Jump to content

Barnes zeta function

From Wikipedia, the free encyclopedia
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

In mathematics, a Barnes zeta function is a generalization of the Riemann zeta function introduced by E. W. Barnes (1901). It is further generalized by the Shintani zeta function.

Definition

The Barnes zeta function is defined by

where w and aj have positive real part and s has real part greater than N.

It has a meromorphic continuation to all complex s, whose only singularities are simple poles at s = 1, 2, ..., N. For N = w = a1 = 1 it is the Riemann zeta function.

References

  • Barnes, E. W. (1899), "The Theory of the Double Gamma Function. [Abstract]", Proceedings of the Royal Society of London, 66, The Royal Society: 265–268, doi:10.1098/rspl.1899.0101, ISSN 0370-1662, JSTOR 116064, S2CID 186213903
  • Barnes, E. W. (1901), "The Theory of the Double Gamma Function", Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical Character, 196 (274–286), The Royal Society: 265–387, Bibcode:1901RSPTA.196..265B, doi:10.1098/rsta.1901.0006, ISSN 0264-3952, JSTOR 90809
  • Barnes, E. W. (1904), "On the theory of the multiple gamma function", Trans. Camb. Philos. Soc., 19: 374–425
  • Friedman, Eduardo; Ruijsenaars, Simon (2004), "Shintani–Barnes zeta and gamma functions", Advances in Mathematics, 187 (2): 362–395, doi:10.1016/j.aim.2003.07.020, ISSN 0001-8708, MR 2078341
  • Ruijsenaars, S. N. M. (2000), "On Barnes' multiple zeta and gamma functions", Advances in Mathematics, 156 (1): 107–132, doi:10.1006/aima.2000.1946, ISSN 0001-8708, MR 1800255