Jump to content

DNA ligase 3: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Line 20: Line 20:
== Clinical significance ==
== Clinical significance ==


Unlike the LIG1 and LIG4 genes,<ref name="pmid15333585">{{cite journal | author = Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA | title = Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms | journal = Hum. Mol. Genet. | volume = 13 | issue = 20 | pages = 2369–76 | year = 2004 | month = October | pmid = 15333585 | doi = 10.1093/hmg/ddh274 }}</ref><ref name="pmid11779494">{{cite journal | author = O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P | title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency | journal = Mol. Cell | volume = 8 | issue = 6 | pages = 1175–85 | year = 2001 | month = December | pmid = 11779494 | doi =10.1016/S1097-2765(01)00408-7 }}</ref><ref name="pmid10395545">{{cite journal | author = Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, Kysela B, Beamish H, Plowman N, Arlett CF, Lehmann AR, Jackson SP, Jeggo PA | title = Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient | journal = Curr. Biol. | volume = 9 | issue = 13 | pages = 699–702 | year = 1999 | month = July | pmid = 10395545 | doi =10.1016/S0960-9822(99)80311-X }}</ref><ref name="pmid1581963">{{cite journal | author = Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T | title = Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents | journal = Cell | volume = 69 | issue = 3 | pages = 495–503 | year = 1992 | month = May | pmid = 1581963 | doi =10.1016/0092-8674(92)90450-Q }}</ref> inherited mutations in the LIG3 gene have not been identified in the human population. DNA ligase IIIalpha has, however, been indirectly implicated in cancer and neurodegenerative diseases. In cancer, DNA ligase IIIalpha is frequently overexpressed and this serves as a biomarker to identify cells that are more dependent upon the alternative NHEJ pathway for the repair of DNA double strand breaks.<ref name="pmid18451142">{{cite journal | author = Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM, MacKerell AD, Tomkinson AE | title = Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair | journal = Cancer Res. | volume = 68 | issue = 9 | pages = 3169–77 | year = 2008 | month = May | pmid = 18451142 | pmc = 2734474 | doi = 10.1158/0008-5472.CAN-07-6636 }}</ref><ref name="pmid22112941">{{cite journal | author = Tobin LA, Robert C, Nagaria P, Chumsri S, Twaddell W, Ioffe OB, Greco GE, Brodie AH, Tomkinson AE, Rassool FV | title = Targeting abnormal DNA repair in therapy-resistant breast cancers | journal = Mol. Cancer Res. | volume = 10 | issue = 1 | pages = 96–107 | year = 2012 | month = January | pmid = 22112941 | pmc = 3319138 | doi = 10.1158/1541-7786.MCR-11-0255 }}</ref><ref name="pmid22641215">{{cite journal | author = Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV | title = Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias | journal = Oncogene | volume = 32 | issue = 14 | pages = 1784–93 | year = 2013 | month = April | pmid = 22641215 | doi = 10.1038/onc.2012.203 }}</ref><ref name="pmid18524993">{{cite journal | author = Sallmyr A, Tomkinson AE, Rassool FV | title = Up-regulation of WRN and DNA ligase IIIalpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks | journal = Blood | volume = 112 | issue = 4 | pages = 1413–23 | year = 2008 | month = August | pmid = 18524993 | pmc = 2967309 | doi = 10.1182/blood-2007-07-104257 }}</ref> Although the increased activity of the alternative NHEJ pathway causes genomic instability that drives disease progression, it also constitutes a novel target for the development of cancer cell-specific therapeutic strategies.<ref name="pmid22112941"/><ref name="pmid22641215"/> Several genes encoding proteins that interact directly with DNA ligase IIIalpha or indirectly via interactions with XRCC1 have been identified as being mutated in inherited neurodegenerative diseases.<ref name="pmid16964241">{{cite journal | author = Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC | title = The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates | journal = Nature | volume = 443 | issue = 7112 | pages = 713–6 | year = 2006 | month = October | pmid = 16964241 | doi = 10.1038/nature05164 }}</ref><ref name="pmid11586299">{{cite journal | author = Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S | title = Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene | journal = Nat. Genet. | volume = 29 | issue = 2 | pages = 184–8 | year = 2001 | month = October | pmid = 11586299 | doi = 10.1038/ng1001-184 }}</ref><ref name="pmid11586300">{{cite journal | author = Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M | title = The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin | journal = Nat. Genet. | volume = 29 | issue = 2 | pages = 189–93 | year = 2001 | month = October | pmid = 11586300 | doi = 10.1038/ng1001-189 }}</ref><ref name="pmid15744309">{{cite journal | author = El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW | title = Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1 | journal = Nature | volume = 434 | issue = 7029 | pages = 108–13 | year = 2005 | month = March | pmid = 15744309 | doi = 10.1038/nature03314 }}</ref><ref name="pmid20118933">{{cite journal | author = Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K, Ganesh VS, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA | title = Mutations in PNKP cause microcephaly, seizures and defects in DNA repair | journal = Nat. Genet. | volume = 42 | issue = 3 | pages = 245–9 | year = 2010 | month = March | pmid = 20118933 | pmc = 2835984 | doi = 10.1038/ng.526 }}</ref> Thus, it appears that DNA transactions involving DNA ligase IIIalpha play an important role in maintaining the viability of neuronal cells.
