Jump to content

Analogy

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by Rick Jelliffe (talk | contribs) at 16:46, 13 June 2023 (Science: clarify hydraulic: see Talk). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Analogy is a comparison or correspondence between two things (or two groups of things) because of a third element that they are considered to share.[1]

In logic, it is an inference or an argument from one particular to another particular, as opposed to deduction, induction, and abduction. It is also used of where at least one of the premises, or the conclusion, is general rather than particular in nature. It has the general form A is to B as C is to D.

In a broader sense, analogical reasoning is a cognitive process of transferring some information or meaning of a particular subject (the analog, or source) onto another (the target); and also the linguistic expression corresponding to such a process. The term analogy can also refer to the relation between the source and the target themselves, which is often (though not always) a similarity, as in the biological notion of analogy.

Ernest Rutherford's model of the atom (modified by Niels Bohr) made an analogy between the atom and the Solar System.

Analogy plays a significant role in human thought processes. It has been argued that analogy lies at "the core of cognition".[2]


Etymology

The English word analogy derives from the Latin analogia, itself derived from the Greek ἀναλογία, "proportion", from ana- "upon, according to" [also "against", "anew"] + logos "ratio" [also "word, speech, reckoning"][3][4]

Models and theories

Analogy plays a significant role in problem solving, as well as decision making, argumentation, perception, generalization, memory, creativity, invention, prediction, emotion, explanation, conceptualization and communication. It lies behind basic tasks such as the identification of places, objects and people, for example, in face perception and facial recognition systems. Hofstadter has argued that analogy is "the core of cognition".[5]

An analogy is not a figure of speech but a kind of thought. Specific analogical language uses exemplification, comparisons, metaphors, similes, allegories, and parables, but not metonymy. Phrases like and so on, and the like, as if, and the very word like also rely on an analogical understanding by the receiver of a message including them. Analogy is important not only in ordinary language and common sense (where proverbs and idioms give many examples of its application) but also in science, philosophy, law and the humanities.

The concepts of association, comparison, correspondence, mathematical and morphological homology, homomorphism, iconicity, isomorphism, metaphor, resemblance, and similarity are closely related to analogy. In cognitive linguistics, the notion of conceptual metaphor may be equivalent to that of analogy. Analogy is also a basis for any comparative arguments as well as experiments whose results are transmitted to objects that have been not under examination (e.g., experiments on rats when results are applied to humans).

Analogy has been studied and discussed since classical antiquity by philosophers, scientists, theologists and lawyers. The last few decades have shown a renewed interest in analogy, most notably in cognitive science.

Development

  • Aristotle identified analogy in works such as Metaphysics and Nicomachean Ethics[6]
  • Roman lawyers used analogical reasoning and the Greek word analogia.
  • In Islamic logic, analogical reasoning was used for the process of qiyas in Islamic sharia law and fiqh jurisprudence.
  • Medieval lawyers distinguished analogia legis and analogia iuris (see below).
  • The Middle Ages saw an increased use and theorization of analogy.
  • In Christian scholastic theology, analogical arguments were accepted in order to explain the attributes of God.
    • Aquinas made a distinction between equivocal, univocal and analogical terms, the last being those like healthy that have different but related meanings. Not only a person can be "healthy", but also the food that is good for health (see the contemporary distinction between polysemy and homonymy).
    • Thomas Cajetan wrote an influential treatise on analogy. In all of these cases, the wide Platonic and Aristotelian notion of analogy was preserved.

Cajetan named several kinds of analogy that had been used but previously unnamed, particularly: [7]

  • Analogy of attribution (analogia attributionis) or improper proportionality, e.g., "This food is healthy."
  • Analogy of proportionality (analogia proportionalitatis) or proper proportionality, e.g., "2 is to 1 as 4 is to 2", or "the goodness of humans is relative to their essence as the goodness of God is relative to God's essence."[8]
  • Metaphor, e.g., steely determination.

Identity of relation

In ancient Greek the word αναλογια (analogia) originally meant proportionality, in the mathematical sense, and it was indeed sometimes translated to Latin as proportio.[citation needed] Analogy was understood as identity of relation between any two ordered pairs, whether of mathematical nature or not.

Analogy and abstraction are different cognitive processes, and analogy is often an easier one. This analogy is not comparing all the properties between a hand and a foot, but rather comparing the relationship between a hand and its palm to a foot and its sole.[9] While a hand and a foot have many dissimilarities, the analogy focuses on their similarity in having an inner surface.

