Transmittance: Difference between revisions
Fgnievinski (talk | contribs) |
m (GR) Duplicate: File:Atmospheric.transmittance.IR.jpg → File:Atmosfaerisk spredning.png Exact or scaled-down duplicate: c::File:Atmosfaerisk spredning.png |
||
Line 1: | Line 1: | ||
{{About|transmission through a ''volume''|transmission through a ''surface''|Surface transmittance}} |
{{About|transmission through a ''volume''|transmission through a ''surface''|Surface transmittance}} |
||
<!-- Deleted image removed: [[File:Beer lambert1.png|thumb|240px|Diagram of Beer-Lambert Law of transmittance of a beam of light as it travels through a [[cuvette]] of width ''l''.]] --> |
<!-- Deleted image removed: [[File:Beer lambert1.png|thumb|240px|Diagram of Beer-Lambert Law of transmittance of a beam of light as it travels through a [[cuvette]] of width ''l''.]] --> |
||
[[File: |
[[File:Atmosfaerisk spredning.png|thumb|Earth's atmospheric transmittance over 1 nautical mile sea level path (infrared region<ref>{{cite web|url=http://ewhdbks.mugu.navy.mil/EO-IR.htm#transmission |title=Electronic warfare and radar systems engineering handbook |deadurl=unfit |archiveurl=https://web.archive.org/web/20010913091738/http://ewhdbks.mugu.navy.mil/EO-IR.htm#transmission |archivedate=September 13, 2001 }}</ref>). Because of the natural radiation of the hot atmosphere, the intensity of radiation is different from the transmitted part.]] |
||
[[File:Ruby transmittance.svg|thumb|240px|Transmittance of ruby in optical and near-IR spectra. Note the two broad blue and green absorption bands and one narrow absorption band on the wavelength of 694 nm, which is the wavelength of the [[ruby laser]].]] |
[[File:Ruby transmittance.svg|thumb|240px|Transmittance of ruby in optical and near-IR spectra. Note the two broad blue and green absorption bands and one narrow absorption band on the wavelength of 694 nm, which is the wavelength of the [[ruby laser]].]] |
||
Revision as of 22:18, 11 June 2017
Transmittance of the surface of a material is its effectiveness in transmitting radiant energy. It is the fraction of incident electromagnetic power that is transmitted through a sample, in contrast to the transmission coefficient, which is the ratio of the transmitted to incident electric field.[2]
Internal transmittance refers to energy loss by absorption, whereas (total) transmittance is that due to absorption, scattering, reflection, etc.
Mathematical definitions
Hemispherical transmittance
Hemispherical transmittance of a surface, denoted T, is defined as[3]
where
- Φet is the radiant flux transmitted by that surface;
- Φei is the radiant flux received by that surface.
Spectral hemispherical transmittance
Spectral hemispherical transmittance in frequency and spectral hemispherical transmittance in wavelength of a surface, denoted Tν and Tλ respectively, are defined as[3]
where
- Φe,νt is the spectral radiant flux in frequency transmitted by that surface;
- Φe,νi is the spectral radiant flux in frequency received by that surface;
- Φe,λt is the spectral radiant flux in wavelength transmitted by that surface;
- Φe,λi is the spectral radiant flux in wavelength received by that surface.
Directional transmittance
Directional transmittance of a surface, denoted TΩ, is defined as[3]
where
- Le,Ωt is the radiance transmitted by that surface;
- Le,Ωi is the radiance received by that surface.
Spectral directional transmittance
Spectral directional transmittance in frequency and spectral directional transmittance in wavelength of a surface, denoted Tν,Ω and Tλ,Ω respectively, are defined as[3]
where
- Le,Ω,νt is the spectral radiance in frequency transmitted by that surface;
- Le,Ω,νi is the spectral radiance received by that surface;
- Le,Ω,λt is the spectral radiance in wavelength transmitted by that surface;
- Le,Ω,λi is the spectral radiance in wavelength received by that surface.
Beer–Lambert law
By definition, transmittance is related to optical depth and to absorbance as
where
- τ is the optical depth;
- A is the absorbance.
The Beer–Lambert law states that, for N attenuating species in the material sample,
or equivalently that
where
- σi is the attenuation cross section of the attenuating specie i in the material sample;
- ni is the number density of the attenuating specie i in the material sample;
- εi is the molar attenuation coefficient of the attenuating specie i in the material sample;
- ci is the amount concentration of the attenuating specie i in the material sample;
- ℓ is the path length of the beam of light through the material sample.
Attenuation cross section and molar attenuation coefficient are related by
and number density and amount concentration by
where NA is the Avogadro constant.
In case of uniform attenuation, these relations become[4]
or equivalently
Cases of non-uniform attenuation occur in atmospheric science applications and radiation shielding theory for instance.