Unlike the LIG1 and LIG4 genes,<ref name="pmid15333585">{{cite journal | author = Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA | title = Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms | journal = Hum. Mol. Genet. | volume = 13 | issue = 20 | pages = 2369–76 | year = 2004 | month = October | pmid = 15333585 | doi = 10.1093/hmg/ddh274 }}</ref><ref name="pmid11779494">{{cite journal | author = O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P | title = DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency | journal = Mol. Cell | volume = 8 | issue = 6 | pages = 1175–85 | year = 2001 | month = December | pmid = 11779494 | doi =10.1016/S1097-2765(01)00408-7 }}</ref><ref name="pmid10395545">{{cite journal | author = Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, Kysela B, Beamish H, Plowman N, Arlett CF, Lehmann AR, Jackson SP, Jeggo PA | title = Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient | journal = Curr. Biol. | volume = 9 | issue = 13 | pages = 699–702 | year = 1999 | month = July | pmid = 10395545 | doi =10.1016/S0960-9822(99)80311-X }}</ref><ref name="pmid1581963">{{cite journal | author = Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T | title = Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents | journal = Cell | volume = 69 | issue = 3 | pages = 495–503 | year = 1992 | month = May | pmid = 1581963 | doi =10.1016/0092-8674(92)90450-Q }}</ref> inherited mutations in the LIG3 gene have not been identified in the human population. DNA ligase III-alpha has, however, been indirectly implicated in cancer and [[neurodegenerative disease]]s. In cancer, DNA ligase III-alpha is frequently overexpressed and this serves as a [[biomarker]] to identify cells that are more dependent upon the alternative NHEJ pathway for the repair of DNA double strand breaks.<ref name="pmid18451142">{{cite journal | author = Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM, MacKerell AD, Tomkinson AE | title = Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair | journal = Cancer Res. | volume = 68 | issue = 9 | pages = 3169–77 | year = 2008 | month = May | pmid = 18451142 | pmc = 2734474 | doi = 10.1158/0008-5472.CAN-07-6636 }}</ref><ref name="pmid22112941">{{cite journal | author = Tobin LA, Robert C, Nagaria P, Chumsri S, Twaddell W, Ioffe OB, Greco GE, Brodie AH, Tomkinson AE, Rassool FV | title = Targeting abnormal DNA repair in therapy-resistant breast cancers | journal = Mol. Cancer Res. | volume = 10 | issue = 1 | pages = 96–107 | year = 2012 | month = January | pmid = 22112941 | pmc = 3319138 | doi = 10.1158/1541-7786.MCR-11-0255 }}</ref><ref name="pmid22641215">{{cite journal | author = Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV | title = Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias | journal = Oncogene | volume = 32 | issue = 14 | pages = 1784–93 | year = 2013 | month = April | pmid = 22641215 | doi = 10.1038/onc.2012.203 }}</ref><ref name="pmid18524993">{{cite journal | author = Sallmyr A, Tomkinson AE, Rassool FV | title = Up-regulation of WRN and DNA ligase III-alpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks | journal = Blood | volume = 112 | issue = 4 | pages = 1413–23 | year = 2008 | month = August | pmid = 18524993 | pmc = 2967309 | doi = 10.1182/blood-2007-07-104257 }}</ref> Although the increased activity of the alternative NHEJ pathway causes [[genomic instability]] that drives disease progression, it also constitutes a novel target for the development of cancer cell-specific therapeutic strategies.<ref name="pmid22112941"/><ref name="pmid22641215"/> Several genes encoding proteins that interact directly with DNA ligase III-alpha or indirectly via interactions with XRCC1 have been identified as being mutated in inherited neurodegenerative diseases.<ref name="pmid16964241">{{cite journal | author = Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC | title = The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates | journal = Nature | volume = 443 | issue = 7112 | pages = 713–6 | year = 2006 | month = October | pmid = 16964241 | doi = 10.1038/nature05164 }}</ref><ref name="pmid11586299">{{cite journal | author = Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S | title = Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene | journal = Nat. Genet. | volume = 29 | issue = 2 | pages = 184–8 | year = 2001 | month = October | pmid = 11586299 | doi = 10.1038/ng1001-184 }}</ref><ref name="pmid11586300">{{cite journal | author = Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M | title = The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin | journal = Nat. Genet. | volume = 29 | issue = 2 | pages = 189–93 | year = 2001 | month = October | pmid = 11586300 | doi = 10.1038/ng1001-189 }}</ref><ref name="pmid15744309">{{cite journal | author = El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW | title = Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1 | journal = Nature | volume = 434 | issue = 7029 | pages = 108–13 | year = 2005 | month = March | pmid = 15744309 | doi = 10.1038/nature03314 }}</ref><ref name="pmid20118933">{{cite journal | author = Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K, Ganesh VS, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA | title = Mutations in PNKP cause microcephaly, seizures and defects in DNA repair | journal = Nat. Genet. | volume = 42 | issue = 3 | pages = 245–9 | year = 2010 | month = March | pmid = 20118933 | pmc = 2835984 | doi = 10.1038/ng.526 }}</ref> Thus, it appears that DNA transactions involving DNA ligase III-alpha play an important role in maintaining the viability of [[neuron|neuronal cells]].