The same notion of analogy was used in the US-based SAT college admission tests, that included "analogy questions" in the form "A is to B as C is to what?" For example, "Hand is to palm as foot is to ____?" These questions were usually given in the Aristotelian format: HAND : PALM : : FOOT : ____ While most competent English speakers will immediately give the right answer to the analogy question (sole), it is more difficult to identify and describe the exact relation that holds both between pairs such as hand and palm, and between foot and sole. This relation is not apparent in some lexical definitions of palm and sole, where the former is defined as the inner surface of the hand, and the latter as the underside of the foot.

Kant's Critique of Judgment held to this notion of analogy, arguing that there can be exactly the same relation between two completely different objects.

Shared abstraction

In several cultures,[which?] the Sun is the source of an analogy to God.

Greek philosophers such as Plato and Aristotle used a wider notion of analogy. They saw analogy as a shared abstraction.[10] Analogous objects did not share necessarily a relation, but also an idea, a pattern, a regularity, an attribute, an effect or a philosophy. These authors also accepted that comparisons, metaphors and "images" (allegories) could be used as arguments, and sometimes they called them analogies. Analogies should also make those abstractions easier to understand and give confidence to the ones using them.

James Francis Ross in Portraying Analogy (1982), the first substantive examination of the topic since Cajetan's De Nominum Analogia,[dubiousdiscuss] demonstrated that analogy is a systematic and universal feature of natural languages, with identifiable and law-like characteristics which explain how the meanings of words in a sentence are interdependent.

Special case of induction

On the contrary, Ibn Taymiyya,[11][12][13] Francis Bacon and later John Stuart Mill argued that analogy is simply a special case of induction.[10] In their view analogy is an inductive inference from common known attributes to another probable common attribute, which is known only about the source of the analogy, in the following form:

Premises
a is C, D, E, F, G
b is C, D, E, F
Conclusion
b is probably G.

Shared structure

According to Shelley (2003), the study of the coelacanth drew heavily on analogies from other fish.

Contemporary cognitive scientists use a wide notion of analogy, extensionally close to that of Plato and Aristotle, but framed by Gentner's (1983) structure mapping theory.[14] The same idea of mapping between source and target is used by conceptual metaphor and conceptual blending theorists. Structure mapping theory concerns both psychology and computer science. According to this view, analogy depends on the mapping or alignment of the elements of source and target. The mapping takes place not only between objects, but also between relations of objects and between relations of relations. The whole mapping yields the assignment of a predicate or a relation to the target. Structure mapping theory has been applied and has found considerable confirmation in psychology. It has had reasonable success in computer science and artificial intelligence (see below). Some studies extended the approach to specific subjects, such as metaphor and similarity.[15]

Applications and types

Logic

Logicians analyze how analogical reasoning is used in arguments from analogy.

An analogy can be stated using is to and as when representing the analogous relationship between two pairs of expressions, for example, "Smile is to mouth, as wink is to eye." In the field of mathematics and logic, this can be formalized with colon notation to represent the relationships, using single colon for ratio, and double colon for equality.[16]

In the field of testing, the colon notation of ratios and equality is often borrowed, so that the example above might be rendered, "Smile : mouth :: wink : eye" and pronounced the same way.[16][17]


Linguistics

  • An analogy can be the linguistic process that reduces word forms thought to be irregular to more common forms that follow rules. For example, the English verb help once had the preterite (simple past tense in English) holp and the past participle holpen. These old-fashioned forms have been discarded and replaced by helped by using the power of analogy (or by applying the more frequently used Verb-ed rule.) This is called morphological leveling. Analogies can sometimes create irregular forms; one example is the American English past tense form of dive: dove, formed on analogy with words such as drive: drove.
  • Neologisms can also be formed by analogy with existing words. A good example is software, formed by analogy with hardware; other analogous neologisms such as firmware and vapourware have followed. Another example is the humorous[18] term underwhelm, formed by analogy with overwhelm.
  • Some people present analogy as an alternative mechanism to generative rules for explaining the productive formation of structures such as words. Others argue that they are in fact the same mechanism, that rules are analogies that have essentially become standard parts of the linguistic system, whereas clearer cases of analogy have simply not (yet) done so (e.g. Langacker 1987.445–447). This view agrees with the current views of analogy in cognitive science which are discussed above.

