
(
Δ
n
(
1
)
)
>
0.
{\displaystyle \det(\Delta _{n})>0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)>0.}
{ m n : n = 1, 2, 3, ... } is a moment sequence of some measure on
[
0
,
∞
)
{\displaystyle [0,\infty )}
with finite support of size m if and only if for all
n
≤
m
{\displaystyle n\leq m}
, both
det
(
Δ
n
)
>
0
a
n
d
det
(
Δ
n
(
1
)
)
>
0
{\displaystyle \det(\Delta _{n})>0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)>0}
and for all larger
n
{\displaystyle n}
det
(
Δ
n
)
=
0
a
n
d
det
(
Δ
n
(
1
)
)
=
0.
{\displaystyle \det(\Delta _{n})=0\ \mathrm {and} \ \det \left(\Delta _{n}^{(1)}\right)=0.}
Uniqueness
There are several sufficient conditions for uniqueness, for example, Carleman's condition , which states that the solution is unique if
∑
n
≥
1
m
n
−
1
/
(
2
n
)
=
∞
.
{\displaystyle \sum _{n\geq 1}m_{n}^{-1/(2n)}=\infty ~.}
References
Reed, Michael; Simon, Barry (1975), Fourier Analysis, Self-Adjointness , Methods of modern mathematical physics, vol. 2, Academic Press, p. 341 (exercise 25), ISBN 0-12-585002-6