== References ==
== References ==

Revision as of 05:56, 21 August 2013

Template:PBB DNA ligase 3 is an enyzme that in humans is encoded by the LIG3 gene.[1] The human LIG3 gene encodes ATP-dependent DNA ligases that seal interruptions in the phosphodiester backbone of duplex DNA.

There are three families of ATP-dependent DNA ligases in eukaryotes.[2] These enzymes utilize the same three step reaction mechanism; (i) formation of a covalent enzyme-adenylate intermediate; (ii) transfer of the adenylate group to the 5’ phosphate terminus of a DNA nick; (iii) phosphodiester bond formation. Unlike LIG1 and LIG4 family members that are found in almost all eukaryotes, LIG3 family members are less widely distributed.[3] The LIG3 gene encodes several distinct DNA ligase species by alternative translation initiation and alternative splicing mechanisms that are described below.

Structure, DNA binding and catalytic activities

Eukaryotic ATP-dependent DNA ligases have related catalytic region that contains three domains, a DNA binding domain, an adenylation domain and an oligonucleotide / oligosaccharide binding-fold domain. When these enzymes engage a nick in duplex DNA, these domains encircle the DNA duplex with each one making contact with the DNA. The structure of the catalytic region of DNA ligase III complexed with a nicked DNA has been determined by X-ray crystallography and is remarkably similar to that formed by the catalytic region of human DNA ligase I bound to nicked DNA.[4] A unique feature of the DNA ligases encoded by the LIG3 gene is an N-terminal zinc finger that resembles the two zinc fingers at the N-terminus of poly (ADP-ribose) polymerase 1 (PARP1).[5] As with the PARP1 zinc fingers, the DNA ligase III zinc finger is involved in binding to DNA strand breaks.[5][6][7] Within the DNA ligase III polypeptide, the zinc finger co-operates with the DNA binding domain to form a DNA binding module.[8] In addition, the adenylation domain and an oligonucleotide/oligosaccharide binding-fold domain form a second DNA binding module.[8] In the jackknife model proposed by the Ellenberger laboratory,[8] the zinc finger-DNA binding domain module serves as a strand break sensor that binds to DNA single strand interruptions irrespective of the nature of the strand break termini. If these breaks are ligatable, they are transferred to the adenylation domain-oligonucleotide/oligosaccharide binding-fold domain module that binds specifically to ligatable nicks. Compared with DNA ligases I and IV, DNA ligase III is the most active enzyme in the intermolecular joining of DNA duplexes.[9] This activity is predominantly dependent upon the DNA ligase III zinc finger suggesting that the two DNA binding modules of DNA ligase III may be able to simultaneously engage duplex DNA ends.[4][8]