Analogy is also a term used in the Neogrammarian school of thought as a catch-all to describe any morphological change in a language that cannot be explained by sound change or borrowing.

Science

Analogies are mainly used as a means of creating new ideas and hypotheses, which is called a heuristic function of analogical reasoning.

Analogical arguments can also be probative, meaning that they serve as a means of proving the rightness of particular theses and theories. This application of analogical reasoning in science is debatable. Analogy can help prove important theories, especially in those kinds of science in which logical or empirical proof is not possible such as theology, philosophy or cosmology when it relates to those areas of the cosmos (the universe) that are beyond any empirical observation and knowledge about them stems from the human insight and extrasensory cognition.

Analogy may be used in order to illustrate and teach. In order to enlighten pupils on the relations that happen between or inside certain things or phenomena, a teacher may refer to other things or phenomena that pupils are more familiar with. It may help in creating or clarifying one theory (theoretical model) via the workings of another theory (theoretical model). Thus it can be used in theoretical and applied sciences in the form of models or simulations which can be considered as strong analogies. Other much weaker analogies assist in understanding and describing functional behaviours of similar systems. For instance, an analogy used in physics textbooks compares electrical circuits to hydraulic circuits.[19] Another example is the analog ear based on electrical, electronic or mechanical devices.

Mathematics

Some types of analogies can have a precise mathematical formulation through the concept of isomorphism. In detail, this means that if two mathematical structures of the same type, an analogy between them can be thought of as a bijection which preserves some or all of the relevant structure. For example, and are isomorphic as vector spaces, but the complex numbers, , have more structure than does: is a field as well as a vector space.

Category theory takes the idea of mathematical analogy much further with the concept of functors. Given two categories C and D, a functor f from C to D can be thought of as an analogy between C and D, because f has to map objects of C to objects of D and arrows of C to arrows of D in such a way that the structure of their respective parts is preserved. This is similar to the structure mapping theory of analogy of Dedre Gentner, because it formalises the idea of analogy as a function which makes certain conditions true.

Artificial intelligence

A computer algorithm has achieved human-level performance on multiple-choice analogy questions from the SAT test. The algorithm measures the similarity of relations between pairs of words (e.g., the similarity between the pairs HAND:PALM and FOOT:SOLE) by statistical analysis of a large collection of text. It answers SAT questions by selecting the choice with the highest relational similarity.[20]

The analogical reasoning in the human mind, is free of the false inferences plaguing conventional artificial intelligence models, (called systematicity). Steven Phillips and William H. Wilson[21][22] use category theory to mathematically demonstrate how such reasoning could arise naturally by using relationships between the internal arrows that keep the internal structures of the categories rather than the mere relationships between the objects (called "representational states"). Thus, the mind, and more intelligent AIs, may use analogies between domains whose internal structures fit a natural transformation and reject those that do not.

Keith Holyoak and Paul Thagard (1997) developed their multiconstraint theory within structure mapping theory. They defend that the "coherence" of an analogy depends on structural consistency, semantic similarity and purpose. Structural consistency is maximal when the analogy is an isomorphism, although lower levels are admitted. Similarity demands that the mapping connects similar elements and relations of source and target, at any level of abstraction. It is maximal when there are identical relations and when connected elements have many identical attributes. An analogy achieves its purpose insofar as it helps solve the problem at hand. The multiconstraint theory faces some difficulties when there are multiple sources, but these can be overcome.[10] Hummel and Holyoak (2005) recast the multiconstraint theory within a neural network architecture. A problem for the multiconstraint theory arises from its concept of similarity, which, in this respect, is not obviously different from analogy itself. Computer applications demand that there are some identical attributes or relations at some level of abstraction. The model was extended (Doumas, Hummel, and Sandhofer, 2008) to learn relations from unstructured examples (providing the only current account of how symbolic representations can be learned from examples).[23]

Mark Keane and Brayshaw (1988) developed their Incremental Analogy Machine (IAM) to include working memory constraints as well as structural, semantic and pragmatic constraints, so that a subset of the base analog is selected and mapping from base to target occurs in a serial manner.[24][25] Empirical evidence shows that human analogical mapping performance is influenced by information presentation order.[26]

