Jump to content

Cold fission

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 70.51.8.75 (talk) at 06:05, 7 October 2008. The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Cold fission or cold nuclear fission is defined as involving fission events for which fission fragments have so low excitation energy that no neutrons or gammas are emitted.

Cold fission events have so low a probability of occurrence that it is necessary to use a high flux nuclear reactor to study it.

The first observation of cold fission events was in experiments on fission induced by thermal neutrons of uranium 233, uranium 235 [1] and plutonium 239 [2] using the High Flux Reactor at the Institut Laue-Langevin in Grenoble, France. Then, other experiments on cold fission were made: we may mention that of 248Cm [3] and 252Cf [4]. A phenomenological interpretation was proposed by Gönnenwein [5] and Duarte et al. [6].

The importance of cold fission phenomena is in the fact that fragments reaching detectors have the same mass that they obtained at the "scission" configuration, just before the attractive but short-range nuclear force becomes null, and only Coulomb interaction stay acting between fragments. After that Coulomb potential energy is converted in fragments kinetic energies, which –added to prescission kinetic energies-are measured by detectors. .

The fact that cold fission preserves nuclear mass until the fission fragments reach the detectors permits the experimenter to better determine the fission dynamics, especially aspects related to the shell model and nucleon pair breaking.

Adopting several theoretical assumptions about scission configuration one can calculate the maximal value of kinetic energy as a function of charge and mass of fragments and compare them to experimental results.

References

  1. ^ [1] C. Signarbieux et al. "Evidence for nucleon pair breaking even in the coldest scission configurations of 234U and 236U", Journal de Physique Lettres Vol 42, No 19 /1981, DOI: 10.1051/jphyslet:019810042019043700, pp. 437-440
  2. ^ [2] M. Montoya. "Mass and kinetic energy distribution in cold fission of 233U, 235U and 239Pu induced by thermal neutrons", Zeitschrift für Physik A Hadrons and Nuclei, Springer Berlin / Heidelberg, Vol 319, No 2 / June, 1984, DOI: 10.1007/BF01415636, pp. 219-225
  3. ^ [3] A Sandulescu et al. “The cold fission of 248Cm”, Journal of Physics. G: Nucear and Paricle. Physics, Volume 22/ 1996, DOI: 10.1088/0954-3899/22/7/003, pp. L87-L94
  4. ^ [4] S Misicu et al. “Orientations of fragments emitted in binary cold fission of 252Cf”, Journal Physics G: Nuclear and Particle Physics, Volume 28 /October, 2002, DOI: 10.1088/0954-3899/28/11/309, pp. 2861-2874
  5. ^ [5] Gönnenwein, F.; Börsig, B. “Tip model of cold fission”, Nuclear Physics A, Volume 530, Issue 1/ July, 1991, DOI: 10.1016/0375-9474(91)90754-T, pp. 27-57.
  6. ^ [6] S. B. Duarte. et al. “Cold fission description with constant and varying mass asymmetries”, Physical Review C, Volume 57/ 1998, DOI: 10.1103/PhysRevC.57.2516, pp. 2516 - 2522