Alternative splicing

The alternative translation initiation and splicing mechanisms alter the amino- and carboxy-terminal sequences that flank the DNA ligase III catalytic region.[10][11] In the alternative splicing mechanism, the exon encoding a C-terminal breast cancer susceptibility protein 1 C-terminal (BRCT) domain at the C-terminus of DNA ligase III-alpha is replaced by a short positively charged sequence that acts as a nuclear localization signal, generating DNA ligase III-beta. This alternatively spliced variant has, to date, only been detected in male germs cells.[11] Based on its expression pattern during spermatogenesis, it appears likely that DNA ligase IIIbeta is involved in meiotic recombination and/or DNA repair in haploid sperm but this has not been definitively demonstrated. Although an internal ATG is the preferred site for translation initiation within the DNA ligase III open reading frame, translation initiations does also occur at the first ATG within the open reading frame, resulting in the synthesis of a polypeptide with an N-terminal mitochondrial targeting sequence.[10][12][13]

Cellular function

As mentioned above, DNA ligase III-alpha mRNA encodes nuclear and mitochondrial versions of DNA ligase III-alpha. Nuclear DNA ligase III-alpha exists and functions in a stable complex with the DNA repair protein XRCC1.[14][15] These proteins interact via their C-terminal BRCT domains.[11][16] XRCC1 has no enzymatic activity but instead appears to acts as a scaffold protein by interacting with a large number of proteins involved in base excision and single-strand break repair. The participation of XRCC1 in these pathways is consistent with the phenotype of xrcc1 cells.[14] In contrast to nuclear DNA ligase III-alpha, mitochondrial DNA ligase III-alpha functions independently of XRCC1, which is not found in mitochondria.[17] It appears that nuclear DNA ligase III-alpha forms a complex with XRCC1 in the cytoplasm and the subsequent nuclear targeting of the resultant complex is directed by the XRCC1 nuclear localization signal.[18] While mitochondrial DNA ligase III-alpha also interacts with XRCC1, it is likely that the activity of the mitochondrial targeting sequence of DNA ligase III-alpha is greater than the activity of the XRCC1 nuclear localization signal and that the DNA ligase III-alpha/XRCC1 complex is disrupted when mitochondrial DNA ligase III-alpha passes through the mitochondrial membrane.

Since the LIG3 gene encodes the only DNA ligase in mitochondria, inactivation of the LIG3 gene results in loss of mitochondrial DNA that in turn leads to loss of mitochondrial function and cell death.[19][20][21] The essential role of DNA ligase III-alpha in mitochondrial DNA metabolism can be fulfilled by other DNA ligases, including the NAD-dependent DNA ligase of E. coli, if they are targeted to mitochondria.[19][21] Thus, viable cells that lack nuclear DNA ligase III-alpha can be generated. While DNA ligase I is the predominant enzyme that joins Okazaki fragments during DNA replication, it is now evident that the DNA ligase III-alpha/XRCC1 complex enables cells that either lack or have reduced DNA ligase I activity to complete DNA replication.[19][21][22][23] Given the biochemical and cell biology studies linking the DNA ligase III-alpha/XRCC1 complex with excision repair and the repair of DNA single strand breaks,[24][25][26][27] it was surprising that the cells lacking nuclear DNA ligase III-alpha did not exhibit significantly increased sensitivity to DNA damaging agent.[19][21] These studies suggest that there is significant functional redundancy between DNA ligase I and DNA ligase III-alpha in these nuclear DNA repair pathways. In mammalian cells, most DNA double strand breaks are repaired by DNA ligase IV-dependent non-homologous end joining (NHEJ).[28] DNA ligase III-alpha participates in a minor alternative NHEJ pathway that generates chromosomal translocations.[29][30] Unlike the other nuclear DNA repair functions, it appears that the role of DNA ligase III-alpha in alternative NHEJ is independent of XRCC1.[31]