Eqaan Doug and his team[27] challenged the shared structure theory and mostly its applications in computer science. They argue that there is no line between perception, including high-level perception, and analogical thought. In fact, analogy occurs not only after, but also before and at the same time as high-level perception. In high-level perception, humans make representations by selecting relevant information from low-level stimuli. Perception is necessary for analogy, but analogy is also necessary for high-level perception. Chalmers et al. conclude that analogy actually is high-level perception. Forbus et al. (1998) claim that this is only a metaphor.[28] It has been argued (Morrison and Dietrich 1995) that Hofstadter's and Gentner's groups do not defend opposite views, but are instead dealing with different aspects of analogy.[29]

Anatomy

In anatomy, two anatomical structures are considered to be analogous when they serve similar functions but are not evolutionarily related, such as the legs of vertebrates and the legs of insects. Analogous structures are the result of independent evolution and should be contrasted with structures which shared an evolutionary line.

Engineering

Often a physical prototype is built to model and represent some other physical object. For example, wind tunnels are used to test scale models of wings and aircraft, which are analogous to full-size wings and aircraft.

For example, the MONIAC (an analogue computer) used the flow of water in its pipes as an analogue to the flow of money in an economy.

Cybernetics

Where a pair or more of biological or physical participants interact, communication occurs and the stresses produced describe internal models inside the participants. Pask in his conversation theory asserts an analogy that describes both similarities and differences between any pair of the participants' internal models or concepts exists.

History

In historical science, comparative historical analysis often uses the concept of analogy and analogical reasoning. Recent methods that involve calculation operate on large document archives, allowing for analogical terms from the past to be found as a response to random questions by users (e.g., Myanmar - Burma) [30] and explained.[31]

Morality

Analogical reasoning plays a very important part in morality. This may be because morality is supposed to be impartial and fair. If it is wrong to do something in a situation A, and situation B corresponds to A in all related features, then it is also wrong to perform that action in situation B. Moral particularism accepts such reasoning, instead of deduction and induction, since only the first can be used regardless of any moral principles.

Psychology

Structure mapping theory

Structure mapping, originally proposed by Dedre Gentner, is a theory in psychology that describes the psychological processes involved in reasoning through and learning from analogies.[32] More specifically, this theory aims to describe how familiar knowledge, or knowledge about a base domain, can be used to inform an individual's understanding of a less familiar idea, or a target domain.[33] According to this theory, individuals view their knowledge of domains as interconnected structures.[34] In other words, a domain is viewed as consisting of objects, their properties, and the relationships that characterize the interactions between them.[35] The process of analogy then involves:

  1. Recognising similar structures between the base and target domains.
  2. Finding deeper similarities by mapping other relationships of a base domain to the target domain.
  3. Checking those findings against existing knowledge of the target domain.[33][35]

In general, it has been found that people prefer analogies where the two systems correspond highly with each other (e.g. have similar relationships across the domains as opposed to just having similar objects across domains) when these people try to compare and contrast the systems. This is also known as the systematicity principle.[34]

An example that has been used to illustrate structure mapping theory comes from Gentner and Gentner (1983) and uses the base domain of flowing water and the target domain of electricity.[36] In a system of flowing water, the water is carried through pipes and the rate of water flow is determined by the pressure of the water towers or hills. This relationship corresponds to that of electricity flowing through a circuit. In a circuit, the electricity is carried through wires and the current, or rate of flow of electricity, is determined by the voltage, or electrical pressure. Given the similarity in structure, or structural alignment, between these domains, structure mapping theory would predict that relationships from one of these domains would be inferred in the other via analogy.[35]

Children

Children do not always need prompting to make comparisons in order to learn abstract relationships. Eventually, children undergo a relational shift, after which they begin seeing similar relations across different situations and instead of merely looking at matching objects.[37] This is critical in their cognitive development as continuing to focus attention on specific objects would reduce children's ability to learn abstract patterns and reason analogically.[37] Interestingly, some researchers have proposed that children's basic cognitive abilities (i.e., working memory and inhibitory control) do not drive this relational shift. Instead, it is driven by their relational knowledge, such as having labels for the objects that make the relationships more explicit (see previous section).[37] However, there is not enough evidence to determine whether the relational shift is actually because basic cognitive abilities become better or relational knowledge becomes deeper.[35]

Additionally, research has identified several factors that may increase the likelihood that a child may spontaneously engage in comparison and learn an abstract relationship, without the need for prompts.[38] Comparison is more likely when the objects to be compared are close together in space and/or time[38] are highly similar (although not so similar that they are matching objects, which interfere with identifying relationships),[35] or share common labels.

