Jump to content

NlaIII

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

NlaIII is a type II restriction enzyme isolated from Neisseria lactamica.[1] As part of the restriction modification system, NlaIII is able to prevent foreign DNA from integrating into the host genome by cutting double stranded DNA into fragments at specific sequences.[2] This results in further degradation of the fragmented foreign DNA and prevents it from infecting the host genome.[3]

Recognition site of NlaIII with a red line indicating the cutting pattern

NlaIII recognizes the palindromic and complementary DNA sequence of CATG/GTAC and cuts outside of the G-C base pairs. This cutting pattern results in sticky ends with GTAC overhangs at the 3' end.[4]

Characteristics

NlaIII from N. lactamica contains two key components: a methylase and an endonuclease.[5] The methylase is critical to recognition, while the endonuclease is used for cutting.[5] The gene (NlaIIIR) is 693 bp long and creates the specific 5’-CATG-3’ endonuclease.[6] A homolog of NlaIIIR is iceA1 from Helicobacter pylori.[6] In H. pylori, there exists a similar methylase gene called hpyIM which is downstream of iceA1.[7] ICEA1 is an endonuclease that also recognizes the 5’-CATG-3’ sequence.[6] IceA1 in H. pylori is similar to that of NlaIII in N. lactamica.

NlaIII contains an ICEA protein that encompasses the 4 to 225 amino acid region.[6][8] H. pylori also contains the same protein.[9] H. pylori infection often leads to gastrointestinal issues such as peptic ulcers, gastric adenocarcinoma and lymphoma.[10] Researchers speculate that ICEA proteins serve as potential markers for gastric cancer [7]

Isoschizomers

NlaIII isoschizomers recognize and cut the same recognition sequence 5’-CATG-3’.[11] Endonucleases that cut at this sequence include:

  • Fael
  • Fatl
  • Hin1II
  • Hsp92II
  • CviAII
  • IceA1

Applications

NlaIII can be used in many different experimental procedures[12] such as:

References

  1. ^ "nlaIIIR - Type-2 restriction enzyme NlaIII - Neisseria lactamica - nlaIIIR gene & protein". www.uniprot.org. Retrieved 2020-11-05.
  2. ^ Sitaraman, Ramakrishnan (2016). "The Role of DNA Restriction-Modification Systems in the Biology of Bacillus anthracis". Frontiers in Microbiology. 7: 11. doi:10.3389/fmicb.2016.00011. ISSN 1664-302X. PMC 4722110. PMID 26834729.
  3. ^ Berg, Jeremy M.; Tymoczko, John L.; Stryer, Lubert (2002). "Restriction Enzymes: Performing Highly Specific DNA-Cleavage Reactions". Biochemistry. 5th Edition.
  4. ^ a b Jack J. Pasternak (14 June 2005). An Introduction to Human Molecular Genetics: Mechanisms of Inherited Diseases. John Wiley & Sons. ISBN 978-0-471-71917-5.
  5. ^ a b Morgan, R. D.; Camp, R. R.; Wilson, G. G.; Xu, S. Y. (1996-12-12). "Molecular cloning and expression of NlaIII restriction-modification system in E. coli". Gene. 183 (1–2): 215–218. doi:10.1016/s0378-1119(96)00561-6. ISSN 0378-1119. PMID 8996109.
  6. ^ a b c d Xu, Qing; Morgan, R. D.; Roberts, R. J.; Xu, S. Y.; van Doorn, L. J.; Donahue, J. P.; Miller, G. G.; Blaser, Martin J. (2002-09-01). "Functional analysis of iceA1, a CATG-recognizing restriction endonuclease gene in Helicobacter pylori". Nucleic Acids Research. 30 (17): 3839–3847. doi:10.1093/nar/gkf504. ISSN 0305-1048. PMC 137426. PMID 12202769.
  7. ^ a b Xu, Q.; Peek, R. M.; Miller, G. G.; Blaser, M. J. (1997-11-01). "The Helicobacter pylori genome is modified at CATG by the product of hpyIM". Journal of Bacteriology. 179 (21): 6807–6815. doi:10.1128/jb.179.21.6807-6815.1997. ISSN 0021-9193. PMC 179612. PMID 9352933.
  8. ^ "UniProtKB - Q51083 (T2N3_NEILA)". UniProt. Retrieved December 2, 2020.
  9. ^ Wong, Benjamin Chun Yu; Yin, Yan; Berg, Douglas E.; Xia, Harry Hua-Xiang; Zhang, Jian Zhong; Wang, Wei Hong; Wong, Wai Man; Huang, Xiao Ru; Tang, Vera Shun Yim; Lam, Shiu Kum (2001). "Distribution of Distinct vacA, cagA and iceA Alleles in Helicobacter pylori in Hong Kong". Helicobacter. 6 (4): 317–324. doi:10.1046/j.1523-5378.2001.00040.x. ISSN 1523-5378. PMID 11843964. S2CID 10084164.
  10. ^ Kusters, Johannes G.; Vliet, Arnoud H. M. van; Kuipers, Ernst J. (2006-07-01). "Pathogenesis of Helicobacter pylori Infection". Clinical Microbiology Reviews. 19 (3): 449–490. doi:10.1128/CMR.00054-05. ISSN 0893-8512. PMC 1539101. PMID 16847081.
  11. ^ "Enzyme Finder". New England Biolabs. Retrieved 23 October 2020.
  12. ^ "Hin1II (NlaIII) (5 U/µL)". Thermo Fisher Scientific. Retrieved November 3, 2020.