Clinical significance

Unlike the LIG1 and LIG4 genes,[32][33][34][35] inherited mutations in the LIG3 gene have not been identified in the human population. DNA ligase III-alpha has, however, been indirectly implicated in cancer and neurodegenerative diseases. In cancer, DNA ligase III-alpha is frequently overexpressed and this serves as a biomarker to identify cells that are more dependent upon the alternative NHEJ pathway for the repair of DNA double strand breaks.[36][37][38][39] Although the increased activity of the alternative NHEJ pathway causes genomic instability that drives disease progression, it also constitutes a novel target for the development of cancer cell-specific therapeutic strategies.[37][38] Several genes encoding proteins that interact directly with DNA ligase III-alpha or indirectly via interactions with XRCC1 have been identified as being mutated in inherited neurodegenerative diseases.[40][41][42][43][44] Thus, it appears that DNA transactions involving DNA ligase III-alpha play an important role in maintaining the viability of neuronal cells.

References

  1. ^ "Entrez Gene: Ligase III, DNA, ATP-dependent". Retrieved 2012-03-12T14:03:01.409-07:00. {{cite web}}: Check date values in: |accessdate= (help)
  2. ^ Ellenberger T, Tomkinson AE (2008). "Eukaryotic DNA ligases: structural and functional insights". Annu. Rev. Biochem. 77: 313–38. doi:10.1146/annurev.biochem.77.061306.123941. PMC 2933818. PMID 18518823.
  3. ^ Simsek D, Jasin M (2011). "DNA ligase III: a spotty presence in eukaryotes, but an essential function where tested". Cell Cycle. 10 (21): 3636–44. doi:10.4161/cc.10.21.18094. PMC 3266004. PMID 22041657. {{cite journal}}: Unknown parameter |month= ignored (help)
  4. ^ a b Cotner-Gohara E, Kim IK, Hammel M, Tainer JA, Tomkinson AE, Ellenberger T (2010). "Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states". Biochemistry. 49 (29): 6165–76. doi:10.1021/bi100503w. PMC 2922849. PMID 20518483. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  5. ^ a b Mackey ZB, Niedergang C, Murcia JM, Leppard J, Au K, Chen J, de Murcia G, Tomkinson AE (1999). "DNA ligase III is recruited to DNA strand breaks by a zinc finger motif homologous to that of poly(ADP-ribose) polymerase. Identification of two functionally distinct DNA binding regions within DNA ligase III". J. Biol. Chem. 274 (31): 21679–87. doi:10.1074/jbc.274.31.21679. PMID 10419478. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  6. ^ Leppard JB, Dong Z, Mackey ZB, Tomkinson AE (2003). "Physical and functional interaction between DNA ligase IIIalpha and poly(ADP-Ribose) polymerase 1 in DNA single-strand break repair". Mol. Cell. Biol. 23 (16): 5919–27. doi:10.1128/MCB.23.16.5919-5927.2003. PMC 166336. PMID 12897160. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  7. ^ Taylor RM, Whitehouse CJ, Caldecott KW (2000). "The DNA ligase III zinc finger stimulates binding to DNA secondary structure and promotes end joining". Nucleic Acids Res. 28 (18): 3558–63. doi:10.1093/nar/28.18.3558. PMC 110727. PMID 10982876. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  8. ^ a b c d Cotner-Gohara E, Kim IK, Tomkinson AE, Ellenberger T (2008). "Two DNA-binding and nick recognition modules in human DNA ligase III". J. Biol. Chem. 283 (16): 10764–72. doi:10.1074/jbc.M708175200. PMC 2447648. PMID 18238776. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  9. ^ Chen L, Trujillo K, Sung P, Tomkinson AE (2000). "Interactions of the DNA ligase IV-XRCC4 complex with DNA ends and the DNA-dependent protein kinase". J. Biol. Chem. 275 (34): 26196–205. doi:10.1074/jbc.M000491200. PMID 10854421. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  10. ^ a b Lakshmipathy U, Campbell C (1999). "The human DNA ligase III gene encodes nuclear and mitochondrial proteins". Mol. Cell. Biol. 19 (5): 3869–76. PMC 84244. PMID 10207110. {{cite journal}}: Unknown parameter |month= ignored (help)