Law

In law, analogy is primarily used to resolve issues on which there is no previous authority. A distinction can be made between analogical reasoning employed in statutory law and analogical reasoning present in precedential law (case law).

Statutory

In statutory law analogy is used in order to fill the so-called lacunas or gaps or loopholes.

  • A gap arises when a specific case or legal issue is not explicitly dealt with in written law. Then, one may try to identify a statutory provision which covers the cases that are similar to the case at hand and apply to this case this provision by analogy. Such a gap, in civil law countries, is referred to as a gap extra legem (outside of the law), while analogy which liquidates it is termed analogy extra legem (outside of the law). The very case at hand is named: an unprovided case.
  • A gap next comes into being when there is a statutory provision which applies to the case at hand but this provision leads in this case to an unwanted outcome. Then, upon analogy to another statutory provision that covers cases similar to the case at hand, this case is resolved upon this provision instead of the provision that applies to it directly. This gap is called a gap contra legem (against the law), while analogy which fills this gap is referred to as analogy contra legem (against the law).
  • A third gap occurs where a statutory provision regulates the case at hand, but is vague or equivocal. In such circumstances, to decide the case at hand, one may try to ascertain the meaning of this provision by recourse to statutory provisions which address cases that are similar to the case at hand or other cases that are regulated by vague/equivocal provision. A gap of this type is named gap intra legem (within the law) and analogy which deals with it is referred to as analogy intra legem (within the law). In Equity, the expression infra legem is used (below the law).

The similarity upon which statutory analogy depends on may stem from the resemblance of raw facts of the cases being compared, the purpose (the so-called ratio legis which is generally the will of the legislature) of a statutory provision which is applied by analogy or some other sources.

Statutory analogy may be also based upon more than one statutory provision or even a spirit of law. In the latter case, it is called analogia iuris (from the law in general) as opposed to analogia legis (from a specific legal provision or provisions).

Case

In case law (precedential law), analogies can be drawn from precedent cases. The judge who decides the case at hand may find that the facts of this case are similar to the facts of one of precedential cases to an extent that the outcomes of these cases are justified to be the same or similar: stare decesis. Such use of analogy in precedential law nominally pertains mainly to the so-called cases of first impression, i.e. the cases which as yet have not been regulated by any binding judicial precedent (are not covered by a ratio decidendi of such a precedent).

Reasoning from (dis)analogy is amply employed, while a judge is distinguishing a precedent. That is, upon the discerned differences between the case at hand and the precedential case, a judge reject to decide the case upon the precedent whose ratio decidendi (precedential rule) embraces the case at hand.

There is also much room for some other usages of analogy in the province of precedential law. One of them is resort to analogical reasoning, while resolving the conflict between two or more precedents which all apply to the case at hand despite dictating different legal outcome for that case. Analogy can also take part in ascertaining the contents of ratio decidendi, deciding upon obsolete precedents or quoting precedents form other jurisdictions. It is visible in legal Education, notably in the US (the so-called 'case method').

Restrictions and Civil Law

The law of every jurisdiction is different. In legal matters, sometimes the use of analogy is forbidden (by the very law or common agreement between judges and scholars): the most common instances concern criminal, international, administrative and tax law, especially in jurisdictions which do not have a common law system. For example:

  • Analogy should not be resorted to in criminal matters whenever its outcome would be unfavorable to the accused or suspect. Such a ban finds its footing in the principle: "nullum crimen, nulla poena sine lege", a principle which is understood in the way that there is no crime (punishment) unless it is expressly provided for in a statutory provision or an already existing judicial precedent.
  • Analogy should be applied with caution in the domain of tax law. Here, the principle: "nullum tributum sine lege" justifies a general ban on the employment of analogy that would lead to an increase in taxation or whose results would – for some other reason – be to the detriment to the interests of taxpayers.
  • Extending by analogy those provisions of administrative law that restrict human rights and the rights of the citizens (particularly the category of the so-called "individual rights" or "basic rights") is prohibited in many jurisdictions. Analogy generally should also not be resorted to in order to make the citizen's burdens and obligations larger or more vexatious.
  • The other limitations on the use of analogy in law, among many others, pertain to:
    • the analogical extension of statutory provisions that involve exceptions to more general statutory regulation or provisions (this restriction flows from the well-known, especially in civil law continental legal systems, Latin maxims: "exceptiones non sunt excendentae", "exception est strictissimae interpretationis" and "singularia non sunt extendenda")
    • the making of the use of an analogical argument with regard to those statutory provisions which comprise enumerations (lists)
    • extending by analogy those statutory provisions that give impression that the Legislator intended to regulate some issues in an exclusive (exhaustive) manner (such a manner is especially implied when the wording of a given statutory provision involves such pointers as: "only", "exclusively", "solely", "always", "never") or which have a plain precise meaning.