SI radiometry units
Quantity | Unit | Dimension | Notes | ||
---|---|---|---|---|---|
Name | Symbol[nb 1] | Name | Symbol | ||
Radiant energy | Qe[nb 2] | joule | J | M⋅L2⋅T−2 | Energy of electromagnetic radiation. |
Radiant energy density | we | joule per cubic metre | J/m3 | M⋅L−1⋅T−2 | Radiant energy per unit volume. |
Radiant flux | Φe[nb 2] | watt | W = J/s | M⋅L2⋅T−3 | Radiant energy emitted, reflected, transmitted or received, per unit time. This is sometimes also called "radiant power", and called luminosity in Astronomy. |
Spectral flux | Φe,ν[nb 3] | watt per hertz | W/Hz | M⋅L2⋅T −2 | Radiant flux per unit frequency or wavelength. The latter is commonly measured in W⋅nm−1. |
Φe,λ[nb 4] | watt per metre | W/m | M⋅L⋅T−3 | ||
Radiant intensity | Ie,Ω[nb 5] | watt per steradian | W/sr | M⋅L2⋅T−3 | Radiant flux emitted, reflected, transmitted or received, per unit solid angle. This is a directional quantity. |
Spectral intensity | Ie,Ω,ν[nb 3] | watt per steradian per hertz | W⋅sr−1⋅Hz−1 | M⋅L2⋅T−2 | Radiant intensity per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅nm−1. This is a directional quantity. |
Ie,Ω,λ[nb 4] | watt per steradian per metre | W⋅sr−1⋅m−1 | M⋅L⋅T−3 | ||
Radiance | Le,Ω[nb 5] | watt per steradian per square metre | W⋅sr−1⋅m−2 | M⋅T−3 | Radiant flux emitted, reflected, transmitted or received by a surface, per unit solid angle per unit projected area. This is a directional quantity. This is sometimes also confusingly called "intensity". |
Spectral radiance Specific intensity |
Le,Ω,ν[nb 3] | watt per steradian per square metre per hertz | W⋅sr−1⋅m−2⋅Hz−1 | M⋅T−2 | Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr−1⋅m−2⋅nm−1. This is a directional quantity. This is sometimes also confusingly called "spectral intensity". |
Le,Ω,λ[nb 4] | watt per steradian per square metre, per metre | W⋅sr−1⋅m−3 | M⋅L−1⋅T−3 | ||
Irradiance Flux density |
Ee[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux received by a surface per unit area. This is sometimes also confusingly called "intensity". |
Spectral irradiance Spectral flux density |
Ee,ν[nb 3] | watt per square metre per hertz | W⋅m−2⋅Hz−1 | M⋅T−2 | Irradiance of a surface per unit frequency or wavelength. This is sometimes also confusingly called "spectral intensity". Non-SI units of spectral flux density include jansky (1 Jy = 10−26 W⋅m−2⋅Hz−1) and solar flux unit (1 sfu = 10−22 W⋅m−2⋅Hz−1 = 104 Jy). |
Ee,λ[nb 4] | watt per square metre, per metre | W/m3 | M⋅L−1⋅T−3 | ||
Radiosity | Je[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux leaving (emitted, reflected and transmitted by) a surface per unit area. This is sometimes also confusingly called "intensity". |
Spectral radiosity | Je,ν[nb 3] | watt per square metre per hertz | W⋅m−2⋅Hz−1 | M⋅T−2 | Radiosity of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. This is sometimes also confusingly called "spectral intensity". |
Je,λ[nb 4] | watt per square metre, per metre | W/m3 | M⋅L−1⋅T−3 | ||
Radiant exitance | Me[nb 2] | watt per square metre | W/m2 | M⋅T−3 | Radiant flux emitted by a surface per unit area. This is the emitted component of radiosity. "Radiant emittance" is an old term for this quantity. This is sometimes also confusingly called "intensity". |
Spectral exitance | Me,ν[nb 3] | watt per square metre per hertz | W⋅m−2⋅Hz−1 | M⋅T−2 | Radiant exitance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅m−2⋅nm−1. "Spectral emittance" is an old term for this quantity. This is sometimes also confusingly called "spectral intensity". |
Me,λ[nb 4] | watt per square metre, per metre | W/m3 | M⋅L−1⋅T−3 | ||
Radiant exposure | He | joule per square metre | J/m2 | M⋅T−2 | Radiant energy received by a surface per unit area, or equivalently irradiance of a surface integrated over time of irradiation. This is sometimes also called "radiant fluence". |
Spectral exposure | He,ν[nb 3] | joule per square metre per hertz | J⋅m−2⋅Hz−1 | M⋅T−1 | Radiant exposure of a surface per unit frequency or wavelength. The latter is commonly measured in J⋅m−2⋅nm−1. This is sometimes also called "spectral fluence". |
He,λ[nb 4] | joule per square metre, per metre | J/m3 | M⋅L−1⋅T−2 | ||
See also: |
- ^ Standards organizations recommend that radiometric quantities should be denoted with suffix "e" (for "energetic") to avoid confusion with photometric or photon quantities.
- ^ a b c d e Alternative symbols sometimes seen: W or E for radiant energy, P or F for radiant flux, I for irradiance, W for radiant exitance.
- ^ a b c d e f g Spectral quantities given per unit frequency are denoted with suffix "ν" (Greek letter nu, not to be confused with a letter "v", indicating a photometric quantity.)
- ^ a b c d e f g Spectral quantities given per unit wavelength are denoted with suffix "λ".
- ^ a b Directional quantities are denoted with suffix "Ω".
See also
References
- ^ "Electronic warfare and radar systems engineering handbook". Archived from the original on September 13, 2001.
{{cite web}}
: Unknown parameter|deadurl=
ignored (|url-status=
suggested) (help) - ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Transmittance". doi:10.1351/goldbook.T06484
- ^ a b c d "Thermal insulation — Heat transfer by radiation — Physical quantities and definitions". ISO 9288:1989. ISO catalogue. 1989. Retrieved 2015-03-15.
- ^ IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Beer–Lambert law". doi:10.1351/goldbook.B00626