  11. ^ a b c Mackey ZB, Ramos W, Levin DS, Walter CA, McCarrey JR, Tomkinson AE (1997). "An alternative splicing event which occurs in mouse pachytene spermatocytes generates a form of DNA ligase III with distinct biochemical properties that may function in meiotic recombination". Mol. Cell. Biol. 17 (2): 989–98. PMC 231824. PMID 9001252. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  12. ^ Wei YF, Robins P, Carter K, Caldecott K, Pappin DJ, Yu GL, Wang RP, Shell BK, Nash RA, Schär P (1995). "Molecular cloning and expression of human cDNAs encoding a novel DNA ligase IV and DNA ligase III, an enzyme active in DNA repair and recombination". Mol. Cell. Biol. 15 (6): 3206–16. PMC 230553. PMID 7760816. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  13. ^ Chen J, Tomkinson AE, Ramos W, Mackey ZB, Danehower S, Walter CA, Schultz RA, Besterman JM, Husain I (1995). "Mammalian DNA ligase III: molecular cloning, chromosomal localization, and expression in spermatocytes undergoing meiotic recombination". Mol. Cell. Biol. 15 (10): 5412–22. PMC 230791. PMID 7565692. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  14. ^ a b Caldecott KW, McKeown CK, Tucker JD, Ljungquist S, Thompson LH (1994). "An interaction between the mammalian DNA repair protein XRCC1 and DNA ligase III". Mol. Cell. Biol. 14 (1): 68–76. PMC 358357. PMID 8264637. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  15. ^ Caldecott KW, Tucker JD, Stanker LH, Thompson LH (1995). "Characterization of the XRCC1-DNA ligase III complex in vitro and its absence from mutant hamster cells". Nucleic Acids Res. 23 (23): 4836–43. doi:10.1093/nar/23.23.4836. PMC 307472. PMID 8532526. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  16. ^ Nash RA, Caldecott KW, Barnes DE, Lindahl T (1997). "XRCC1 protein interacts with one of two distinct forms of DNA ligase III". Biochemistry. 36 (17): 5207–11. doi:10.1021/bi962281m. PMID 9136882. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  17. ^ Lakshmipathy U, Campbell C (2000). "Mitochondrial DNA ligase III function is independent of Xrcc1". Nucleic Acids Res. 28 (20): 3880–6. doi:10.1093/nar/28.20.3880. PMC 110795. PMID 11024166. {{cite journal}}: Unknown parameter |month= ignored (help)
  18. ^ Parsons JL, Dianova II, Finch D, Tait PS, Ström CE, Helleday T, Dianov GL (2010). "XRCC1 phosphorylation by CK2 is required for its stability and efficient DNA repair". DNA Repair (Amst.). 9 (7): 835–41. doi:10.1016/j.dnarep.2010.04.008. PMID 20471329. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  19. ^ a b c d Gao Y, Katyal S, Lee Y, Zhao J, Rehg JE, Russell HR, McKinnon PJ (2011). "DNA ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair". Nature. 471 (7337): 240–4. doi:10.1038/nature09773. PMC 3079429. PMID 21390131. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  20. ^ Lakshmipathy U, Campbell C (2001). "Antisense-mediated decrease in DNA ligase III expression results in reduced mitochondrial DNA integrity". Nucleic Acids Res. 29 (3): 668–76. doi:10.1093/nar/29.3.668. PMC 30390. PMID 11160888. {{cite journal}}: Unknown parameter |month= ignored (help)