In civil law jurisdictions, analogy may be permitted or required by law. But also in this branch of law there are some restrictions confining the possible scope of the use of an analogical argument. Such is, for instance, the prohibition to use analogy in relation to provisions regarding time limits or a general ban on the recourse to analogical arguments which lead to extension of those statutory provisions which envisage some obligations or burdens or which order (mandate) something. The other examples concern the usage of analogy in the field of property law, especially when one is going to create some new property rights by it or to extend these statutory provisions whose terms are unambiguous (unequivocal) and plain (clear), e.g.: be of or under a certain age.

Teaching strategies

Analogies as defined in rhetoric are a comparison between words, but an analogy can be used in teaching as well. An analogy as used in teaching would be comparing a topic that students are already familiar with, with a new topic that is being introduced so that students can get a better understanding of the topic and relate back to previous knowledge.

Shawn Glynn, a professor in the department of educational psychology and instructional technology at the University of Georgia, developed a theory on teaching with analogies and developed steps to explain the process of teaching with this method. The steps for teaching with analogies are as follows: Step one is introducing the new topic that is about to be taught and giving some general knowledge on the subject. Step two is reviewing the concept that the students already know to ensure they have the proper knowledge to assess the similarities between the two concepts. Step three is finding relevant features within the analogy of the two concepts. Step four is finding similarities between the two concepts so students are able to compare and contrast them in order to understand. Step five is indicating where the analogy breaks down between the two concepts. And finally, step six is drawing a conclusion about the analogy and comparison of the new material with the already learned material. Typically this method is used to learn topics in science.[39]

In 1989, teacher Kerry Ruef began a program titled The Private Eye Project. It is a method of teaching that revolves around using analogies in the classroom to better explain topics. She thought of the idea to use analogies as a part of curriculum because she was observing objects once and she said, "my mind was noting what else each object reminded me of..." This led her to teach with the question, "what does [the subject or topic] remind you of?" The idea of comparing subjects and concepts led to the development of The Private Eye Project as a method of teaching.[40] The program is designed to build critical thinking skills with analogies as one of the main themes revolving around it. While Glynn focuses on using analogies to teach science, The Private Eye Project can be used for any subject including writing, math, art, social studies, and invention. It is now used by thousands of schools around the country.[41]

There are also various pedagogic innovations now emerging that use visual analogies for cross-disciplinary teaching and research, for instance between science and the humanities.[42]


Religion

Catholicism

The Fourth Lateran Council of 1215 taught: For between creator and creature there can be noted no similarity so great that a greater dissimilarity cannot be seen between them.[43]

The theological exploration of this subject is called the analogia entis. The consequence of this theory is that all true statements concerning God (excluding the concrete details of Jesus' earthly life) are analogical and approximations, without that implying any falsity. Such analogical and true statements would include God is, God is Love, God is a consuming fire, God is near to all who call him, or God as Trinity, where being, love, fire, distance, number must be classed as analogies that allow human cognition of what is infinitely beyond positive or negative language.

The use of theological statements in syllogisms must take into account their essential analogical character, in that every analogy breaks down when stretched beyond its intended meaning.

Islam

Islamic jurisprudence makes ample use of analogy as a means of extrapolating from sources of law. The bounds and rules employed to make analogical deduction vary greatly between madhabs and to a lesser extent individual scholars. It is nonetheless a generally accepted source of law within jurisprudential epistemology, with the chief opposition to it forming the dhahiri (ostensiblist) school.

See also

Notes

  1. ^ The Oxford Companion to the English Language$ The Oxford Companion to the English Language (2 ed.). Oxford University Press. 2018. Retrieved 11 June 2023.
  2. ^ Hofstadter, Douglas. "Analogy as the Core of Cognition". Language, Cognition, and Computation Seminar Series. MIT. Retrieved 13 June 2023.
  3. ^ Henry George Liddell, Robert Scott, A Greek-English Lexicon, revised and augmented throughout by Sir Henry Stuart Jones, with the assistance of Roderick McKenzie (Oxford: Clarendon Press, 1940) on Perseus Digital Library. "Henry George Liddell, Robert Scott, A Greek-English Lexicon, ἀναλογ-ία". Archived from the original on 2016-04-23. Retrieved 2018-05-21.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. ^ analogy, Online Etymology Dictionary. Archived 2010-03-24 at the Wayback Machine
  5. ^ Hofstadter, Douglas. "Analogy as the Core of Cognition". Language, Cognition, and Computation Seminar Series. MIT. Retrieved 13 June 2023.
  6. ^ Hesse, Mary (October 1965). "Aristotle's Logic of Analogy". The Philosophical Quarterly. 15 (61): 328–340. Retrieved 11 June 2023.
  7. ^ Strumia, Alberto. "Analogy". Interdisciplinary Encyclogpedia of Religion and Science. Pontifical University of the Holy Cross. Retrieved 11 June 2023.
  8. ^ Tabaczek, Mariusz (November 2018). "htA Trace of Similarity within Even Greater Dissimilarity". Forum Philosophicum. 23 (1): 95–132. doi:10.5840/forphil20182314. Retrieved 11 June 2023.
  9. ^ "Journal of Statistics Education, V11N2: Martin". Archived from the original on 2013-03-07. Retrieved 2012-12-10., Michael A. Martin, The Use of Analogies and Heuristics in Teaching Introductory Statistical Methods
  10. ^ a b c Shelley 2003
  11. ^ Hallaq, Wael B. (1985–1986). "The Logic of Legal Reasoning in Religious and Non-Religious Cultures: The Case of Islamic Law and the Common Law". Cleveland State Law Review. 34: 79–96 [93–5].
  12. ^ Ruth Mas (1998). "Qiyas: A Study in Islamic Logic" (PDF). Folia Orientalia. 34: 113–128. ISSN 0015-5675. Archived (PDF) from the original on 2008-07-08.
  13. ^ John F. Sowa; Arun K. Majumdar (2003). "Analogical reasoning". Conceptual Structures for Knowledge Creation and Communication, Proceedings of ICCS 2003. Berlin: Springer-Verlag. Archived from the original on 2010-04-05., pp. 16–36
  14. ^ See Dedre Gentner et al. 2001
  15. ^ See Gentner et al. 2001 and Gentner's publication page Archived 2010-06-14 at the Wayback Machine.
  16. ^ a b Research and Education Association (June 1994). "2. Analogies". In Fogiel, M (ed.). Verbal Tutor for the SAT. Piscataway, New Jersey: Research & Education Assoc. pp. 84–86. ISBN 978-0-87891-963-5. OCLC 32747316. Retrieved 25 January 2018.
  17. ^ Schwartz, Linda; Heidrich, Stanley H.; Heidrich, Delana S. (1 January 2007). Power Practice: Analogies and Idioms, eBook. Huntington Beach, Calif.: Creative Teaching Press. pp. 4–. ISBN 978-1-59198-953-0. OCLC 232131611. Retrieved 25 January 2018.
  18. ^ "underwhelm - definition of underwhelm in English | Oxford Dictionaries". Oxford Dictionaries | English. Archived from the original on 2016-08-16. Retrieved 2017-04-07.
  19. ^ Going with the flow: Using analogies to explain electric circuits. Mark D. Walker and David Garlovsky. School Science Review, 97, no. 361 (2016): 51-58.https://www.academia.edu/33380466/Going_with_the_flow_Using_analogies_to_explain_electric_circuits_Going_with_the_flow_Using_analogies_to_explain_electric_circuits
  20. ^ Turney 2006