  21. ^ a b c d Simsek D, Furda A, Gao Y, Artus J, Brunet E, Hadjantonakis AK, Van Houten B, Shuman S, McKinnon PJ, Jasin M (2011). "Crucial role for DNA ligase III in mitochondria but not in Xrcc1-dependent repair". Nature. 471 (7337): 245–8. doi:10.1038/nature09794. PMC 3261757. PMID 21390132. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  22. ^ Arakawa H, Bednar T, Wang M, Paul K, Mladenov E, Bencsik-Theilen AA, Iliakis G (2012). "Functional redundancy between DNA ligases I and III in DNA replication in vertebrate cells". Nucleic Acids Res. 40 (6): 2599–610. doi:10.1093/nar/gkr1024. PMC 3315315. PMID 22127868. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  23. ^ Le Chalony C, Hoffschir F, Gauthier LR, Gross J, Biard DS, Boussin FD, Pennaneach V (2012). "Partial complementation of a DNA ligase I deficiency by DNA ligase III and its impact on cell survival and telomere stability in mammalian cells". Cell. Mol. Life Sci. 69 (17): 2933–49. doi:10.1007/s00018-012-0975-8. PMC 3417097. PMID 22460582. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  24. ^ Cappelli E, Taylor R, Cevasco M, Abbondandolo A, Caldecott K, Frosina G (1997). "Involvement of XRCC1 and DNA ligase III gene products in DNA base excision repair". J. Biol. Chem. 272 (38): 23970–5. doi:10.1074/jbc.272.38.23970. PMID 9295348. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  25. ^ Okano S, Lan L, Tomkinson AE, Yasui A (2005). "Translocation of XRCC1 and DNA ligase III-alpha from centrosomes to chromosomes in response to DNA damage in mitotic human cells". Nucleic Acids Res. 33 (1): 422–9. doi:10.1093/nar/gki190. PMC 546168. PMID 15653642.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  26. ^ Kubota Y, Nash RA, Klungland A, Schär P, Barnes DE, Lindahl T (1996). "Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein". EMBO J. 15 (23): 6662–70. PMC 452490. PMID 8978692. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  27. ^ Moser J, Kool H, Giakzidis I, Caldecott K, Mullenders LH, Fousteri MI (2007). "Sealing of chromosomal DNA nicks during nucleotide excision repair requires XRCC1 and DNA ligase III alpha in a cell-cycle-specific manner". Mol. Cell. 27 (2): 311–23. doi:10.1016/j.molcel.2007.06.014. PMID 17643379. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  28. ^ Lieber MR (2010). "The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway". Annu. Rev. Biochem. 79: 181–211. doi:10.1146/annurev.biochem.052308.093131. PMC 3079308. PMID 20192759.
  29. ^ Wang H, Rosidi B, Perrault R, Wang M, Zhang L, Windhofer F, Iliakis G (2005). "DNA ligase III as a candidate component of backup pathways of nonhomologous end joining". Cancer Res. 65 (10): 4020–30. doi:10.1158/0008-5472.CAN-04-3055. PMID 15899791. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  30. ^ Simsek D, Brunet E, Wong SY, Katyal S, Gao Y, McKinnon PJ, Lou J, Zhang L, Li J, Rebar EJ, Gregory PD, Holmes MC, Jasin M (2011). Haber, James E (ed.). "DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation". PLoS Genet. 7 (6): e1002080. doi:10.1371/journal.pgen.1002080. PMC 3107202. PMID 21655080. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link) CS1 maint: unflagged free DOI (link)
  31. ^ Boboila C, Oksenych V, Gostissa M, Wang JH, Zha S, Zhang Y, Chai H, Lee CS, Jankovic M, Saez LM, Nussenzweig MC, McKinnon PJ, Alt FW, Schwer B (2012). "Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1)". Proc. Natl. Acad. Sci. U.S.A. 109 (7): 2473–8. doi:10.1073/pnas.1121470109. PMC 3289296. PMID 22308491. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  32. ^ Girard PM, Kysela B, Härer CJ, Doherty AJ, Jeggo PA (2004). "Analysis of DNA ligase IV mutations found in LIG4 syndrome patients: the impact of two linked polymorphisms". Hum. Mol. Genet. 13 (20): 2369–76. doi:10.1093/hmg/ddh274. PMID 15333585. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  33. ^ O'Driscoll M, Cerosaletti KM, Girard PM, Dai Y, Stumm M, Kysela B, Hirsch B, Gennery A, Palmer SE, Seidel J, Gatti RA, Varon R, Oettinger MA, Neitzel H, Jeggo PA, Concannon P (2001). "DNA ligase IV mutations identified in patients exhibiting developmental delay and immunodeficiency". Mol. Cell. 8 (6): 1175–85. doi:10.1016/S1097-2765(01)00408-7. PMID 11779494. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  34. ^ Riballo E, Critchlow SE, Teo SH, Doherty AJ, Priestley A, Broughton B, Kysela B, Beamish H, Plowman N, Arlett CF, Lehmann AR, Jackson SP, Jeggo PA (1999). "Identification of a defect in DNA ligase IV in a radiosensitive leukaemia patient". Curr. Biol. 9 (13): 699–702. doi:10.1016/S0960-9822(99)80311-X. PMID 10395545. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  35. ^ Barnes DE, Tomkinson AE, Lehmann AR, Webster AD, Lindahl T (1992). "Mutations in the DNA ligase I gene of an individual with immunodeficiencies and cellular hypersensitivity to DNA-damaging agents". Cell. 69 (3): 495–503. doi:10.1016/0092-8674(92)90450-Q. PMID 1581963. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  36. ^ Chen X, Zhong S, Zhu X, Dziegielewska B, Ellenberger T, Wilson GM, MacKerell AD, Tomkinson AE (2008). "Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair". Cancer Res. 68 (9): 3169–77. doi:10.1158/0008-5472.CAN-07-6636. PMC 2734474. PMID 18451142. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  37. ^ a b Tobin LA, Robert C, Nagaria P, Chumsri S, Twaddell W, Ioffe OB, Greco GE, Brodie AH, Tomkinson AE, Rassool FV (2012). "Targeting abnormal DNA repair in therapy-resistant breast cancers". Mol. Cancer Res. 10 (1): 96–107. doi:10.1158/1541-7786.MCR-11-0255. PMC 3319138. PMID 22112941. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  38. ^ a b Tobin LA, Robert C, Rapoport AP, Gojo I, Baer MR, Tomkinson AE, Rassool FV (2013). "Targeting abnormal DNA double-strand break repair in tyrosine kinase inhibitor-resistant chronic myeloid leukemias". Oncogene. 32 (14): 1784–93. doi:10.1038/onc.2012.203. PMID 22641215. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  39. ^ Sallmyr A, Tomkinson AE, Rassool FV (2008). "Up-regulation of WRN and DNA ligase III-alpha in chronic myeloid leukemia: consequences for the repair of DNA double-strand breaks". Blood. 112 (4): 1413–23. doi:10.1182/blood-2007-07-104257. PMC 2967309. PMID 18524993. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  40. ^ Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ, Caldecott KW, West SC (2006). "The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates". Nature. 443 (7112): 713–6. doi:10.1038/nature05164. PMID 16964241. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  41. ^ Date H, Onodera O, Tanaka H, Iwabuchi K, Uekawa K, Igarashi S, Koike R, Hiroi T, Yuasa T, Awaya Y, Sakai T, Takahashi T, Nagatomo H, Sekijima Y, Kawachi I, Takiyama Y, Nishizawa M, Fukuhara N, Saito K, Sugano S, Tsuji S (2001). "Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene". Nat. Genet. 29 (2): 184–8. doi:10.1038/ng1001-184. PMID 11586299. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  42. ^ Moreira MC, Barbot C, Tachi N, Kozuka N, Uchida E, Gibson T, Mendonça P, Costa M, Barros J, Yanagisawa T, Watanabe M, Ikeda Y, Aoki M, Nagata T, Coutinho P, Sequeiros J, Koenig M (2001). "The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin". Nat. Genet. 29 (2): 189–93. doi:10.1038/ng1001-189. PMID 11586300. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  43. ^ El-Khamisy SF, Saifi GM, Weinfeld M, Johansson F, Helleday T, Lupski JR, Caldecott KW (2005). "Defective DNA single-strand break repair in spinocerebellar ataxia with axonal neuropathy-1". Nature. 434 (7029): 108–13. doi:10.1038/nature03314. PMID 15744309. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)
  44. ^ Shen J, Gilmore EC, Marshall CA, Haddadin M, Reynolds JJ, Eyaid W, Bodell A, Barry B, Gleason D, Allen K, Ganesh VS, Chang BS, Grix A, Hill RS, Topcu M, Caldecott KW, Barkovich AJ, Walsh CA (2010). "Mutations in PNKP cause microcephaly, seizures and defects in DNA repair". Nat. Genet. 42 (3): 245–9. doi:10.1038/ng.526. PMC 2835984. PMID 20118933. {{cite journal}}: Unknown parameter |month= ignored (help)CS1 maint: multiple names: authors list (link)