  21. ^ Phillips, Steven; Wilson, William H. (July 2010). "Categorial Compositionality: A Category Theory Explanation for the Systematicity of Human Cognition". PLOS Computational Biology. 6 (7): e1000858. Bibcode:2010PLSCB...6E0858P. doi:10.1371/journal.pcbi.1000858. PMC 2908697. PMID 20661306.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  22. ^ Phillips, Steven; Wilson, William H. (August 2011). "Categorial Compositionality II: Universal Constructions and a General Theory of (Quasi-)Systematicity in Human Cognition". PLOS Computational Biology. 7 (8): e1002102. Bibcode:2011PLSCB...7E2102P. doi:10.1371/journal.pcbi.1002102. PMC 3154512. PMID 21857816.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  23. ^ Doumas, Hummel, and Sandhofer, 2008
  24. ^ Keane, M.T. and Brayshaw, M. (1988). The Incremental Analogical Machine: a computational model of analogy. In D. Sleeman (Ed). European working session on learning. (pp.53–62). London: Pitman.
  25. ^ Keane, M.T. Ledgeway; Duff, S (1994). "Constraints on analogical mapping: a comparison of three models" (PDF). Cognitive Science. 18 (3): 387–438. doi:10.1016/0364-0213(94)90015-9.
  26. ^ Keane, M.T. (1997). "What makes an analogy difficult? The effects of order and causal structure in analogical mapping". Journal of Experimental Psychology: Learning, Memory, and Cognition. 23 (4): 946–967. doi:10.1037/0278-7393.23.4.946. PMID 9231438.
  27. ^ See Chalmers et al. 1991
  28. ^ Forbus et al., 1998
  29. ^ Morrison and Dietrich, 1995
  30. ^ Zhang, Y., Jatowt, A., Bhowmick, S., & Tanaka, K. (2015, July). Omnia mutantur, nihil interit: Connecting past with present by finding corresponding terms across time. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (pp. 645-655). pdf
  31. ^ Zhang, Yating, Adam Jatowt, and Katsumi Tanaka. "Towards understanding word embeddings: Automatically explaining similarity of terms." In 2016 IEEE international conference on big data (big data), pp. 823-832. IEEE, 2016. pdf
  32. ^ Gentner, Dedre (April 1983). "Structure-Mapping: A Theoretical Framework for Analogy*". Cognitive Science. 7 (2): 155–170. doi:10.1207/s15516709cog0702_3. S2CID 5371492.
  33. ^ a b Gentner, Dedre (2006), "Analogical Reasoning, Psychology of", Encyclopedia of Cognitive Science, American Cancer Society, doi:10.1002/0470018860.s00473, ISBN 978-0-470-01886-6, retrieved 2020-12-09
  34. ^ a b Gentner, D.; Gunn, V. (June 2001). "Structural alignment facilitates the noticing of differences". Memory & Cognition. 29 (4): 565–577. doi:10.3758/bf03200458. ISSN 0090-502X. PMID 11504005. S2CID 1745309.
  35. ^ a b c d e Gentner, Dedre; Smith, Linsey A. (2013-03-11). Reisberg, Daniel (ed.). "Analogical Learning and Reasoning". The Oxford Handbook of Cognitive Psychology. doi:10.1093/oxfordhb/9780195376746.001.0001. ISBN 9780195376746. Retrieved 2020-12-09.
  36. ^ Gentner, Dedre; Stevens, Albert L. (2014-01-14). Mental Models. Psychology Press. doi:10.4324/9781315802725. ISBN 978-1-315-80272-5.
  37. ^ a b c Hespos, Susan J.; Anderson, Erin; Gentner, Dedre (2020), Childers, Jane B. (ed.), "Structure-Mapping Processes Enable Infants' Learning Across Domains Including Language", Language and Concept Acquisition from Infancy Through Childhood: Learning from Multiple Exemplars, Cham: Springer International Publishing, pp. 79–104, doi:10.1007/978-3-030-35594-4_5, ISBN 978-3-030-35594-4, S2CID 213450124, retrieved 2020-12-09
  38. ^ a b Gentner, Dedre; Hoyos, Christian (2017). "Analogy and Abstraction". Topics in Cognitive Science. 9 (3): 672–693. doi:10.1111/tops.12278. ISSN 1756-8765. PMID 28621480.
  39. ^ Glynn, Shawn M. Teaching with Analogies. 2008.
  40. ^ Johnson, Katie. Educational Leadership: Exploring the World with the Private Eye. September 1995. 16 October 2013 .
  41. ^ The Private Eye Project. The Private Eye Project. 2013.
  42. ^ Mario Petrucci. "Crosstalk, Mutation, Chaos: bridge-building between the sciences and literary studies using Visual Analogy". Archived from the original on 2013-09-25. {{cite journal}}: Cite journal requires |journal= (help)
  43. ^ Fourth Lateran Council of 1215

References